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Abstract

Background: The traditional method used to estimate tree biomass is allometry. In this method, models are tested
and equations fitted by regression usually applying ordinary least squares, though other analogous methods are
also used for this purpose. Due to the nature of tree biomass data, the assumptions of regression are not always
accomplished, bringing uncertainties to the inferences. This article demonstrates that the Data Mining (DM)
technique can be used as an alternative to traditional regression approach to estimate tree biomass in the Atlantic
Forest, providing better results than allometry, and demonstrating simplicity, versatility and flexibility to apply to a
wide range of conditions.

Results: Various DM approaches were examined regarding distance, number of neighbors and weighting, by using
180 trees coming from environmental restoration plantations in the Atlantic Forest biome. The best results were
attained using the Chebishev distance, 1/d weighting and 5 neighbors. Increasing number of neighbors did not
improve estimates. We also analyze the effect of the size of data set and number of variables in the results. The
complete data set and the maximum number of predicting variables provided the best fitting. We compare
DM to Schumacher-Hall model and the results showed a gain of up to 16.5 % in reduction of the standard
error of estimate.

Conclusion: It was concluded that Data Mining can provide accurate estimates of tree biomass and can
be successfully used for this purpose in environmental restoration plantations in the Atlantic Forest. This
technique provides lower standard error of estimate than the Schumacher-Hall model and has the advantage
of not requiring some statistical assumptions as do the regression models. Flexibility, versatility and simplicity
are attributes of DM that corroborates its great potential for similar applications.
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Background
Tropical forests are considered important sinks of global
carbon [1], storing about 60 % of the living biomass (298
billion tons of carbon). In the last 10 years, 90,000 km2

of tropical forests were decimated, representing 70 % of
overall loss of forests [2]. Based on current rates of for-
est fragmentation, the loss of carbon stocks can produce
more than 150 million tons of carbon emissions to the
atmosphere annually, with losses that go beyond the an-
thropic destruction of forests [3, 4]. Deforestation is con-
sidered a key factor of global climate changes [5], as the

decline of biomass in forest patches could be a signifi-
cant source of greenhouse gases released after cutting
and burning of vegetation [1, 3, 6].
Biomass is a crucial variable for the quantification of

stock and dynamics of carbon in forests. Most of the bio-
mass that forests store is concentrated in the tree compo-
nent of the community [7]. Bole, branches, foliage and
roots comprise the major fraction of this biomass, although
dead wood, litter and organic carbon in the soil are also
important reservoirs for the carbon cycle in forests [8, 9].
Despite of the importance of biomass in the quantifica-

tion of carbon in trees, their direct determination is com-
plex, costly and destructive. For this reason, usually it is
done in an indirect way by the use of allometric models via
regression or by application of expansion factors [9–12].
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Expansion factors are simpler of building up and to apply,
but allometric models are more recommended due to the
increased flexibility to describe variations in tree architec-
ture and in compartmentalization of biomass [12, 13].
A crucial aspect in quantification of biomass of indi-

vidual trees is the large natural variability in data, par-
ticularly for native species of tropical and subtropical
regions. A single mathematical formulation may not be
able to reproduce such a huge natural variation. This
factor affects the quality of the model fitting and may
provide spurious estimates. Another feature of the allo-
metric models is that when using the regression tech-
nique some assumptions must be accomplished. These
assumptions are the following: additivity and linearity,
independence of residuals, homoscedasticity, and nor-
mality of residuals [14].
The Data Mining technique (DM) has the purpose of

searching useful information from data sets [15, 16].
This technique, used in learning algorithms, whose met-
rics can be found in Albert [17] and Bradzil [18], is
already widespread in several areas and applications.
However, its potential has been little explored to esti-
mate biomass stocks in forests. Recently, Sanquetta et al.
[19] introduced its use to estimate tree carbon stock,
concluding that it can produce estimates that are as reli-
able as those obtained by the traditional methods used
for this purpose, such as allometry.
This study explores the DM technique as an alterna-

tive to allometric models used in tree biomass estima-
tion. The technique is demonstrated for modeling total
dry biomass (aboveground + belowground) from data
collected in 180 individual trees belonging to various na-
tive species planted for environmental restoration pur-
pose in the Atlantic Forest biome, Brazil.

Results
Original untransformed 180 data series
Biomass modeled with the original data set (180 untrans-
formed values) using the Chebyshev distance gave the best
goodness of fit as measured by R2adj., Syx, AIC and BIC,
as well as by the residual analysis. The use of the full set of
independent variables, i.e., dbh, dm, ht, hc, da, and db,
provided the most accurate biomass estimates, when com-
pared to the reduced number of predictor variables. The
worst result was obtained by using exclusively dbh as the
independent variable. Differences between 1/d and 1/d2

weighting were also noticed, and, in general, the former
was found to have better performance as compared to the
latter. The most accurate biomass estimation was obtained
with 5 neighbors. The analysis of neighborhood indicated
that biomass estimation accuracy increased from 1 to 5
neighbors, but decreased afterwards (Fig. 1). It suggests
that there is an optimum number of neighbors in DM
modeling of biomass and that a few number of neighbors

might cause noise, but conversely a greater number would
lead to losing accuracy.
A strong relationship was found among the selection

criteria of models. R2adj. x Syx, R2adj. x AIC relations
were of negative slightly curvilinear type. On the other
hand, Syx x AIC relations was positive curvilinear. AIC x
BIC association was positive and straight (Fig. 2). This
indicates that all the criteria for selecting models lead to
the same results.

Logarithmic transformation and reduced series of data
The logarithmic transformation of the independent and
dependent variables do not lead to improvement in the
estimates. The values of Syx for estimates with the trans-
formed variables remained close to the corresponding
ones without transformation (Fig. 3a); the same hap-
pened with the other criteria. It indicates that logarithm
transformation in DM applications do not improve
model accuracy as it happens when using regression
models for tree biomass estimation purposes.
The effect of reducing the number of data in the appli-

cation of DM technique was evidenced. Results were
much better with the use of the full range of data (180
values) and worst with the most reduced series (50
values) (Fig. 3b). Reduction in the number of data has
not changed the results of preliminary analyses, i.e., the
best results are still those obtained with 5 neighbors and
with the full set of variables in relation to the use of dbh
only. Thus, it is shown that the best performance of DM
technique is given with the maximum number of data
and independent variables.

Variation in distances and comparison with the
Schumacher-Hall’s classic allometric model
The Euclidean distance is the most commonly used in
DM application by Classification Based on Instances
for its simplicity and recognition as appropriate under
various circumstances. Our findings have showed that
the Chebyshev Distance provided better results when
compared to the Euclidean distance and the others
evaluated (Fig. 3a).
The Schumacher-Hall equation adjusted to the complete

series of data provided satisfactory results, with selection
criteria for models comparable to those obtained with
application of DM (Table 1). The resulting equation
was the following:

ln wð Þ ¼ −1:390796þ 1:051491 ln dbhð Þ½ �
þ 1:084280 ln htð Þ½ � þ ei ð1Þ

Comparative analysis of tree biomass estimates obtained
with the selected DM model and the Schumacher-Hall
equation indicated that there was no statistical difference
between them. However, when comparing the Data
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Mining models to Schumacher-Hall equation it was
evidenced an expressive gain in terms of accuracy in tree
biomass estimation. All DM models showed smaller Syx
values: 8.6 % for Quadratic Euclidean Distance, 13.2 % for
Euclidean Distance, 15.4 % for Manhattan Distance and
16.5 % for the Chebishev Distance.
Furthermore, the graphical analysis of residuals of bio-

mass revealed that the estimates obtained by DM (180 ob-
servations, series of data not transformed, all independent
variables and Chebyshev distance) presented balanced
residuals distribution and lower dispersion along the esti-
mation line when compared to Schumacher-Hall model
estimates (Fig. 4).
Therefore, the results of this study demonstrates that

DM can improve biomass estimation of individual trees
and can be successfully employed for this purpose, redu-
cing uncertainty in carbon stock quantification in forests.

Discussion
The Atlantic Forest, one of the main hotspots of biodiver-
sity in the Neotropics, lost more than 90 % of its original

area in the last 150 years due to anthropic processes [20].
These processes were responsible for the release of mil-
lions of tons of greenhouse gases into the atmosphere,
contributing greatly to the overall balance of carbon.
Recent efforts have presented positive effects in order to
contain the deforestation in the Brazil, as well as to restore
ecosystems highly disturbed. Restoration plantations are
also an important requirement in the new Brazilian Forest
Code sanctioned in 2012, aimed at recovering natural eco-
systems in the rural areas [21–23].
A key indicator of the success of environmental restor-

ation plantations in the Atlantic Forest is its carbon stock.
Estimates of current carbon stocks in this biome depend
on the knowledge of their biomass [24]. Biomass quantifi-
cation is usually performed by extrapolation from the
plots of forest inventory, where structural variables of the
forest are measured, such as diameter and height of the
trees [25] and even the wood density, when possible.
Most forest biomass studies are based upon allometric

models due to the difficulty of carrying out direct mea-
surements, which involve cut and weighing of trees.

Fig. 1 Statistical criteria of model selection applied to 180 data of individual biomass of native trees of the Atlantic Forest, using Data Mining.
( Chebyshev distance, Manhattan distance, Quadratic Euclidean distance, Euclidean distance; ●:1/d 2, ○: 1/d;
all variables)
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Fig. 2 Relationship between statistical criteria for model selection applied to the data of individual biomass of native trees of Atlantic Forest,
Brazil (R² adj: adjusted coefficient of determination; syx: standard error of estimate; AIC: Akaike Information Criterion; BIC: Bayesian Information
Criterion)

Fig. 3 Statistical criteria of model selection applied to the data of individual biomass of native trees of the Atlantic Forest, using Data
Mining: a - log transformed data; b - reduced data size. ( Chebyshev distance, Manhattan distance, Quadratic
Euclidean distance, Euclidean distance; ●:1/d 2, ○: 1/d; all variables)
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Although the allometry technique is already known and
widespread [26], few models are available for estimation
of biomass in tropical forests [13, 27]. For the Atlantic
Forest there are few equations [28–31] some of which
have recently been developed specifically for restoration
plantations [24, 29–33].
Allometric models generally are fitted using the log

transformation approach followed by linear regression
assuming linearity and additivity of data, and homosce-
dasticity, independence and normality of residuals [14].
The assumptions of regression modeling by applying

the Schumacher-Hall equation indicated normality
(Shapiro-Wilk test - 0.98; p > 0.01), homoscedasticity
(White test - 34.90; p < 0.01) and independence of resid-
uals (Durbin-Watson test - 1.49; p < 0.05). Therefore, the
use of ordinary linear regression would not be a trouble.
However, for trees, in particular, ideal allometry data are
strongly heteroscedastic, exhibiting increasing variation
in biomass with increasing diameter [34, 35].
One of the assumptions in the classical linear regression

model is that the errors êi of the dependent variable in rela-
tion to the independent variable in the fitted model pre-
sents common variance σ2, and this constraint is known as
homoscedasticity of errors. When errors do not have con-
stant variance occurs heteroscedasticity. One of the ways to
detect it is to construct a graph of estimated residuals êi in
relation to ŷi for different values of xi and check whether
there is any systematic pattern in its distribution, i.e. shows
a heterogeneous character [36]. Also, statistical tests can be
used to check the heteroscedasticity of errors in the regres-
sion model, such as that of White [37], which involves all
the explanatory variables, their squares and cross-products.

The importance of evaluating heteroscedasticity is
commented by Gujarati and Porter [38]. If this con-
straint is not met the ordinary least squares estimators
(OLS) will present bias and no consistency. These esti-
mators present no longer minimum variance or effi-
ciency, therefore cease to be linear and not biased
(BLUE). Such estimators are obtained by the method of
weighted least squares, always when heteroscedasticity
of variances of the errors is known. In these circum-
stances the variances of the estimators of least squares
are not given by standard formulae of OLS, however if
these formulas are used, t and F tests based on them can
be misleading, resulting in erroneous conclusions. If
heteroscedasticity is detected, it is not a simple task to
correct it. For large samples it is possible to make infer-
ences on the basis of the White’s test and, in the case of
small samples, using the OLS residuals it is possible to
transform the original data, thus eliminating heterosce-
dasticity. Maddala [36] presents the proof for these two
situations.
Nonlinear fitting without log transformation is an

alternative to biomass allometry [35]. However, neither
linear regression on log-transformed data nor standard
nonlinear regression is inherently superior. Which
method performs better depends on the distribution of
the error. In most cases error is distributed such that log
transformed linear regression will produce more accur-
ate parameter and confidence intervals estimates [39].
Methodological options beyond regression should be

sought to improve tree biomass estimation. Data
Mining represents an option with great potential for
estimation of forest biomass in many situations re-
gardless the features of data and the nature of the var-
iables taken into account. The virtues of DM include
versatility and flexibility. The features of the data and
variables used in modeling are not as restrictive as
compared to regression and there is no need to meet
its statistical assumptions. In addition, the calculations

Table 1 Criteria for model selection for the Schumacher-Hall
equation applied to 180 data of individual biomass of native
species of the Atlantic Forest biome, Brazil

R2adj. Syx AIC BIC

0.8082 10.4521 847.83 1792.14

Fig. 4 Graphical analysis of residuals of models applied to the data of individual biomass of native trees of the Atlantic Forest: a - Data
Mining, b - Schumacher-Hall model
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are fairly simpler when compared to nonlinear regres-
sion procedures and its implementation on computer
is not complicate. First of all, it proved to be able to
give more accurate estimates of tree biomass than the
traditional method [19].

Conclusions

� Data Mining (DM) technique makes it possible to
obtain accurate estimates of dry biomass of
individual trees in the Atlantic Forest;

� The estimates obtained with DM technique are
comparable or even more accurate than those
obtained by the traditional allometric method,
which in this study is represented by the equation
of Schumacher-Hall;

� To generate more accurate estimates, the DM
technique needs the greatest possible quantity of
data and of independent variables;

� The logarithmic transformation did not improve the
estimated results;

� The Chebyshev distance proved to be the most
appropriate among the evaluated procedures;

� The main virtues of the DM technique are
versatility, flexibility and simplicity, besides not
requiring to meet the regression assumptions.

Methods
Data
For this study, were used data of total dry biomass
(above and belowground) collected from 180 trees of 79
native species from the Atlantic Forest, coming from
environmental restoration plantations located in the
Seropedica municipality, Rio de Janeiro State, southeast-
ern Brazil. The property belongs to the Barbosa Lima
Sobrinho Thermoelectric Plant. The stand plantings’ spa-
cing ranged from 1.5 × 1.5 m; 2.0 × 1.5 m; 2.0 × 2.0 m; 3.0 ×
2.0 m and their ages ranged from 2 to 6 years (base 2008).
Before direct biomass determination, the diameter at

breast height (dbh), mean crown diameter (dm), total
height (ht) and height of the lowest living branch
(hc) were measured. Determination of dry biomass
was preceded by weighting the fresh biomass in the
field. The simple separation destructive method was
adopted [40]. Wood, branches, leaves and root sam-
ples were taken and brought to the laboratory. Dry
biomass was obtained by direct relationship with fresh
biomass after drying the samples in an oven with air
circulation at 70° C until constant weight. Wood discs
from the tree base, middle and top of the main bole
were taken in order to determine apparent (da) and
basic wood (db) density by using the hydrostatic balance
method.

Estimates
Estimates of biomass were carried out with the DM tech-
nique called Instance-Based Classification [15], which con-
sists in the search for information of neighboring elements
to obtain an estimate of an element of interest, i.e., values
in the data set are searched for the ones closest to the
object value of the estimate. The estimate is given by the
average of the values of nearest neighbors to the element
to be estimated. The technique is based on the premise
that instances, when the vectors formed by their dimen-
sions are closer, tend to belong to the same class. This
proximity can be measured by the distance between the
vectors formed by independent variables related to the ob-
ject of study. This technique method is similar to the kNN
(k Nearest Neighbors) approach used in satellite imagery
analysis applied to forestry [41, 42].
Figure 5 illustrates the practical operation of the DM

technique. The graph contains the observed values of total
dry biomass of individual trees used in this study and their
dbh. In this illustration, having a tree to estimate the bio-
mass (unknown value shown in Fig. 5), it is possible to cal-
culate the distance between the vector formed by their dbh
dimensions and biomass of all the trees in the sample.
When one finds the tree of shortest distance to the tree of
unknown biomass, the estimate of the biomass of that tree
will be the biomass of the nearest neighbor(s).
For the comparison of an instance with the others, is

used a technique known as cross-validation, in which each
instance is compared to the others of the sample, being se-
lected the instance with less distance. It is common in this
type of approach the occurrence of “noise”, that are in-
stances not well positioned in the base [16]. This means
that, even if a given instance has its dimensions within the
pattern of the others, it has the value of the dependent
variable very different from values of other instances. This
instance, then, is called “noise” (different from an ‘outlier’
which is an atypical and not acceptable value for the data

Fig. 5 Exemplification of the DM technique through the nearest
neighbor distance
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set). The problem that could occur, if the value of this in-
stance is considered as a “noise”, then it would be out of
the normal patterns and could cause errors in the esti-
mate. To minimize such vulnerability the technique of
Classification Based on Instance uses some variations of the
method. Thus, one can use the nearest neighbor (more sus-
ceptible to noise) or make a weighting with other neighbors
to dilute the error. In this case, the information of the near-
est neighbors is used, which favors the smaller distance,
using the inverse of the distance as weighting procedure.
This procedure is indicated in the study of Bradzil [18],
which estimates one to five nearest neighbors.
The effect of the number of neighbors on the bio-

mass estimates was examined. The criteria used in
this study to define the neighborhood were the fol-
lowing: only one, 3, 5, 7, 9 and 11 nearest neighbors.
In addition, the following distances were evaluated to
define such neighbors:

� Euclidean Distance:

d p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1p−X1q
� �2 þ X2p−X2q

� �2 þ X3p−X3q
� �2

þ…þ Xnp−Xnq
� �2

vuut ð2Þ

� Quadratic Euclidean distance:

d p; qð Þ2 ¼ X1p−X1q
� �2 þ X2p−X2q

� �2 þ X3p−X3q
� �2

þ…þ Xnp−Xnq
� �2 ð3Þ

� Manhattan Distance:

dm p; qð Þ ¼ X1p−X1q
�� ��2 þ X2p−X2q

�� ��2
þ X3p−X3q
�� ��2 þ…þ Xnp−Xnq

�� ��2 ð4Þ

� Chebyshev Distance:

dc p; qð Þ ¼ max X1p−X1q
�� ��� �

; X2p−X2q
�� ��� �

;

X3p−X3q
�� ��� �

;… Xnp−Xnq
�� ��� � ð5Þ

Where:
X1, X2, X3, …, Xn = independent variables (dbh, dm, ht,

hc, da, and db);
Xnp, Xnpq = any combination of two values (p and q)

specific to an independent variable;
n = number of cases of actual data.
The smaller the distance, the closest is an element of

that target estimate. To define the neighbors two choices
of weighting were employed: the inverse of the distance
[1/ d(p,q)] and the inverse of the square of their distance
[1/ d(p,q)2]. The estimate itself is then obtained by the

Table 2 Criteria for model selection of individual tree biomass estimation in the Atlantic Forest biome, Brazil

Criterion Formulation

1 Adjusted coefficient of
determination

R2adj: ¼ 1− n−1ð Þ
n−kð Þ 1−R2

� �
(7)

Where:

R2 ¼ 1−

Xn
i−1

ei
2

Xn
i−1

wi−�wð Þ2
(8)

2 Standard error of estimate Syx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i−1

ei
2

n−k

vuut
(9)

3

Akaike Information Criterion
(Akaike [43])
or

AIC ¼ −2 −n
2 ln 1

n

Pn
i−1
ei2

� �� �
þ 2k (10)

Akaike Information Criterion
unbiased for small samplesa,
used when
n
k < 40

AICc ¼ −2 −n
2 ln 1

n

Pn
i−1
ei2

� �� �
þ 2k n

ðn−k−1Þ (11)

4 Information Criterion or
Bayesian Schwartz
(Schwartz, [44])

BIC ¼ −2 −n
2 ln 1

n

Pn
i−1
ei2

� �� �
þ lnðnÞk

(12)

5 Residual Analysis ri = (wi −ŵi) (13)
aAccording to Burnham and Anderson [45]. Where: n = number of cases; k = number of parameters of the model
ŵi = Estimated biomass. wi = Actual biomass; �w = average observed biomass
In AIC, AICc and BIC k must be increased by 1, which refers to a degree of freedom for the variance
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arithmetic mean of the values of neighboring elements
found after the weighting of distances.
To obtain the estimate of the value of biomass of individ-

ual trees that have only one or more of the so-called inde-
pendent variables (in the case dbh, dm, ht, hc and db), one
can calculate the distances by using these variables and
searching in the set of real data for the value of actual
biomass nearest to it (or the average of the nearest three or
five). In this study the following variables were analyzed:

� dbh;
� dbh and ht;
� dbh, ht, da, db;
� dbh, dm, ht, hc, da, db (all).

The logarithm transformation (neperian) of the inde-
pendent and dependent variables were also examined. As
in allometry, log transformation generally improve model
quality because of the reduction in data dispersion. There-
fore, we tested its effect because it could lead to improved
estimation when using the DM approach to estimate bio-
mass. Moreover, five variations in the data set were also
investigated to analyze the effect of the number of observa-
tions on the results: for entire series of data (180) and for
the randomly reduced series (150, 100, 70 and 50 data).
The objective of this analysis was to verify if a smaller data
set could worsen the biomass estimation with DM.
DM technique allows several variations regarding num-

ber of neighbors, number and transformation of variables,
size of data set, distances, weighting, and so on. Due to this
complexity and the inherent principle of cross-validation,
in which each observation is compared to all the others in
the sample, a software was developed in JAVA platform
and 1760 simulations with these variations were performed,
greatly reducing the time to make the calculations.

Comparison with the classical Schumacher-Hall model
A comparison between DM estimates and those coming
from a classic allometric model was performed. The
Schumacher-Hall model has been used for individual
tree volume estimation, but has also application for the
biomass calculation, as it is presented in (6):

ln wð Þ ¼ aþ b ln dbhð Þ½ � þ c ln htð Þ½ � þ ei ð6Þ

Where:
a, b, c = coefficients to be adjusted.
ln = neperian logarithm;
ei = associated random error.

Selection criteria for models
Biomass models were evaluated by five criteria widely used
on assessing goodness of fit in regression models, which
were also used for DM predictions analysis (Table 2). All of

them consider in their formulas the difference between
actual value and the respective estimate, i.e., the residual or
error ei. Therefore, they were used here for selecting the
model that gave the best estimation among those tested.
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