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Abstract

Background: Bisulfite sequencing is one of the most widely used technologies in analyzing DNA methylation
patterns, which are important in understanding and characterizing the mechanism of DNA methylation and its
functions in disease development. Efficient and user-friendly tools are critical in carrying out such analysis on
high-throughput bisulfite sequencing data. However, existing tools are either not scalable well, or inadequate in
providing visualization and other desirable functionalities.

Results: In order to handle ultra large sequencing data and to provide additional functions and features, we have
developed BSPAT, a fast online tool for bisulfite sequencing pattern analysis. With a user-friendly web interface, BSPAT
seamlessly integrates read mapping/quality control/methylation calling with methylation pattern generation and
visualization. BSPAT has the following important features: 1) instead of using multiple/pairwise sequence alignment
methods, BSPAT adopts an efficient and widely used sequence mapping tool to provide fast alignment of sequence
reads; 2) BSPAT summarizes and visualizes DNA methylation co-occurrence patterns at a single nucleotide level,
which provide valuable information in understanding the mechanism and regulation of DNA methylation; 3) based
on methylation co-occurrence patterns, BSPAT can automatically detect potential allele-specific methylation (ASM)
patterns, which can greatly enhance the detection and analysis of ASM patterns; 4) by linking directly with other
popular databases and tools, BSPAT allows users to perform integrative analysis of methylation patterns with other
genomic features together within regions of interest.

Conclusion: By utilizing a real bisulfite sequencing dataset generated from prostate cancer cell lines, we have shown
that BSPAT is highly efficient. It has also reported some interesting methylation co-occurrence patterns and a
potential allele-specific methylation case. In conclusion, BSPAT is an efficient and convenient tool for high-throughput
bisulfite sequencing data analysis that can be broadly used.
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Background

As one type of epigenetic events, DNA methylation plays
an important role in gene regulation and during normal
development [1]. Abnormal DNA methylation patterns
in CpG dinucleotides have been shown to be associ-
ated with human diseases such as cancer [2]. Analysis
of DNA methylation patterns is of great importance in
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understanding the mechanism of DNA methylation and
its functions during development [3].

Many technologies have been developed to systemat-
ically acquire DNA methylation information [4]. Bisul-
fite sequencing is one of the most popular methods,
which uses bisulfite treated DNA samples to obtain sin-
gle nucleotide methylation status. For example, ultra-
deep bisulfite sequencing is designed to sequence a
limited number of loci but with an extreme high cov-
erage [5, 6], which makes analysis of methylation co-
occurrence patterns feasible. Reduced representation
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bisulfite sequencing (RRBS) uses restriction enzymes to
select regions of high CpG content in a genome for
sequencing [7, 8]. Whole genome bisulfite sequencing
(WGBS) provides an unbiased assay of methylation infor-
mation across the genome [9].

Along with the generation of bisulfite sequencing data,
many bisulfite sequencing data analysis tools have been
proposed in recent years. Among them, QUMA [10],
BISMA [11] and BiQ Analyzer [12] are earlier tools for
bisulfite sequencing data analysis that have been widely
adopted. However, none of the tools can handle large
datasets with ultra-high read coverages or a large number
of targeted regions, which are increasingly common in real
data analysis. For example, QUMA web server limits the
maximum number of bisulfite sequence reads per request
to 400. Similarly for BISMA, the number of sequences that
can be uploaded is limited to 400. The upload files size is
limited to 10 MB. Even for later tools such as BiQ Analyzer
HT [13] that were designed specifically for processing
large datasets, their performance still cannot keep up with
the throughput of data generation, mainly because they
utilized a global sequence alignment algorithm. The align-
ment strategy also limits its usage on very small genomic
regions.

More recently, some newer tools such as Bismark [14]
and BS-Seeker [15] have utilized more efficient map-
ping tools with modifications for bisulfite sequencing
data. Therefore they can effectively handle larger datasets,
especially those generated by next-generation sequencing
(NGS) technologies [16]. However, the primary focus of
these tools is to perform sequence read map and to call
methylation status at each site. Other functionalities in
downstream pattern analysis and visualization are limited.
Furthermore, most existing tools provide little if any func-
tions in analyzing methylation co-occurrence patterns,
nor in correlating methylation patterns with mutations.
Investigating such patterns may provide further insights in
distinguishing different cancer subtypes [17], in revealing
mechanisms of cancer development [18], and in detecting
allele-specific methylation.

In this paper, we present a web application service
named BSPAT for Bisulfite Sequencing Pattern Analysis
Tool, which takes advantage of Bismark’s read alignments
and methylation calling functionalities, and provides fur-
ther quality control, co-occurrence pattern analysis, sim-
ple allele specific methylation analysis, visualization and
integration with other databases and tools. In addition to
the web service, the source code of the tool is also made
available, which enables advanced users to deploy BSPAT
on their own machines for dedicated analysis of large vol-
ume of data without uploading them to our own server.
We have applied BSPAT on a real dataset generated from
two prostate cancer cell lines and one normal prostate
epithelial cell line. Results have shown some interesting
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methylation co-occurrence patterns that are different in
different cell lines. A potential allele specific methylation
case is also observed. We have also compared the perfor-
mance of BSPAT with a popular tool BiQ Analyzer HT
[13]. Results show that BSPAT is much faster, uses less
memory, and generates more results for visualization and
further analysis.

Implementation

BSPAT is designed to analyze bisulfite sequencing data
for regions with extreme high read depths so that DNA
methylation co-occurrence patterns can be reliably mea-
sured. It can accept reads from multiple regions and
multiple experiments, which are then mapped to refer-
ence sequences by calling Bismark [14]. Based on map-
ping results, methylation status of a read at each CpG
site is called and patterns of co-occurrence are reported.
Mutations are called based on the number of reads with
mismatches at each nucleotide.

Characteristics

Comparing with existing tools, BSPAT has several impor-
tant features: 1) The methylation pattern analysis features
provided by most existing tools focus on either an over-
all methylation status of a CpG rich region or methylation
level of each CpG site. Although the detailed single read
methylation patterns may be presented, the significant
co-occurrence patterns are not summarized. 2) BSPAT
also provides a feature to automatically discover potential
allele-specific DNA methylation co-occurrence patterns
in a targeted region. 3) By utilizing a sequence map-
ping approach instead of sequence alignment algorithms,
BSPAT is much faster than existing tools, as demon-
strated in Result section. 4) BSPAT implements an easy to
use integrated workflow and visualizes results in multiple
formats.

Workflow

The workflow of BSPAT is shown in Fig. 1. It mainly
consists of two stages: mapping stage and analysis stage.
We discuss both of them in details in this subsection.
For sequence reads generated from bisulfite sequencing
projects, BSPAT accepts both FASTA and FASTQ for-
mat as its inputs (Fig. 1a) for mapping. Four different
types of quality scores (i.e.,phred33, phred64, solexa and
solexal.3) for FASTQ format are supported. Reads from
multiple experiments can be uploaded at the same time.
Each experiment can consist of one or more genomic
regions. A utility script is also provided to extract data
from multiplex experiments. BSPAT also requires users
to provide a reference sequence file using FASTA for-
mat, which can consist of reference sequences from all
the regions/experiments. Because the program uses a
mapping strategy instead of an alignment strategy, it
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Fig. 1 Workflow of BSPAT. a Example of input sequence reads in FASTQ format. b Sequence reads are mapped to the reference. ¢ For a given
targeted region, only reads that cover all CpG sites in the region are considered in generating co-occurrence patterns. d) Methylation patterns and
mismatch information at single read level. e Visualization of results in three different formats. 1) DNA Methylation co-occurrence patterns in text
format. ‘@@’ represents a methylated CpG site; **' represents an unmethylated CpG site; - represents a non-CpG context nucleotide; a mismatch is
represented by the variant allele at the position. 2) Graphical representation of methylation co-occurrence patterns with genomic coordinate
information. A black circle represents a methylated CpG site and a white one represents an unmethylated CpG site. The last row represents the
proportion of methylated reads to the total number of reads at each site. The colored circles show methylation rates from low (green) to high (red).
Variant allele in each pattern is represented by a blue bar. 3) Methylation patterns are shown as a UCSC Genome Browser custom track
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assumes read lengths are smaller than the lengths of ref-
erence sequences. The design of BSPAT is mainly for
targeted sequencing data, where the regions sequenced
are known a priori. Therefore, users should provide refer-
ence sequences of targeted regions, not the whole human
genome, to speed up the mapping and analysis. To obtain
genome coordinates of these regions for the analysis
stage, BSPAT calls Blat service hosted by UCSC Genome
Browser [19, 20] to automatically acquire the genome
coordinates of reference sequences. Three versions of
genome assemblies (i.e., hg38, hgl9, hgl8) are supported
currently. The top Blat result for each region, which in
general represents the true region, will be selected for use
in the analysis step. To map bisulfite converted sequence
reads to reference regions, BSPAT relies on another pro-
gram Bismark (Fig. 1b), which actually calls Bowtie [21]
to perform the mapping. The mapping step takes the
majority of execution time. BSPAT allows up to three mis-
matches in the seed region of each read but gaps are not
allowed. Reads with low mapping qualities are discarded.
Users will be notified by email (if provided) when the map-
ping result is ready. A unique identifier is assigned to each
executed job and users can use that number to retrieve
the results. The webpage will also be refreshed when the
result is ready, which provides some summary informa-
tion about the mapping result, the genomic coordinates
of the targeted regions, and a link to the detailed results
generated from Bismark.

Based on mapping results, BSPAT not only summarizes
the methylation level at each CpG site, more importantly,
it examines methylation co-occurrence patterns of CpG
sites in close proximity. BSPAT does so in several steps.
First, low quality reads will be filtered out based on user-
defined parameters such as bisulfite conversion rate and
sequence identity. Second, in order to view co-occurrence
patterns, a user needs to specify a window by providing its
genomic coordinates. If no such window is given, BSPAT
uses a default window of size 70 bps starting at the first
CpG site of the reference sequence. Only reads that cover
all the CpG sites in the view window will be considered
in generating co-occurrence patterns (Fig. 1c). For each
read, the methylation status at all CpG sites covered by the
read is regarded as its methylation signature or a pattern
(Fig. 1d.) Then, all reads with the same signature will be
grouped into a methylation co-occurrence pattern and the
number of all such reads is the support of the pattern.

Given the noisy nature of data, in general, only prevalent
patterns with enough support are meaningful/significant.
To filter out random patterns, users can use a simple frac-
tion threshold (i.e., the percentage of the number of reads
supporting a pattern over the number of all reads). In
addition, BSPAT provides a simple Z-score like statistic to
measure the significance of a pattern. Basically, it assumes
all CpG sites in the region are independently methylated
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with a probability of 0.5. Therefore, for k CpG sites in
a region, there are 2X different patterns each with equal
probability of 1/2%. Any patterns with frequencies that are
significantly greater than this probability are potentially
important. However, the assumption may not hold in real-
ity in the sense that the total number of reads in the region
may not be sufficiently large relative to the total number
of CpG sites, and methylation status of nearby CpG sites
may be correlated. Therefore, instead of this probability,
we actually define the baseline probability py as one over
the number of observed patterns in the data, to better
reflect dependencies among methylated CpG sites in close
proximity. Assume p is the percentage of reads supporting
a pattern and # is the total number of reads. Then one can
utilize the one-sample Z-test for proportions to assess the
significance of each pattern, with the alternative hypoth-
esis Hi: p > po. The Z-score can be calculated based on
Equation (1), where the numerate represents the differ-
ence between the observed frequency and the expected
frequency, and the denominator is the estimated standard
deviation under the binomial distribution. If the p-value
corresponding to the Z-score is smaller than a predefined
threshold, the co-occurrence pattern is treated as signifi-
cant. All significant patterns will be shown in the results
in the descending order of their significance.

Z = (1)

/p(A—p)
n

In order to assess potential allele-specific methylation
patterns, BSPAT first needs to discover mutations from
mapping reads. In the current implementation, it sim-
ply defines a mutation as a mismatch that is supported
by an excessive number of reads, using a user-defined
threshold. When a mutation exists, BSPAT naturally sep-
arates all reads into two groups: reads with the reference
allele and reads with the mutated allele. For each group,
BSPAT assesses the methylation level at each CpG site
and assigns all CpG sites into three categories based on
the proportion of methylated reads covering the sites: low
methylation level (< 20 % reads are methylated), high
methylation level (> 80 % reads are methylated), and inter-
mediate level (otherwise). If the two groups corresponding
to the two alleles have at least one CpG site where their
methylation levels are in two different categories and the
actual difference of their methylation proportions is larger
than 20 %, BSPAT regards the region as a potential allele
specific methylation region. Then within each group,
BSPAT further generates methylation co-occurrence pat-
tens by grouping reads with the same methylation
signature.

When BSPAT finishes the analysis, it visualizes sig-
nificant methylation co-occurrence patterns and allele
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specific methylation patterns in three different formats
including text format (Fig. 1el), graph (PNG or EPS) for-
mat (Fig. 1e2), and a format that can be loaded directly to
UCSC Genome Browser [22] as a custom track (Fig. 1e3).
In addition, When a mutation coincides with an existing
SNP in the dbSNP database [23], a link to that SNP is
provided.

Implementation details

BSPAT was developed mainly in Java/JSP and hosted
in Apache Tomcat Server. To fully utilize computation
resources that may be available to users, BSPAT also
supports a multiple-thread mode. In this case, each exper-
iment is executed using a separate thread, therefore it
can greatly speed up the analysis. The single-thread
or multiple-thread mode can be configured when users
deploy the code locally. The performance improvement
using multi-threads is discussed in Result section.

Results and discussion

To test the functions and performance of BSPAT, we have
performed analysis based on a real bisulfite amplicon
sequencing dataset as well as a simulated dataset based
on the real dataset. The real dataset consists of three
prostate related cell lines (DU145, LNCaP, PrEC), each
with 24 genomic regions. DU145 and LNCaP are prostate
cancer cell lines. PrEC is normal prostate epithelial cell
line. Genomic DNA from each cell line was bisulfite
treated. The bisulfite treated DNA was PCR amplified
using primers specific for the 24 regions of interest. PCR
products for all 24 amplicons were pooled for each cell line
and used for subsequent Illumina next-gen sequencing
library construction. To enable multiplexing, a uniquely
indexed adapter was used for each cell line during library
preparation. The final library for each cell line was pooled
together in equal molar ratios before sequencing on one
lane of Illumina GAIIx. The average length of a region is
about 127 bps with the total length of all regions 3020
bps. The whole dataset contains about half million reads
with read length varying from 69 to 80 bps after trim-
ming the library index and PCR primers. With default
mapping parameters (maximum permitted mismatches =
2), 93.88 % reads were mapped uniquely to the reference
sequences, with an average read depth of 18,886. The
unmapped reads (6.12 %) were all with low quality scores
or with gaps. Default parameters were used in perform-
ing pattern analysis (e.g., bisulfite conversion rate 0.95,
sequence identity 0.9, p-value 0.05 and mutation threshold
0.2). By examining the results, we have found some inter-
esting patterns that are potentially biologically important,
which will be discussed here. More thorough analysis of
the dataset will be presented elsewhere.
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DNA methylation co-occurrence pattern analysis

Unlike overall methylation patterns that summarize
methylation levels at each individual CpG site, methyla-
tion co-occurrence patterns can reveal rich information
that could be biologically important. For example, Fig. 2a
shows the methylation patterns in gene CYP1BI region
for two cell lines DU145 and LNCaP. Although the over-
all methylation patterns are similar in these two cell lines,
the significant methylation co-occurrence patterns are
different, with DU145 showing a single significant pat-
tern while LNCaP showing two additional patterns. The
diversity may be due to the existence of sub-categories in
LNCaP samples. Also, because the number of reads cov-
ering this region is extremely high, simply sorting and
displaying all reads (as some other tools do) is not help-
ful in this case. In contrast, significant co-occurrence
patterns give a clear and direct view of the methylation
patterns. This is best illustrated in another example in
the downstream region of gene HIST1H4D. There are two
significant methylation co-occurrence patterns in DU145
cell line, while all CpG sites are completely methylated
in one and all CpG sites are totally unmethylated in the
other (Fig. 2b). This suggests that the partially methyla-
tion status in those CpG@ sites are likely caused by mixture
of fully methylated and unmethylated reads [24]. Some
other methylation co-occurrence patterns reveal possibly
correlated methylation among neighboring CpG sites.
Two examples are shown in Fig. 2c and d for genes TLX3
and NPR3, respectively. For TLX3, methylation status of
the first and the last CpG sites seems correlated, while
for NPR3, the methylation status of the first and the third
CpG sites seems correlated. By using a simple contingency
table based on the read count of each pattern, we can cal-
culate the significance level of such dependency based on
a x?2 statistics. The p-values for the two cases are 0.0046
and <0.0001, respectively. The observation supports the
general notation that nearby CpG sites may be methylated
together, but the biological mechanism of this dependence
needs further investigation.

Potential ASM detection

From pattern analysis results, we have found a poten-
tial allele specific methylation pattern in PAX6 region,
as shown in Fig. 3. The mutation identified is at the
third CpG site, which is also reported in dbSNP as SNP
rs4440995. The nucleotide in the reference sequence is
G and the variant allele is A. We first notice that in
LNCaP cell line, the overall methylation levels of reads
with the reference allele and reads with the variant allele
are significantly different (Fig. 3a). Further investigation
based on co-occurrence patterns shows that the reference
allele is associated with hypermethylation while the vari-
ant allele is associated with hypomethylation (Fig. 3b). We



Hu et al. BMIC Bioinformatics (2015) 16:220

further examined the mutation and co-occurrence pat-
terns in the other two cell lines in this region (Fig. 3c
and d). Both alleles in the normal cell line (PrEC) are
the reference allele while both alleles in DU145 cell
line are the variant allele. The association between alle-
les and methylation co-occurrence patterns are differ-
ent from those observed in LNCaP cell line: the variant
allele in DU145 exhibits hypermethylation patterns while
the reference allele in PrEC exhibits hypomethylation
patterns.

There are several possibilities to explain the observa-
tion. First, PrEC is a normal cell line and has intact
machinery to maintain normal methylation pattern, which
is largely not methylated. This locus may be free of
methylation in all normal prostate cells. In cancer cell
lines, when methylation becomes abnormal, this locus
gets methylated to achieve some desirable function, and
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the reference allele has a higher chance of becom-
ing methylated (in LNCaP). Another possibility is the
reference allele in LNCaP is in linkage disequilibrium
with something that needs to be methylated here in
order to achieve desirable effects. For example, the ref-
erence allele in LNCaP is linked to a wild-type pro-
tein that needs to be silenced. The SNP is linked to
mutant protein already inactive. In DU145, both alleles
are variant alleles and need to be silenced. Further studies
and experiments are needed to confirm which hypothesis
is true.

Efficiency

To evaluate the efficiency of BSPAT on larger datasets,
we have generated a simulated dataset by replicating the
reads from the original data multiple times (2X, 5X, 10X,
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Fig. 2 Examples of DNA methylation co-occurrence patterns. a DU145 and LNCaP cell lines have different significant methylation co-occurrence
patterns in region CYP1B1. b Two distinct co-occurrence patterns (one all sites are methylated while the other all cites are unmethylated) in the
downstream region of HIST1H4D of DU145 cell line. Examples of correlated partially methylated CpG sites in a region in the upstream of TLX3 from
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see Table 1), and compared its performance with a state-
of-the-art tool called BiQ Analyzer HT. BiQ Analyzer HT
is a standalone program written in Java that was devel-
oped specifically for high-throughput bisulfite sequenc-
ing data. It performs read alignments and can visualize
methylation level at each CpG site and methylation sta-
tus of each read. But unlike BSPAT, it does not generate
methylation co-occurrence patterns. BiQ Analyzer HT
can only take FASTA format input files and BSPAT can
take both FASTA and FASTQ formats. We have com-
pared the memory usage and time needed to perform
the analysis by BSPAT and by BiQ Analyzer HT. All
experiments were executed on the same computer with
4-core 3GHz CPU and 12 GB memory. BiQ Analyzer
HT was executed in command line interface with JVM
heap setting:-Xmx12g. The same JVM heap parameter
was used in the Tomcat Server which hosts BSPAT. BiQ
Analyzer HT can only run in the single-thread mode.

Table 1 Sizes of datasets used in the experiments

Read count File size (MB)
FASTA FASTQ
1X 482,791 67 134
2X 965,582 134 268
5X 2,413,955 335 670
10X 4,827,910 670 1,340

We have tested BSPAT using both single-thread and
multiple-thread modes (3 threads for 3 cell lines in the
experiments).

Figure 4 shows that BSPAT is much faster than BiQ
Analyzer HT under all settings. When using the same
setting,i.e., the same FASTA format input and both using
the single-thread mode, BSPAT is about 3 to 4 times faster
than BiQ Analyzer HT. When using the multi-thread
mode, BSPAT is about 6 to 7 times faster than BiQ Ana-
lyzer HT. The time for BSPAT using FASTQ is almost
the same as the time it used for FASTA. When using
BSPAT as a web service, the memory usage does not have
any influence on end users. However users can deploy
BSPAT in their own server. In this case, BSPAT still have
less peak memory usage than BiQ Analyzer HT (Fig. 5).
Comparing with BiQ Analyzer HT, single-thread BSPAT
used about half of its memory. Multi-thread BSPAT uti-
lized more memory than the single-thread version, but it
was still less than the memory usage of BiQ Analyzer HT.
In summary, BSPAT provides more features and has bet-
ter performance than BiQ Analyzer HT both in terms of
running time and memory usage.

Conclusion

In this paper, we have presented BSPAT, a web applica-
tion for methylation pattern analysis based on bisulfite
sequencing data. BSPAT capitalizes on ultra deep
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Fig. 4 Efficiency comparison of BSPAT and BiQ Analyzer HT (referred as BiQ HT here) using different settings. BSPAT outperformed BiQ HT in all cases.
BSPAT can accept FASTA or FASTQ format and run in single or multi-thread mode. All experiments were run on the same computer with quite
background. For BSPAT, the Tomcat Server did not host any other applications

sequence data in targeted regions to automate the n of
methylation co-occurrence patterns and allele specific
methylation. The implementation is efficient and also
provides great flexibilities in parameter settings. Visual-
ization of result patterns and integration with Genome
Browser allow users to examine other genomic features in
the same regions together. For our future work, we will
refine mutation calling by combining prior information
on genetic variations and more advanced variation calling

algorithms. Furthermore, we will extend BSPAT to handle
non-human bisulfite sequencing data.

Availability and requirements

Project name: BSPAT

Project home page: http://cbc.case.edu/BSPAT

Project source code: https://github.com/lancelothk/
BSPAT

Operating system: Linux

14
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Fig. 5 Peak memory usage comparison of BSPAT and BiQ Analyzer HT (referred as BiQ HT here) using different settings. BSPAT used less memory
than BiQ HT in all cases. Here the peak memory usage of BSPAT was measured by monitoring the memory usage of Tomcat Server. For smaller
datasets, the majority memory usage of BSPAT was by Tomcat Server itself. So there are no significant differences using single-thread or

multiple-thread for 1X dataset
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Programming language: Java

Other requirements: Java 1.7 or higher, Tomcat 7.0
or higher, and Bismark, Perl (required by Bismark) and
Bowtie (required by Bismark).

License: GPL v3

Any restrictions to use by non-academics: None
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BSPAT: Bisulfite sequencing pattern analysis; ASM: Allele-specific methylation;
RRBS: Reduced representation bisulfite sequencing; WGBS: Whole genome
bisulfite sequencing; NGS: Next-generation sequencing.
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