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Abstract

Background: Evaluating the quality and reliability of a de novo assembly and of single contigs in particular is
challenging since commonly a ground truth is not readily available and numerous factors may influence results.
Currently available procedures provide assembly scores but lack a comparative quality ranking of contigs within an
assembly.

Results: We present SuRankCo, which relies on a machine learning approach to predict quality scores for contigs and
to enable the ranking of contigs within an assembly. The result is a sorted contig set which allows selective contig
usage in downstream analysis. Benchmarking on datasets with known ground truth shows promising sensitivity and
specificity and favorable comparison to existing methodology.

Conclusions: SuRankCo analyzes the reliability of de novo assemblies on the contig level and thereby allows quality
control and ranking prior to further downstream and validation experiments.

Keywords: De novo assembly, Genome assembly, Next generation sequencing, Contigs, Quality control, Machine
learning, Random forest

Background
In contrast to mapping procedures, de novo assembled
sequences lack the direct comparison to a reference
genome and thus have no ground truth-based quality con-
trol readily available. Commonly, evaluation of de novo
assemblies and their contigs is based on single metrics
(such as the N50) and their individual interpretation [1]
or on evaluations of accumulatedmetrics or mis-assembly
features [2–5]. Several methods and tools were released
lately that introduced a new degree of quality detail on a
nucleotide level, such as ALE [6], CGAL [7], LAP [8] or
REAPR [9]. They provide log-likelihoods based on proba-
bilistic assumptions to allow quality comparison between
different assemblies.
In this contribution, we focus on the aspect of qual-

ity control within a de novo assembly. We introduce a
machine learning based method to evaluate and rank con-
tigs within a single de novo assembly, called SuRankCo
(Supervised Ranking of Contigs). The method takes
advantage of data already generated in related sequencing

*Correspondence: RenardB@rki.de
1Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
Full list of author information is available at the end of the article

experiments. It allows the selection of a suitable subset of
contigs for subsequent processing and analysis.
In general, not every contig can be assumed to be

error-free and it may save time and resources to re-strict
downstream analysis to reliable information. In doing so,
for instance, conflicts in finishing procedures may be
prevented [10, 11], expensive validation experiments can
focus on contigs of sufficient quality [12, 13] and ambi-
guities in derived gene annotations may be explained by
contig quality [14].
Surankco ranks contigs by their quality and can help

in identifying the error source by the various scores it
produces. However, it is outside of the scope of this
manuscript to improve low-ranking contigs and repair
their errors. There are other strategies and tools which are
applicable, e.g. the integration of different assembler types
with non-overlapping error profiles [15], the application
of error correcting tools for the reads [16], or the critical
visual inspection and manual correction [11].
The main idea of SuRankCo is to rely on knowledge

generated from contigs from sequencing experiments of
related organisms for which a genome reference is avail-
able. Aligning these contigs to the reference yields scores
which can be used as targets for a machine learning
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approach. Contigs from a new assembly can then be exam-
ined and classified with respect to the learnt target scores
based on different features.
In the following, we introduce the methodology and

implementation of SuRankCo, evaluate it on bacterial
de novo genome assemblies and compare to ALE as an
existing and related method.

Implementation
SuRankCo is divided into four modules (illustrated in
Fig. 1), including the extraction of contig features, the
calculation of alignments and single scores, the train-
ing based on features and the prediction of single scores
based on features to build the ranking. These modules
can be combined to either perform training or prediction.
In addition, intermediate data such as the features, sin-
gle scores or trained classifiers can be examined or used
within other applications.

SuRankCo-feature
Information on characteristics of contigs from a de novo
assembly are extracted by the SuRankCo-Feature module.
These features include common characteristics such as
length (unpadded and padded), coverage, quality values,
read counts, read lengths and read quality values. Addi-
tional features were developed, including core coverage,
coverage confirmation and coverage drops. For a full list
of features and descriptions refer to the supplementary
material. SuRankCo-Feature accepts assemblies either as
a pair of ace and fastq files or fasta and sam/bam files,
respectively.

SuRankCo-score
Training contigs are scored by comparison to a corres-
ponding reference genome sequence. The SuRankCo-
Score module utilizes BLAT [17] and accompanying
tools to build alignments. Next, several single scores

are calculated for each contig based on these align-
ments. Some scores are computed for each contig as
a whole and some for certain critical areas such as the
contig ends. Additionally, some scores are varied by
introducing different normalizations, for instance based
on contig or alignment length. A full list and descrip-
tions of the single scores is given in the supplementary
material.

SuRankCo-training
The classification of contigs in SuRankCo is performed
using a random forest classifier [18]. Here, we rely on
a random forest classifier as it adapts to different sce-
narios without the need for parameter tuning, can han-
dle discrete and continuous input and can also uncover
non-linear relationships. The training of the random
forests is preceded by a separation of each single score
into two classes to allow for binary classification using
quantiles of fitted exponential distributions. Alternatively,
a manual adjustment is possible based on histograms pro-
vided by the SuRankCo-Score module. A detailed descrip-
tion is given in the supplementary material. Finally, the
SuRankCo-Training module uses contig features and the
transformed single scores to train a classification random
forest for each score.

SuRankCo-prediction
The SuRankCo-Prediction module estimates single score
classes from contigs and their respective features by using
the previously trained random forests. Different estimates
are aggregated in a voting procedure to provide a final
SuRankCo contig score. It is defined as

∑|S|
i=1 Si×Pi where

Si is the iths single score classification (0 or 1) and Pi
denotes the probability of Si being classified to that class,
which is provided by the random forests. The SuRankCo
contig score determines the final position in the ranking
of the contigs.

Fig. 1Modularization and workflow of SuRankCo. The four modules of SuRankCo allow two workflows, training and prediction, indicated by grey
and white arrows, respectively
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Results and discussion
Experiments
We evaluate the application and classification quality of
SuRankCo by using various publicly available genome
sequencing data sets. In the first experiment, we apply
SuRankCo on the well-studied Escherichia coli strain
K-12, substrain MG1655 [19] and compare to ALE as an
existing and related method.We constructed four de novo
assemblies of Illumina GenomeAnalyzer II reads from the
NCBI Sequence Read Archive (SRA), three for training
and one for prediction and evaluation (accession numbers
are provided in the supplementary material). The train-
ing and the evaluation of the predictions make use of an
established high quality reference [NCBI:NC_000913.3].
However, it should be noted that using the same organ-
ism for training and prediction is an artificial application
as a proof-of-principle. Details on the data preparation are
given in the supplementary material.
We calculated the classification quality for each single

score by comparing predicted classes versus real classes.
As additional validation with ground truth data, we com-
pared the ranking based on the SuRankCo contig scores
to the percentage identity (pIdent) of Blast hits in the cur-
rent NCBI E. coli taxon [taxid:562], assuming that more
reliable contigs should show better identity values.
Current methods for quality control in de novo assem-

blies do not score individual contigs, but rather focus on
comparing complete assemblies. In order to still provide
a meaningful comparison, we counted potential contig
errors based on ALE sub-scores. Therefore, we manu-
ally evaluated the sub-scores and defined error thresholds
(see Additional file 1: Figure S1). Sub-scores below their
corresponding thresholds are counted as error and errors
are summed per contig over all positions. For the E. coli
prediction data set, these ALE contig scores were then
compared to the Blast pIdent values in the same way as the
SuRankCo contig scores. More details on the application
of ALE are given in the supplementary material.
To demonstrate the applicability for different organisms

and assemblers, we applied SuRankCo on the staggered
mock community of the Human Microbiome Project [20]
and the bacteria assemblies of the GAGE study [15]. We
used three different settings for the mock community:
(i) a metagenomics assembly, (ii) an organism specific
assembly with different assemblers, and (iii) a combined
training on assemblies by various assemblers. For (i), we
constructed a meta-assembly of the complete community.
We then assigned the resulting contigs to the respective
organisms and then randomly divided the set of organ-
isms in the community into a training and a prediction
group. For (ii), we extracted all reads for each organ-
ism by a reference mapping procedure to have single
organism sequencing data with identical technical origin.
Each organism was then assembled separately using the
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Fig. 2 Evaluation of the SuRankCo rankings on the E. coli test data. a
shows the distribution of SuRankCo contig scores. They form two
clusters based on the high correlation of target scores in this data set.
Clusters are skewed due to classification probabilities incorporated
into the SuRankCo contig scores. b shows a scatterplot comparison of
the ranking and the pIdent of Blast matches against the E. coli taxon.
High and low density areas are indicated in red and blue, respectively.
Data points below 95% pIdent are not shown to improve the scaling
(25 of 11336)

assemblers Mira [21], SOAPdenovo [22] and Velvet [23].
Training and prediction was performed for each assem-
bler separately with a separation of organisms as in the
metagenomics assembly experiment. For (iii), the assem-
blies of the different assemblers in (ii) were merged to
provide a training and prediction data set across all organ-
isms and assemblers. Details on the data preparation are
given in the supplementary material.
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Fig. 3 Evaluation of ALE contig scores of E. coli test data. The figure
shows a scatterplot comparison of the ALE contig scores and the
pIdent of Blast matches against the E. coli taxon. High and low density
areas are indicated in red and blue, respectively. The ALE contig
scores are shown in reversed order to allow a simpler comparison to
Fig. 2. Data points below 95% pIdent are not shown to improve the
scaling (25 of 11336)



Kuhring et al. BMC Bioinformatics  (2015) 16:240 Page 4 of 7

Table 1 Comparative evaluation of SuRankCo and ALE

Score Contig Length CorPearson CorSpearman

SuRankCo all 0.77 0.72

ALE all 0.35 0.49

SuRankCo ≤ Q0.1 0.58 0.55

ALE ≤ Q0.1 0.16 0.37

SuRankCo ≥ Q0.9 0.75 0.68

ALE ≥ Q0.9 0.19 0.12

The table shows the Spearman and Pearson correlations of SuRankCo and ALE
contig scores to the percentage identity of corresponding Blast hits. The correlations
are calculated for all contigs as well as separately for short contigs (with lengths
below the 10% quantile) and long contigs (with lengths above the 90% quantile)

For the SuRankCo analyses of the GAGE bacteria, we
made use of the assemblies, reads, and genomes provided
for Staphylococcus aureus and Rhodobacter sphaeroides.
In particular, we used the S. aureus assemblies for training
and R. sphaeroides for prediction. We used two different
settings for the GAGE assemblies: (i) an assembler spe-
cific training, and (ii) a combined training on assemblies
by various assemblers. For (i), training and prediction was
performed for each assembler used in the GAGE study
separately. For (ii), the assemblies of the different assem-
blers were merged to provide a training data set across all
assemblers. Details on the data preparation are given in
the supplementary material.
To evaluate the mock and GAGE experiments, we com-

pared the SuRankCo score rankings to Blast hits of con-
tigs mapped against the corresponding known reference
genomes. In particular, we calculate a contig evaluation
score by forming the harmonic mean between the Blast
pIdent and the Blast query coverage (qcovhsp). We then
assigned the contigs based on the ground truth into a
low-quality and a high-quality group and evaluated the
performance of SuRankCo by ROC curves.
In addition, we compared the SuRankCo results of

the GAGE assemblies to the corresponding GAGE eval-
uation metrics including contig number, errors, N50,

and corrected N50. We calculated mean values of final
SuRankCo contig scores per assembler in order to
enable ranking based comparisons assuming a correlation
between SuRankCo score distribution order of the differ-
ent assemblies and their corresponding GAGE evaluation
metrics.

Comparative evaluation
The E. coli experiment illustrates three key characteris-
tics of the single scores. First, the contigs used in training
show good quality in their alignments to the reference
sequence. Thus, they feature low variance in the single
score distributions. Second, these variances are still suf-
ficient to allow an automated separation into two classes
(see Additional file 1: Figure S2). Third, a successful pre-
diction can be made with a low number of false posi-
tives and false negatives in the test data (see Additional
file 1: Figure S3). Further, the validity of the SuRankCo
contig score is supported by a comparison to the percent-
age identity of the corresponding Blast hits (Fig. 2b) with
Pearson and Spearman correlation coefficients of 0.77 and
0.72, respectively.
Figure 3 shows a comparison of ALE contigs scores and

Blast pIdent values. In addition, the comparative evalua-
tion results for SuRankCo and ALE on contigs of varying
length are shown in Table 1. Correlations between Blast
pIdent values and SuRankCo contig scores are generally
higher than correlations between Blast pIdent values and
ALE contig scores, independent of whether Spearman or
Pearson correlation is used and how long contigs are.
However, it should be noted that ALE was applied here
outside its regular scope and results should by no means
be interpreted as general criticism of the tool. To the con-
trary, differences in the performance between SuRankCo
scores and ALE scores only emphasize the differences
regarding their approaches and objectives. The fact that
ALE does not provide contigs scores directly further sup-
ports this observation.
For SuRankCo, a high correlation between the single

scores is notable in the E. coli experiment (as shown in

Mira

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

59
4.

78
7.

97

SOAP

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

5
4.

49
7.

49

Velvet

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.
53

3.
38

6.
23

Combined

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

58
4.

74
7.

9

Metavelvet

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

59
4.

77
7.

95

Fig. 4 Evaluation of the SuRankCo predictions of the mock community test data. Each plot illustrates a ROC curve of the contig evaluation score
grouping in contrast to a varying grouping of the SuRankCo scores. Thereby, the changing color of the graph represents the changing threshold for
the SuRankCo score grouping. Here, the predictions for the different organisms in the test group are combined to feature ROC curves of specific,
combined and meta-assemblies
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Additional file 1: Figure S6). However, correlated scores do
not corrupt the predictions, but favor clustering of contigs
within the ranking rather than a more uniform distribu-
tion (compare Fig. 2a). In general, contig scores may be
less correlated and thus provide a wider distribution of
SuRankCo contig scores in the ranking as shown for the
data of the metagenomics mock community experiment
in Additional file 1: Figure S7. In addition, the variety

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

43
4.

29
7.

15

ABySS

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0.
54

2.
85

5.
16

ABySS2

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

06
3.

17
5.

29

Allpaths−LG

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

31
3.

94
6.

57

Bambus2

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

08
3.

23
5.

38

MSR−CA

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
63

3.
49

5.
35

SGA

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

36
4.

09
6.

81

SOAPdenovo

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

0
1.

38
4.

15
6.

91

Velvet

Fig. 5 Evaluation of the SuRankCo predictions of the GAGE
assemblies. Each plot illustrates a ROC curve of the contig evaluation
score grouping in contrast to a varying grouping of the SuRankCo
scores. Thereby, the changing color of the graph represents the
changing threshold for the SuRankCo score grouping. Here, one ROC
curve represents the evaluation of R. sphaeroidis assemblies classified
by the combined training classifier

of SuRankCo contig scores enables a broader integration
and indentification of common assembly error types (see
Additional file 1: Table S5 and S6).
The mock experiments allow a detailed view on param-

eters influencing SuRankCo results. Altogether, results
indicate good prediction with regard to true positive rates
(TPR) and false positive rates (FPR) (see Fig. 4). How-
ever, some exceptions can be observed on the organism
and on assembler level as exemplified in Additional file 1:
Figure S4. In general, merging the training data from vari-
ous assemblers does not improve on individual assembler
results, but rather has negative effects. This indicates that
there are assembler specific error types that can be learnt
with SuRankCo. Comparing assembler results, the evalu-
ation of Velvet assemblies performs poorly in contrast to
the other assemblers. However, for Velvet we observed the
lowest number of contigs with low quality based on the
Blast generated ground truth. This indicates that the per-
formance of SuRankCo decreases for assemblies of very
high quality since there is only few variance left for proper
training or prediction. For organisms, we note that com-
paratively poor results are obtained for S. epidermidis, in
particular for Mira, Metavelvet and the combined assem-
blers, although an apparently closely related organism
(S. aureus) is present in the training data. However, exam-
ining the relation of mock organisms based on sequenc-
ing data reveals low similarities in general (as shown in
Additional file 1: Table S7).
Similar to the mock experiments, the GAGE experi-

ments result in overall accurate predictions as illustrated
by the ROC curves in Fig. 5. However, few assemblies
yield low prediction power including MSR-CA and SGA.
The comparably low error rate in these two assemblies (as
shown in Table 2) supports the conclusion that the per-
formance of SuRankCo decreases for assemblies with very
few errors. Since SuRankCo is a learning based approach,
it requires also negative examples containing errors in
the assemblies. If these are missing, artifacts may arise
more frequently. In summary, assemblies which provide

Table 2 Contig metric values of R. sphaeroides assemblies as
provided by the GAGE study

Assembler Num N50 Errors N50corr

ABySS 1915 5.9 76 4.2

ALLPATHS-LG 204 42.5 49 34.4

Bambus2 177 93.2 373 12.8

MSR-CA 395 22.1 52 19.1

SGA 3067 4.5 12 2.9

SOAPdenovo 204 131.7 422 14.3

Velvet 583 15.7 43 14.5

Note, ABySS2 metric values were not available
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Table 3 Comparative evaluation of SuRankCo and GAGE

Num N50 Errors N50corr

Specific Training 0.7208 -0.7857 -0.6071 -0.6071

Combined Training 0.6847 -0.6786 -0.1786 -0.8571

The table shows the Spearman correlations between assembly ranks based on
SuRankCo score means and GAGE metrics for R. sphaeroides assemblies. Correlations
are calculated for SuRankCo ranks based on assembler specific trained classifier as
well as combined trained classifier

a few, but potentially error-prone contigs may benefit
more from SuRankCo than assemblers with a high num-
ber of short, but error-free contigs. In contrast to the
mock experiment, on average there is no significant dif-
ference between predictions based on assembler specific
(Additional file 1: Figure S5) or combined training (Fig. 5).
However, the correlation of SuRankCo score means with
the GAGE error metric shows a significant decrease from
assembler specific to combined training based predictions
(Table 3). Again, this indicates that there are assembler
specific characteristics that can only be learnt and dis-
criminated by separate training. Apart from that, the
comparison of SuRankCo and GAGE yields good rank
correlations with values of up to 0.85 as shown in Table 3
and Fig. 6 for both, assembler specific and combined
training and prediction. Therefore, based on indepen-
dent ground truth data, the correlations indicate that
SuRankCo infers the relationship of different assemblies
in terms of quality, even if trained separately. Nonethe-
less, as also indicated by the diversity of the metrics in
the GAGE study itself, it is difficult to perfectly represent
the quality of assemblies in few scores. Thus, it cannot
be expected to observe a direct one-to-one correspon-
dence of SuRankCo scores with single GAGE metrics. At
the same time, it should be noted that SuRankCo was
developed to score individual contigs and that the overall

ranking of assemblies by their mean ranking score - while
well correlated with themetrics in the GAGE study - is not
its standard usage.
In classic assembly metrics such as the N50, a high value

is placed on obtaining longer contig scores. However, it
has been frequently noted that longer contig scores do
not necessarily coincide with higher contig quality [24].
SuRankCo scores are evaluated with regard to the identity
and query coverage of the reference genome. Increasing
values in these metrics may correlate with longer con-
tigs, but are by no means ensured and rather focus on the
number of matches and mismatches.
Overall, several factors may influence the assembly

of contigs significantly and thereby also influence the
performance of SuRankCo. These include for instance
sequencing parameters such as coverage and read length,
sequencer error profiles, organism relationships, biases
such as GC content and characteristics of read process-
ing algorithms such as these used for de novo assembly.
Thus, SuRankCo is mainly designed with a focus on sta-
ble workflows applied within a lab. SuRankCo has been
mainly developed for and tested on microbial genomes,
however, there is no theoretical limitation which should
restrict the application to other genomes.

Conclusions
We introduced SuRankCo as a tool for a learning-based
quality prediction and ranking of contigs within a de novo
assembly. To take full advantage of the machine learn-
ing approach and for optimal performance, training and
test data have to be similar in their key characteristics.
In our benchmark, we observe promising results in terms
of sensitivity and specificity and favorable comparison to
existing methodology. We foresee practical application in
ranking contigs for downstream analyses.

Fig. 6 Scatterplot of the SuRankCo score mean ranks and GAGE metric ranks. The figure shows scattorplots of ranks for GAGE assemblies of R.
sphaeroidis based on the SuRankCo score means vs. each GAGE metric including contig number, errors, N50, and corrected N50. a features
SuRankCo score mean ranks based on assembler specific trained classifier and b based on the combined trained classifier, respectively. To improve
visualization, the contig number ranks have been inverted since they are the only ones yielding positive correlation
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Availability and requirements
Project name: SuRankCo
Project home page: http://sourceforge.net/projects/
surankco/
Operating systems: Linux, OS X
Programming language: Java, R
Other requirements: Java 7, GNU R 3 including packages
(optparse, MASS, randomForest), Blat including pslPretty
License: BSD License
Any restrictions to use by non-academics: non

Additional file

Additional file 1: Supplementary Material for “SuRankCo: Supervised
Ranking of Contigs in de novo Assemblies”. Provides details on contig
features, contig scores, training class definitions and experiment
preparation as well as additional result figures and tables.
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