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Abstract

Background: Recently, the Bayesian method becomes more popular for analyzing high dimensional gene
expression data as it allows us to borrow information across different genes and provides powerful estimators for
evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting
differentially expressed (DE) genes based on the Bayesian estimators.

Results: In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class
of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404),
we propose two new gene selection algorithms for general Bayesian models and name these new methods as the
confident difference criterion methods. One is based on the standardized differences between two mean expression
values among genes; the other adds the differences between two variances to it. The proposed confident difference
criterion methods first evaluate the posterior probability of a gene having different gene expressions between
competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection
between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F,
Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:
783-802) is established under the normal-normal-model with equal variances between two samples. The empirical
performance of the proposed methods is examined and compared to those of several existing methods via several
simulations. The results from these simulation studies show that the proposed confident difference criterion methods
outperform the existing methods when comparing gene expressions across different conditions for both microarray
studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed
methodology. In the real data application, the confident difference criterion methods successfully identified more
clinically important DE genes than the other methods.

Conclusion: The confident difference criterion method proposed in this paper provides a new efficient approach for
both microarray studies and sequence-based high-throughput studies to identify differentially expressed genes.
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Background
In the past decade, high-throughput molecular technolo-

are two widely used high-throughput technologies. Next-
generation sequencing improves upon Sanger dideoxy

gies have gained great popularity in gene expression
profiling due to their capability of producing thousands
of measurements for each of the assayed samples. The
microarray technology and next-generation sequencing
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sequencing so that the number of sequencing reactions
in a single run can be in millions. For example, in Nature
(2008), Bentley et al. [4] and Wang et al. [34] reported the
DNA sequence of a Nigerian individual and an Asian indi-
vidual, respectively. Ley et al. [18] analyzed the genome
sequence of a tumor sample. One common scientific ques-
tion addressed by these high-throughput experiments is
to identify the genes with differential expression between
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two biological conditions. Although the high-throughput
technologies offer us rich biological information, they are
highly error-prone because many genes are monitored at
the same time with a relatively small sample size. Bayesian
methods provide a good solution to this problem because
they synthesize all the data by borrowing information
across different genes and produce more efficient esti-
mators for evaluating the gene expressions. They include
linear models in LIMMA [28] where empirical Bayesian
methods were used to obtain stable results even with small
sample size. A more detailed description of the Bayesian
statistical methods for microarray studies can be found
in Dudoit et al. [7], Pan [25], and Kuo et al. [15]. Other
Bayesian methods for RNA-Seq studies using next gener-
ation sequencing were reviewed by Kvam et al. [16] and
Soneson and Delorenzi [29].

Yu et al. [36] pointed out that most statistical meth-
ods for microarray studies examined the differential
expressions by testing on the equality of means of the
log-transformed intensities between the treatment and
control, which may not be appropriate for data with
complex structures (for example, a mixture normal
distributions with multiple modes). They proposed a
calibrated Bayes factor (CBF) method to evaluate the
ratio of the full data marginal likelihood under the alter-
native hypothesis that a gene is differentially expressed
(DE) relative to that for the null hypothesis that a gene
is equivalently expressed (EE) between two biological
conditions. Although their approach has the potential for
handling data with more complicated distributions, the
computational cost of their method may increase greatly
with the complexity of the model.

Chen et al. [6] employed a class of mixture models with
two components to fit the microarray data with two bio-
logical conditions. To evaluate the differential expressions
for each gene, they proposed a gene selection algorithm,
namely the two-criterion method. Specifically, they cal-
culated a posterior probability that there is at least a
two-fold change between the mean values of raw inten-
sities under the two considered conditions. Then a gene
is declared to be DE if the resulting posterior probability
is large (say at least 0.7). Since the posterior probabil-
ity is readily available once a Markov chain Monte Carlo
sample is drawn from the posterior distribution, the gene
selection algorithm proposed by them is quite easy to
implement and computationally inexpensive. However,
their approach does not consider general data distribu-
tions as that in the Bayes factor approach given by Yu
et al. [36]. Assuming that the data under each biologi-
cal condition follow a log-normal distribution as in [6],
the mean value of raw intensities equals to exp(mean +
variance/2) under each condition. Thus, the two-criterion
method proposed by Chen et al. [6] that calculates the
ratio of two means of the raw intensities depends on not
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only the difference between the two transformed means
but also the difference between their variances. So, when
the differences between the means and the differences
between the variances are in opposite directions, the Chen
et al. method may not be able to detect DE genes. Addi-
tionally, their paper neither provides a guidance on con-
trolling the false discovery rate (FDR) nor carries out the
performance comparison with other existing methods.

Our goal in this paper is to develop a simple but efficient
gene selection algorithm so that it is not only computa-
tionally efficient, but also flexible in handling data with
a complicated distribution as in Yu et al. [36]. We rede-
velop the two-criterion method proposed by Chen et al.
[6] and construct two new gene selection algorithms for
general Bayesian models. One is based on the differences
between means and the other is based on both mean
differences and variance differences. To differentiate the
method proposed in Chen et al. [6], we name our meth-
ods as confident difference criterion methods and the two
proposed confident difference criterion methods in this
paper as Methods I and II. We show that the Method
I, which compares the mean expressions from different
conditions, is equivalent to the calibrated Bayes factor
approach [36] when the raw intensities from two different
biological conditions follow log-normal distributions with
equal variance. We also address the multiple comparisons
issue with a control of the false discovery rate. We fur-
ther apply the proposed method to carry out analyses of
microarray data with more than two conditions as well as
sequence-based RNA data.

Method

Model for microarray data

We assume that the data, denoted by D, have already
been preprocessed with appropriate transformation and
normalization. Let T be the total number of biological
conditions in the study. The data may contain two biolog-
ical conditions (T' = 2) or multiple biological conditions
(T > 2). The common analytical objective is to detect dif-
ferentially expressed (DE) genes across different biological
conditions.

Let xg denote the preprocessed expression intensity of
the g gene in the K sample under the ¢ condition for
t = 1,---,T. There are a total of G genes with sample
size ng under condition . Thus, the data on gene g under
each condition can be summarized using a vector: Xy =
(Xgr1s - - - ,xgmgt). We assume that the intensity, Ktk k =
1L,---,ng,t = 1,2,---,T, follows a normal distribution

N (ugt, agzt> independently. The parameters g and ngt
denote the mean and variance of the intensities of gene g
under condition ¢, respectively. We write the mean inten-
sities as pgr =g +08g:/T, t=1,..., T, where Zthl 8t =0.
For simplicity, we set §g1 = — L, 8¢ under the first
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biological condition. We note that 1, defines the over-
all mean of the intensities across all biological conditions,
and &y/T measures the difference in the mean inten-
sity under biological condition ¢ from the overall mean.
In a microarray study with two biological conditions
(T = 2), the mean intensities 1141 and gy are written
as gl = Mg — 8¢/2 and gy = g + 84/2, respec-
tively. When a gene is DE, we expect that the distri-
butions of the data differ at least under two biological
conditions.

Hierarchial prior distributions

Noninformative conditionally conjugate priors are spec-
ified for all parameters. Specifically, we assume that the
mean parameters [ty ~ N(0,72) and Sg¢ ~ N(O, ?)
for ¢ > 1 and any g, and the variance parameters agzt
TIG(as, b). We set the variance parameters 72 and w? in
the normal priors to be 100 to obtain relatively nonin-
formative priors. The shape parameter a; in the inverse
gamma prior is set to be 2, so that the prior mean of agzt
equals b;. We further let the scale parameter b, follow a
conditionally conjugate gamma prior with b; ~ G(c, d),
where the hyperparameter ¢ is specified as 1 and the
hyperparameter d ~ ZG (a4, by), in which a4 and b, are
both set to be 0.01 in the simulation study and 1 in the
real data analysis. Our hierarchical priors for the variance
parameters, which are often difficult to estimate, allow for
borrowing the information across genes via by ~ G(c,d)
as well as biological conditions via d ~ ZG(ay, by). We
intend to specify a noninformative inverse-gamma prior
for the parameter d. The value of “1" was specified for both
ag and b, in the real data analysis since the real data had a
smaller sample size than the simulated data in the simula-
tion study. These values of the hyperparameters still led to
noninformative priors since the prior mean and variance
of d do not exist. However, these values allowed us to bor-
row a little but not too much information across different
biological conditions under comparison.

~

Conditional posterior distributions

Let ¢ denote the average intensities of gene g under con-
dition ¢ and also let the vector Xy = {xg1, - - , %7} denote
the average intensities for gene g. Then, X, follows a
multivariate normal distribution with X, ~ N (A, ),
where Oy = (g, 842, -, (SgT)’ is a column vector of size
T, and %, is a diagonal matrix of size T x T with the tth
diagonal element (3;);; = crgzt/ngt. Here Aisa T x T
matrix, in which all elements in the first column equals
one, i.e, Ay = 1fort = 1,---,T, all but the first ele-
ment in the first row equals —1/7), i.e., Aj; = —1/T for
t =2,---,T,all but the first diagonal element equals 1/7T,
ie, Ay = 1/T fort = 2,---, T, and all other elements
equal zero. Since the parameters in ©, independently
follow normal prior distributions, then ®, ~ N0, Z),
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where 0 is a vector of size T containing all zero’s and
¥y is a diagonal matrix with the first diagonal element
(Zo)11 = 72 and all other diagonal elements equal to
w?, ie, (Zo)ys = w? fort = 2,---,T. Therefore, the
conditional posterior distribution of ®, is a multivariate
normal distribution with ®, ~ N(Ug, By), where the

inverse of the variance matrix Bg_1 = (A’ Eg_lA + E(;l),
Iy —1vy
B,A Zg X,. The
distribution of the variance
inverse-gamma distribution

and the mean vector U, =
conditional posterior

parameter agzt is an

. 2
with ngt ~ 1¢ (“t + 37g b + 5 ZZ‘i1 (g — Hgt) )
The conditional posterior density of the
parameter b; is given by g (bt|0'12t, e

hyper-
»OGt ) &

bEGm/2+c) exp (—% > Ug;2) X (Zt’;&t b; + by + bd>Tc+ad
Consequently, we can apply the Gibbs sampling algorithm
to sample the parameters by, crgzt and Oy in turn from their
respective conditional posterior distributions using the
following steps: (1) sample b; for each condition ¢ from
its posterior density function g(bt|012t, -« ,0qG) via the
Metropolis-Hastings algorithm; (2) sample ogzt given by
and pg for each g and ¢ from its inverse gamma posterior
distribution with updated parameters a; + %ngt and
by + % ZZ‘il (Xgek — ,ugt)z; (3) sample O given agzt for all
g from their conditional multivariate normal posterior
distribution, and calculate the j,; based on the sampled
values of ©,.

Model for sequence-based data

Let Yo = (Jgt1, -+ Ygtn,,) denote all ng observed counts
of the expressed tags of gene g under condition ¢ for
g=1---,Gand ¢t = 1,---,T. We assume that Yokt
follows a negative binomial distribution, which is com-
monly used for the count data with overdispersion [2, 26].

Mgt )
)

Specifically, we assume ygy follows N'B (d)t, FFmaig

with mean m Ay and variance mighg (1 + mtkkgtqb;l).

We set my to be the library size of the k& sample under
the ¢ condition, which is the sum of all counts from
this library. The dispersion parameter ¢; is assumed to be
positive, accounting for potential over-dispersion in the
data. When the dispersion parameter ¢, gets extremely
large, the value of ¢, ' approaches to zero, and the
negative binomial distribution becomes a Poisson dis-
tribution with a mean value of myly. DE genes are
expected to have different A4’s under different biological
conditions.

Hierarchical prior distributions

We assume that each dispersion parameter ¢; follows a
gamma distribution, ¢; ~ G(ag, Bg) independently over
t and its scale parameter 4 follows an inverse gamma
distribution with By ~ ZG (¢4, ne). We also assume that
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each gene expression parameter Ag follows an inverse
gamma distribution with Ay ~ ZG(ay,, B3,), where the
scale parameter B, ~ G({,1,). In our simulation stud-
ies, we set all the hyperparameters {ag, g, g, 04,5 C1s M1}
to be one.

Conditional posterior distributions

Since a negative binomial distribution can be writ-
ten as a Poisson-gamma distribution, we can rewrite
the distribution of Yy as ygk ~ Poi(Ogn), and

Otk ~ Q(d)t,mtkkgtq)t_ 1). Then we can derive all
the conditional posterior distributions for all of the
parameters. Specifically, the conditional posterior
distribution of g is a gamma distribution with

-1
] ), the kernel of

the conditional posterior density of ¢; is given by

Ld’[( Oat )¢: (_ Otk ) (_ﬂ) ag—1
Hgk |:F(¢t) Miichgt xp Myichgt e ) | exp By ) Tt
I(¢; > 0), the conditional posterior distribution of A

. )

is ZG (Zk O+, B, + D g %ft), and the hyperpa-
rameters By, and fB;, respectively have the conditional
posterior distributions: By ~ ZG (Tag + £g, Y, ¢t + 1),

and 5, ~ G (G + 60,1/ (1/m + Ly 1/ka))- Let 0,
denote a set containing all f,’s and A; as a set containing
all Ag’s for each condition . We use the Gibbs sampling
algorithm to sample parameters {6, A, B;,}, Vt, and By
from their conditional posterior distributions. The condi-
tional posterior distribution of ¢; does not have a known
distribution form. These parameters are sampled using
the Metropolis-Hastings sampling algorithm from their
conditional posterior distributions.

Otk ~ G (ygtk + ¢ [1 + &

My hgt

Confident difference criterion

Preliminary

The confident difference criterion method was extended
from the two-criterion method, which was firstly pro-
posed by Ibrahim et al. [13] to detect DE genes for
microarray studies with two biological conditions. In this
two-criterion method, the fold change between two con-

ditions was defined as & = exp (Mgz + 0.50;2 — Mgl —

0.5ag21>, and the posterior probabilities of having at least

two fold changes between two conditions, denoted as
Y1 = Pi‘(fg > 2|Dyps) and Y2 = Pr(%_g < 1/2|Dyps), were
evaluated on each gene to quantify the evidence of its dif-
ferential expression. A gene is declared to be DE genes if
the calculated posterior probabilities y,1 or yg2 are suffi-
ciently large. The two-criterion method is easy to com-
pute and provides good false positive and false negative
rates [6] for identifying DE genes from microarray stud-
ies with two biological conditions. However, the posterior
probability y, defined in this confident difference crite-
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rion method does not account for the posterior variability
of the fold change, and may not work well for the data with
multiple conditions due to the potential multiple compar-
isons problem since only two conditions can be compared
at a time.

In this section, we will develop confident difference cri-
terion using a similar idea of the existing two-criterion
method to compare mean expressions (Method I) after
taking into account the posterior variability of the mean
intensity parameters for the microarray data with two bio-
logical conditions. Then we extend the newly developed
confident difference criterion method for the microar-
ray data with multiple biological conditions. Furthermore,
we will develop another version of the confident differ-
ence criterion method to compare both means and vari-
ances of the expressions (Method II) for the microarray
data. Finally, we extend the confident difference criterion
method for comparing mean differential expressions of
microarray data (Method I) to the analysis of RNA-Seq
data (Method I).

Confident difference criterion for the comparison between
mean expressions for the microarray data

Microarray study with two conditions

For a study with two biological conditions, g — pg1
quantifies the difference in the mean intensities of gene g
between the two conditions and its conditional posterior
distribution follows a normal distribution. We define the
posterior probability as

[hg2 — el
)@=M(géf>2Dm , (1)

O‘ngZ*l/«gl

where 0y, ., is the posterior standard deviation of g2 —
te1. Then we select a cutoff value yo (0 < y < 1) and
declare a gene to be DE if its posterior probability y, is
greater than the cutoff value yy.

Note that the choice of yy reflects how strong the evi-
dence is for declaring DE genes. When a larger value
is specified for yp, fewer genes will be selected to be
DE. In the two-criterion method, Chen et al. [6] rec-
ommended to use a large cutoff value (ranging between
0.7 and 0.9) because they did not adjust for the poste-
rior variability of the fold change when comparing the
gene intensities between the two conditions. After adjust-
ing for the posterior variability, y; in (1) is quite different
than the corresponding posterior probability under the
two-criterion method of Chen et al. [6], as shown in the
following proposition.

Proposition 1. Assume that the difference in the
mean intensities, [igy — g1, follows a normal distri-
bution. The proposed confident difference criterion
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method ensures that if v > yo, then the maximum
value of the posterior probabilities for the difference
Mg2 — g1 being larger or smaller than zero, i.e.,
max {Pr(ﬂgZ — Mgl > 0 [Dops), PV(,ngz — Mgl < 0 |Dohs)}:
isatleast ® (2 — 71 (14 ®(—2) — yp)) for yo > P(-2),
where ® and ®~! denote the cumulative distribution
function (cdf) and the inverse cdf of the standard N(0,1)
distribution, respectively. The detailed proof is presented
in Additional file 1.

We note that the maximum value of the posterior prob-
abilities for the difference 1142 — 1141 being larger or smaller
than zero measures a Bayesian p-value. Figure 1 shows a
graphical presentation of the Proposition 1 with y cho-
sen to be 0.5 and 0.7, respectively. For example, we use
€10~ to denote the posterior mean value of the dif-
ference pg — 1g1. When yg = 0.5 and assuming that
the posterior mean value &§,,—p,, > 0, §pp—py IS at
least 1.940,,,,—,,,, away from zero. The maximum value
of the posterior probabilities for the difference pgo — p1g1
being larger or smaller than zero, max{Pr(ug — ug1 >
0 |Dops)s Pr(mgs — g1 < 0 [Dgps)}, will be at least
P2 —d 114+ D(—2)—0.5)) = 97.4%. Therefore, we rec-
ommend to use a smaller cutoff value than the previous
two-criterion method [6] when using (1) for identifying
DE genes. Possible choices of the cutoff value yy may range
from 0.4 to 0.7.
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Connection with the CBF method for microarry study with
two conditions

For a microarray study with two biological conditions,
we assume that the preprocessed expression intensity
from each biological condition follows a normal distribu-

tion with xgy ~ N (,u,gt, ngt), and the parameters follow

the prior distribution specified in the aforementioned
Model for microarray data subsection. For simplicity, we
assume that the equal number of intensities are observed
from the same gene under different conditions, and they
share the same known variance, i.e., 751 = 1y = 1, and
ogZI = g22 = agz. The proposed confident difference cri-
terion method is used to detect differentially expressed
genes. Alternatively, we can also apply the CBF method for
the data analysis. To detect differentially expressed genes,
we test on the null hypothesis that the mean intensities are
equal (g1 = fig2) against the alternative hypothesis that
the mean intensities are unequal (11 # (tg2) between the
two biological conditions. We use the same prior distribu-
tions as that in the confident difference criterion method
under the alternative hypothesis, and similar prior dis-
tributions for the parameters under the null hypothesis.
With simple algebra, we can show that the proposed
confident difference criterion method for comparing the
mean intensities between two biological conditions agrees
with the CBF method under the condition stated in the
following Proposition.

posterior density of pg — gy

0 1.940

positive difference gy — g1

posterior density of pg, — Hgq

0 2.460

Fig. 1 Graphical illustration of the confident difference criterion method. The figure on the left panel and the right panel uses yp = 0.5 and yp = 0.7
separately. The gy — pg1 measures the difference in the mean intensities of gene g between the two conditions. Both figures are drawn based on
an assumption that the posterior mean of g — g1 are positive. The shaded area in both figures measures the posterior probability for having a
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Proposition 2. The confident difference criterion
method comparing the mean intensities between the
two biological conditions with a cut-off value of yo
agrees with the CBF method for the hypotheses test-
ing on whether the mean intensities are equal between
the two biological conditions with a cut-off value of

Co ifq>(2+E;;> - c1>(—2+5;) — 1 — yo, where

Vlng

2
|E;| = [log ( o + 1) — 210g(C0)] , provided that
g
the cutoff value Cy is chosen so that the argument in the
square root expression is non-negative. The detailed proof

is presented in Additional file 1.

Microarray study with multiple conditions

The confident difference criterion method can be
extended to microarray studies with multiple biologi-
cal conditions. Our primary interest of the study is to
identify genes that have differential expressions at least
between two biological conditions. Therefore, we define
a quadratic form to quantify the differences in the gene
expression intensities across different biological condi-
tions, and conduct an overall test to determine whether
the mean intensities are different at least under two bio-
logical conditions on each gene.

Considering the first biological condition as a reference
condition, we define a column vector A, = (g —
Mgls- -+ > Mg — Hg1) to measure the difference in the
mean intensities between each non-reference biologi-
cal condition and the reference condition. Let X4,, be
the posterior covariance matrix of A,,. We then pro-
pose the quadratic form, A},
differential gene expressions for all non-reference bio-
logical conditions compared to the reference condition.
Under the null hypothesis that gene g is not DE, the
quadratic form follows a chi-square distribution with
df = T — 1 when Ay, is assumed to follow a multi-
variate normal distribution. We note that the multivari-
ate normality holds asymptotically when the sample size
is large. We choose an integer, denoted as C, which is
closest to the 95 percentile of the chi-square distri-
bution. For example, for a microarray study with three
biological conditions (i.e., T = 3), the corresponding C
value equals 6. Similar to (1), we compute the posterior
probability

EZi’g A, ¢, to quantify the

Ve =Pr (AL T3! Aug > ClDu), 2)
and declare gene g to be DE if y; > yq.

Confident difference criterion for comparison of both
means and variances of expression for microarray data

We note that the confident difference criterion method
proposed so far only evaluates the differences in mean
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intensities. Recall that the Bayes factor approach in Yu
et al. [36] is more desirable since it compares both means
and variances of the intensities for each gene. Assume that
the means and variances are equally important. An appro-
priate quadratic form can be constructed to quantify the
overall difference between both the means and the vari-
ances under different conditions on each gene. Since the
posterior distribution of ogzt’s is typically skewed, a stabi-

lization transformation of the variance ngt is required. Let
q(.) denote a one-to-one transformation function. The dif-
ferences in both means and transformed variances of the
intensities across different conditions can be summarized

in a quadratic form given by

Qg = A/ 271

g Zals Ao )

where A/L,a,g = (MgZ — Mgl MgT — Mgl g (GgZZ) —q

/
(agzl) g (agZT> —q (ogzl)) is a column vector of
length 2T — 2 containing the differences in both means
and transformed variances of the intensities. The covari-
ance matrix X4, , . is the posterior covariance matrix of
Ap.0.g- Since g(-) is a one-to-one transformation function,
then we have agzt = agzt, if and only if g <og2t) =q (agi,)
for t # . Thus, the same g(-) function has to be used
across all the T treatment groups. The primary reason for

introducing the transformation function ¢(-) is to make
the distribution of g <ngr> more normal.

Similar to (2), we compute the posterior probability
¥e = Pr(Qg > C|Dys), where C is chosen to be an inte-
ger, which is closest to the 957 percentile of the chi-square
distribution with df = 2T — 2. For example, C will be
chosen to be 9 when T' = 2, and 13 when T = 3. In this
paper, we consider the negative cube root transformation
on the variance parameters ogzt’s. The cube root trans-
formation, also known as Wilson-Hilferty transformation,
was derived by Wilson and Hilferty [35] to transform
a chi-square variate to be approximately normally dis-
tributed. In the proposed gene selection algorithm below,
the cutoff value yp will be automatically determined to
control the false discovery rate to be less than a targeted
level.

Confident difference criterion for sequence-based data

As discussed in the Model for sequence-based data
subsection, the parameter Ay quantifies the expression
level of gene g under condition ¢. The differences in Ag’s
measure the relative differential expressions of gene g
between the conditions. Note that the Ag’s likely have
small values and their posterior distributions may be
skewed. Therefore, we apply a log transformation on Ag’s
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and use the differences in log Ag’s to quantify the differ-
ential gene expressions among different biological condi-
tions. Similar to the confident difference criterion method
for microarray data, we propose the confident difference
criterion method for the sequence-based data with two
biological conditions as follows. We first compute

log(Ay2) — log(A
ye = Pr | log(Ag2) g(Ag1)|
GIOg()\gZ)_log()\gl)

> 2u)obs) ’ (4)

where 01563 2)—log(hg) I8 the posterior standard deviation
for the difference log(42)—log(%41). We then declare gene
gtobe DEif y; > yp, where 0 < yp < lisa predetermined
credible level.

When the sequence-based data are collected from
multiple conditions, the first biological condition will
be considered as the reference condition and a col-
umn vector Ay, = (log(hy) — log(ie1),log(hgs) —
log(Ag1), - -+ ,log(Agr) — log(Ag1))’ contains the differ-
ences in the log scaled expression values between the
non-reference conditions and the reference condition. Let
T, denote the posterior covariance matrix of Aj,.
Accordingly, the confident difference criterion method is

defined as y; = Pr (A;’gﬁgig Ayg > CﬂDobS), where C;,

is an integer, which is closest to the 95 percentile of the
chi-square distribution with df = T'—1. Again, we declare
gene g to be DE if y, > yo, where 0 < yp < 1.

From the Model for sequence-based data subsection,
we see that the variance of the observed count yg is

Mgt (1 + mtkkgtqb;l), which is a function of Ag and ¢,
for the sequence data. Since ¢; does not depend on g, it is
sufficient to compare the mean expressions under differ-

ent conditions for determining DE genes for the sequence
data.

False discovery rate and gene selection algorithm
The proposed confident difference criterion methods cal-
culate the value of y, on each gene, whose magnitude
reflects the evidence of differential expression. When y, is
large enough, the gene will be declared to be DE. It is of
great importance to determine how to choose the cutoff
value yp.

We adopt the approach proposed by Tadesse et al. [31]
to select the cutoff value yy for controlling the Bayesian
FDR. Let V denote the number of incorrect decisions
by identifying EE genes as DE genes and let R be the
number of identified DE genes. Then the positive false dis-
covery rate defined by Storey [30] is given by pFDR =
E(%IR > 0).

We need to test the hypotheses of Hy, : gene g is EE
versus Hi, : gene g is DE on each gene. We assume
that all genes have the same probability of being EE, and
DE, respectively, i.e., Pr(Hog)’s are equal for all genes,

Page 7 of 15

and Pr(Hig)’s are equal for all genes. Therefore, the y,’s
are independently and identically distributed. Following
Tadesse et al. [31], the Bayesian FDR bFDR(yp) when using
a cutoff value of y for the confident difference criterion
method is defined as

Pr (yg = yolHog) Pr(Hog)

bEDR(yo) = Pr(y; > yo)

Pr(R > 0)
(5)

and Pr(y; > yo) = Pr(y, > yolHog)Pr(Hog) + Pr(y, >
YolH1g)Pr(Hyg). To estimate the FDR, we need to com-
pute Pr(yy > yolHog), Pr(yy > yolHig) and Pr(Hig). Note
that gene g can be classified into DE or EE depending
on whether y, > yo. We reuse the data information and
specify the prior probability Pr(Hig) as the proportion of
genes classified as DE. Denote the total number of identi-
fied DE genes as np. Then the probability of a gene being
DE will be Pr(Hy,) = np/G. Additionally, we estimate
the true parameters in the gene expression data distri-
butions from DE or EE genes as the posterior means of
the corresponding parameters from the identified DE and
EE genes, respectively. An algorithm using the posterior
samples from DE or EE genes to estimate the aforemen-
tioned probabilities Pr(y; > yolHog), Pr(yg > yolH1g) and
bFDR(yyp) is given as follows.

(1) Split the genes into two subsets containing ng EE
genes (EEGENE) with calculated y; < yp and np DE
genes (DEGENE) with y, > yp.

(2) Note that a DE gene can be either up or down
regulated under some condition compared to the
reference condition in terms of means or variances of
the expression values for microarray experiment or in
terms of mean gene expressions for sequence-based
experiment. Accordingly, the DE genes will be
further split into a series of gene subsets based on the
pattern of parameters in comparisons under different
biological conditions. For example, in a microarray
study with three biological conditions and the mean
gene expressions are in comparison. Consider the
first condition as the reference condition. The DE
genes can be classified into four subsets: (i) genes
with lower mean gene expressions under both
conditions 2 and 3; (ii) genes with lower mean gene
expressions under condition 2 but higher mean gene
expressions under condition 3; (iii) genes with higher
mean gene expressions under condition 2 but lower
mean gene expressions under condition 3; and (iv)
genes with higher mean gene expressions under both
conditions 2 and 3. We denote these subsets of DE
genesas Dy, £ =1, - -, L, where the number of
subsets L = 277! for the microarray study when only
mean parameters are in comparison or the
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sequenced-based study; and L = 471 for the
microarray study when both mean and variance
parameters are in comparison. We also denote the
number of genes in the Dy DE gene subsets as npy.

(3) For EE genes identified in previous steps, the same
data distributions will be considered for the gene
expression data from different biological conditions.
Hierarchical priors similar to those proposed
previously in the Model for microarray data section
and the Model for sequence-based data subsection
will be augmented separately for microarry data or
sequence-based data. The posterior mean of each
parameter defined in the distribution of the gene
expression data will be calculated. The true
parameters in the gene expression data distribution
will be estimated using the average value of posterior
mean of corresponding parameters from all EE genes.
For all identified DE genes, the Markov chain Monte
Carlo (MCMC) sampling values from previous steps
when implementing the proposed confident
difference criterion method will be used for
calculating the posterior means of the parameters
defined in the gene expression data distribution. For
each differential gene expression pattern ¢, the actual
value of each parameter in the gene expression data
distribution will be estimated using the average value
of its posterior means across all genes in the subset
D, with this DE pattern.

(4) Using the estimated values for the parameters in the
gene expression data, the data will be simulated for
k X G genes (say k = 0.1), among which kng EE
genes and knp,, £ = 1,...,L DE genes with a pattern
of differential gene expression observed in the DE
gene subset Dy, respectively.

(5) The posterior probability y, will be calculated for
each gene based on the simulated data. Depending on
whether y; > yo, the gene in the simulated data will
also be claimed to be DE or EE.

(6) Denote the total number of identified DE and EE
genes from the simulated data as mp and mg. Then
the probability for a EE genes claimed to be DE,
Pr(yg > volHog), will be estimated as
Pr(yg > yolHog) = :"Ti; and the probability for a DE
genes claimed to be DE, Pr(y, > yo|H1g), will be
estimated as Pr(y, > yo|Hyg) = 2. Using (5), the

Kknp*

estimated Bayesian FDR equals BFDR = &

mp+mg’

Note that steps (4) to (6) provide a predictive approach
to estimate bFDR when a certain value yy was used for
identifying DE genes. Therefore, we can control the FDR
at some pre-specified value (i.e. 0.05) by choosing the cor-
responding cutoff value Y as the minimum value of all
cutoff values with an associated FDR no more than 0.05,
or Yo = min{yg : (bFDR(y) < 0.05)}.
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Results and discussion

In this section, two different simulation studies were
conducted to investigate the performance of the pro-
posed confident difference criterion methods on iden-
tifying DE genes for microarray or sequence-based
studies, respectively. In addition, a real affymetrix
dataset is used to further demonstrate the proposed
methodology.

Simulation study I: Microarray data

Two settings were considered. In the first setting, the
intensity values having different means and variances
between two biological conditions on each DE gene are
simulated. In the second setting, the data were simulated
from three biological conditions, with DE genes having
different mean and variance values between at least two
biological conditions.

Setting 1 (Two conditions)

Fifty simulations were used in this study to investi-
gate the performance of different versions of the con-
fident difference criterion methods described in the
Confident difference criterion section. In each simula-
tion, there were 5000 genes in total and 500 DE genes
with 10 replications under each of the two biological
groups. The log-scaled data were generated via xg1x id
N (g —0.584,0.2%), xg0k N (g + 0.58,,0.9) with §; =
1,vg=1,...,250 and §; = —1,Vg = 251,...,500 for the

id '
DE genes, and xg14, g2k ~ N (pags 0.7%) for the remain-
ing EE genes. The average intensities 11, were generated

from an uniform distribution, where p, id U(5,11) for
all genes. Conditionally conjugate priors described in the
Model for microarray data subsection were used for all

parameters jig, Og, o2 022 and o 2.

The simulated datga1 wégre analyzed using both Methods
I and II of the confident difference criteroin methods.
For each version, the cutoff value 3y were set to be 0.4,
0.6, or the cutoff value controlling the FDR to be no
more than 0.05, separately. The genes with the calcu-
lated posterior distribution values y, via Equation (1)
or Equation (3) less than the chosen yy were identified
to be DE. To evaluate the performance of the confi-
dent difference criterion methods, the simulated datasets
were also analyzed by four existing methods: Significant
Analysis of Microarrays (SAM) [33], Linear Models for
Microarray Data (LIMMA) [28], Semiparametric Hierar-
chical Method (SPH) [23], Empirical Bayesian Analysis of
Gene Expression Data (EBarrays or EBA) [14]. All these
existing methods allowed a control of the FDR for multi-
ple comparisons. The genes were declared to be DE with
FDR controlled at 0.05 for all these four methods.

Based on the identified gene list by each method, we
calculated the number of claimed DE genes (CDE), the
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number of correctly claimed DE genes (CCDE), the num-
ber of correctly claimed EE genes (CCEE), the false pos-
itive rate (FPR), false negative rate (FNR), false discovery
rate (FDR) and false non-discovery rate (FNDR) for all
considered methods. These results and their standard
deviations reported in parentheses were summarized in
Table 1. Note, for Methods I and II, the choice of yy = 0.4
identified the a larger number of DE genes when com-
pared to the choice of yp = 0.6. While for the case with
FDR control of 0.05, the Method II identified the largest
number of DE genes among all six methods. We also
compared the results of the confident difference criterion
method with a control of FDR against all four existing
methods. We expected a method with good performance
will provide a good control of FDR and provide smaller
error rates in terms of FPR, FNR and FNDR. Under both
versions of the confident difference criterion method, the
achieved FDR is close to but less than 0.05, implying
that the proposed confident difference criterion meth-
ods provided a good control of the FDR. All four existing
methods also obtained a control of FDR at 0.05 success-
fully, although the SPH method provides a conservative
control of FDR with the empirical FDR equal to 0.02. Since
all methods provided small error rates of FPR and FNDR,
we put more weight to the comparison of the empirical
FNRs among all applied methods. The results in Table 1
showed that Method II provided the smallest empirical
ENR out of all methods by successfully identifying almost
all truly DE genes; and Method I had comparable empiri-
cal FNR as the SAM and the LIMMA methods, and much
smaller empirical FNR when compared to the SPH and the
EBA methods.

Setting 2 (Three conditions)

The data were simulated from three biological condi-
tions, and the first biological condition was considered
as the reference group. A gene was set to be DE so
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that at least one group would be either up or down
regulated from the reference group. Specifically, 500 DE
genes out of 5000 genes were set in the data, and the log
. . . iid
intensities of the DE genes were generated via xg1x ~
N (ﬂgl; 0.22) ) Xg2k N (,ug1 + 0.5v41, 0.52) ) Xg3k i
N (mg1 + 0.5ug2,0.82). Depending on whether the gene
was set to be DE in one or both conditions from refer-
ence group, the parameters vg; and v, were set to have
Vg1 = Vg2 = L.5forg = 1,---,62 (up-regulated in both
conditions); vg1 = 1.5, vy = 0 for g = 63,---,125 (only
up-regulated in condition 2); v;; = 1.5, vpp = —1.5 for
g = 126,---,187 (up-regulated in condition 2, down-
regulated in condition 3); v;; = 0 and vy, = 1.5 for
g =188, --,250 (only up-regulated in condition 3); vg1 =
0, vp2 = —1.5 for g = 251, -+, 312 (only down-regulated
in condition 3); vy1 = —1.5, vpp = 1.5 for g = 313,---,
375 (down-regulated in condition 2, up-regulated in con-
dition 3); vg1 = —1.5, Vg2 = 0 for g = 376, ---,437
(only down-regulated in condition 2); vg; = Vg = —1.5,
for g = 438, - - - ,500 (down-regulated in both conditions).
The remaining genes were EE and their log intensities

were generated via xgy id N(ug, 0.62) fort = 1,2,3
and g = 501,---,5000. On all genes, the parameter 14

. e iid
were generated from an uniform distribution, i.e., ug1 ~
U(5,11). Each condition contained 10 replicates on each
gene and 50 simulations were conducted.

The model similar to those described in Model for
microarray data subsection and the proposed confident
difference criterion methods including the Method I for
comparing mean expressions and the Method II compar-
ing both mean and variance expressions were applied to
the simulated data. We considered three choices for the
cutoff value yy, including prespecified values 0.4, 0.6, or
a value with FDR controlled at 0.05, separately. The data
were also analyzed by the SAM [33], LIMMA [28], and
EBArrays [14] with the FDR controlled at 0.05. The SPH

Table 1 Performance evaluation under Study | (Setting 1), (G = 5000, 500 DE gene)*

Cut-off Method CDE CCDE CCEE FNR FPR FDR FNDR

Y0 | 796.7(14.5) 466.7(4.7 ) 4169.9(13.9) 0.067(0.009) 0.073(0.003) 0.414(0.011) 0.008(0.001)
(0.4) Il 864.4(13.8) 499.2(1.1) 4134.8(13.8) 0.002(0.002) 0.081(0.003) 0.422(0.009) 0.000(0.000)
Y0 I 526.5(9.8) 419.2(6.7 ) 4392.7(6.9 0.162(0.013) 0.024(0.002) 0.204(0.011) 0.018(0.001)
(0.6) Il 5823(73) 4933(3.0) 4411.0(69 0.013(0.006) 0.020(0.002) 53(0.010) 0.002(0.001)
FDR | 296.4(13.7) 283.3(12.9) 4486.9( 2.9 0.433(0.026) 0.003(0.001) 0.044(0.009) 0.046(0.003)
(0.05) Il 469.2(13.1) 450.7(10.2) 44815(44 0.099(0.020) 0.004(0.001) 0.039(0.009) 0.011(0.002)
SAM 330.5(16.0) 314.0(13.5) 4483.4(4.7 0.372(0.027) 0.004(0.001) 0.050(0.013) 0.040(0.003)

LIMMA 320.2(15.2) 304.9(13.7) 4484.7(4.1 0.390(0.027) 0.003(0.001) 0.048(0.012) 0.042(0.003)

SPH 192.0(10.6) 188.1(10.0) 4496.1( 2.1 0.624(0.020) 0.001(0.000) 0.020(0.011) 0.065(0.002)

EBA 166.4(14.1) 158.8(13.3) 44923(22 0.682(0.027) 0.002(0.000) 0.046(0.012) 0.071(0.003)

#Empirical estimates of the standard deviation were reported in the parentheses
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[23] were not used in the study as they were proposed for
studies with two biological conditions only. The analyti-
cal results from all methods were compared based on four
error rates including FPR, FNR, FDR and FNDR from each
considered method (Table 2). The confident difference
criterion methods including Method I and Method II as
well as the existing methods except LIMMA all provided
an empirical FDR no more than 0.05 successfully. Com-
paring to the existing methods, the proposed confident
difference criterion methods provided comparable FPR
and smaller FNR and FNDR. Method II of the confi-
dent difference criterion method compares both mean
and variance values of the gene expression intensities
across different biological conditions. This is a potential
reason for the proposed method providing smaller FNR
for microarray data analysis. The confident difference cri-
terion method is particularly effective when both mean
and variance of the expression intensities differ across
biological conditions on the DE genes.

Simulation Study II: sequence-based data

The focus of this study is to investigate the performance
of the proposed confident difference criterion method
for identifying DE genes from sequence-based high-
throughput experiments including SAGE and RNA-Seq
studies.

Setting 1 (SAGE experiment)

The simulation proposed by Lu et al. [20] was used to con-
duct the simulation study. Specifically, 5000 genes were
sampled under five libraries from each of the two condi-
tions with fixed library sizes sampled uniformly between
30000 and 90000. A total of 500 genes were set to be DE
genes. The data were generated from a negative binomial

NB((ﬁp mtk)‘gt

oty dgr
fixed library k of condition ¢, where m; was the library

size for library k under condition ¢; ¢ and ¢, denoted the
dispersion parameters for data from the two conditions

distribution, ygtk ) for gene g, for a
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separately, and both set to be 0.4; 1,; measured the expres-
sion level of gene g under condition ¢ and were set with
different values when gene g is DE and the same value
when gene gis EE. Forg = 1,---,250, we set A;) = 8E—4
and Ay = 2E — 4 to include down-regulated genes in
condition 2. For g = 251,---,500, we set A;1 = 2E — 4
and Ag» = 8E — 4 to include up-regulated genes in con-
dition 2. For other genes with g = 501, - - -, 5000, we set
Ag1 = Aga = 2E — 4 to include EE genes. Fifty simulations
were used in this study.

The proposed confident difference criterion method for
RNA-Seq data was used to analyze the simulated data. The
posterior probability y, measuring the evidence of differ-
ential gene expression were estimated using average value
of its posterior sampled values. The cutoff value yy for y,
were set to be 0.4, 0.6 or a value to control the FDR to be
0.05, separately. The genes with estimated yj less than the
chosen yy value were claimed to be DE. We also fit several
other existing methods including edgeR [26], DESeq [2],
BaySeq [10], NBPSeq [8], EBSeq [17], NOISeq [32], SAM-
Seq [19], and TSPM [3]. When the edgeR method was
applied, we chose both options to estimate the common
dispersion parameter for all tags and the tag-wise dis-
persion parameters respectively. For the NOISeq method,
we estimated and controlled the FDR using the method
proposed by Newton et al. [23] for identifying DE genes.

The results using the proposed confident difference cri-
terion methods and all fitted existing methods for RNA-
Seq data were summarized in Table 3. Similar to the
simulation study I for microarray data, Table 3 showed
that the higher the cutoff value yyp, the less number of
genes were identified to be DE. The confident difference
criterion method with a control of FDR at 0.05 achieved
an empirical FDR of 0.044, and successfully identified
328.8 genes (65.8 %) on average out of 500 truly DE genes.
Compared to other considered methods, the confident
difference criterion method performed the best by pro-
viding the smallest FNR and FNDR while maintaining

Table 2 Performance evaluation under Study | (Setting 2), (G = 5000, 500 DE gene)*

Cut-off Method CDE CCDE CCEE FNR FPR FDR FNDR

Y0 I 1086.5(22.5) 476.3(44) 3890.8(21. 0.045(0.009) 0.135(0.005) 0.561(0.009) 0.006(0.001)
(0.4) Il 1388.1(25.7) 499.7(0.5) 3611.6(25. 0.001(0.001) 0.197(0.006) 0.640(0.007) 0.000(0.000)
Y0 I 656.8(13.8) 4482(55) 42914013 04(0.011) 0.046(0.003) 0.317(0.014) 012(0.001)
(0.6) Il 749.3(15.0) 496.0(1.8) 4246.7(15. 0.008(0.004) 0.056(0.003) 0.338(0.014) 0.001(0.000)
FDR I 357.1(87) 342.7(80) 4485.6( 3. 315(0.016) 0.003(0.001) 0.040(0.011) 0.034(0.002)
(0.05) Il 480.7(10.5) 4587(7.7) 4478.0( 5. 0.083(0.015) 0.005(0.001) 0.046(0.011) 0.009(0.002)
SAM 326.9(12.9) 20(11.2) 4485.1( 4. 0.376(0.022) 0.003(0.001) 0.045(0.013) 0.040(0.002)

LIMMA 329.5(51.9) 309.9(21.6) 4480.4(31. 0.380(0.043) 0.004(0.007) 0.053(0.045) 0.041(0.004)

EBA 1904(6.7) 184.2(6.7) 4493.7( 1. 0.632(0.013) 0.001(0.000) 0.033(0.010) 0.066(0.001)

#Empirical estimates of the standard deviation were reported in the parentheses
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Table 3 Performance evaluation under Study Il (Setting 1), (G = 5000, 500 DE gene)*

Method CDE CCDE CCEE FNR FPR FDR FNDR
twocri. (yo =04) 785.1(8.3) 465.6(2.5) 4180.5(7.6) 0.069(0.005) 0.071(0.002) 0.407(0.006) 0.008 (0.001)
(Yo =0.6) 5094(6.38) 3(46) 4411.9(4.1) 57(0.009) 019(0.001) 0.173(0.007) 18(0.001)
(¢ =0.05) 3442(82) 32838(6.3) 4484.6(26) 0.342(0.013) 0.003(0.001) 0.044(0.007) 0.037(0.001)
edgeR'(¢ =0.05) 289.7(17.6) 278.1(16.5) 4488.3(3.6) 0.444(0.033) 0.003(0.001) 0.040(0.011) 0.047(0.003)
edgeR?(¢ =0.05) 290.6(18.1) 2764(16.8) 4485.8(3.8) 0.447(0.034) 0.003(0.001) 0.049(0.012) 0.047(0.003)
DESeq(¢ =0.05) 297.2(21.3) 265.9(18.4) 4468.7(5.6) 0.468(0.037) 0.007(0.001) 0.105(0.016) 0.050(0.002)
BaySeq(¢ =0.05) 203.1(22.8) 203.0(22.8) 4499.9(0.2) 0.594(0.046) 0.000(0.000) 0.000(0.001) 0.062(0.004)
NBPSeq(¢ =0.05) 248.3(20.5) 239.8(19.3) 4491.5(4.0) 0.520(0.039) 0.002(0.001) 0.034(0.015) 0.055(0.004)
EBSeq(¢ =0.05) 303.7(18.8) 257.7(14.9) 44540(6.8) 0.485(0.030) 010(0.002) 0.151(0.017) 0.052(0.003)
NOISeq(¢ =0.05) 303.1(19.1) 294.4(17.6) 44913(3.2) 0.411(0.035) 0.002(0.001) 0.028(0.010) 0.044(0.004)
SAMSeq(¢ =0.05) 134.2(45.2) 126.1(43.2) 44919(34) 0.748(0.086) 0.002(0.001) 0.061(0.022) 0.077(0.008)
TSPM(¢ =0.05) 854 (19.2) 587 (154) 44733(65) 0.883(0.031) 0.006(0.001) 0.316(0.056) 0.090(0.003)

#Empirical estimates of the standard deviation were reported in the parentheses

edgeR’ estimates the common dispersion parameter for all tags; edgeR? estimates the tag-wise dispersion parameters

¢denotes the FDR

comparable FPR and a well controlled FDR. Out of the
applied existing methods, the NOISeq method and edgeR
method achieved the lowest FNR, and a FDR of no more
than 0.05. The BaySeq method provided a conservative
control of FDR, and achieved an empirical FDR of lower
than 0.001 when controlling the FDR at 0.05. The DESeq,
EBSeq and TSPM methods failed to control the FDR at
0.05. The SAMSeq method and TSPM method failed to
identify most of the truly DE genes as DE genes, which was
not surprising as the performance of both the SAMSeq
and TSPM methods is highly sample size dependent as
pointed out by Soneson and Delorenzi (2013) [29].

Setting 2 (RNA-Seq experiment)

We used a similar simulation setting proposed by Kvam
et al. [16] for illustrating the application of the proposed
confident difference criterion method for RNA-Seq exper-
iment. We still simulated 50 dataset, each dataset con-
tained six libraries with three libraries from each of the
two conditions on 5000 genes, among which 250 genes
were set to be up-regulated genes and another 250 genes
were set to be down-regulated genes in condition 2 ver-
sus condition 1. The overall mean expression levels across
both conditions were generated from a gamma distribu-
tion with A, ~ G(0.25, 600). To avoid including genes with
low expression levels from both conditions as DE genes,
we set the difference in the gene expression levels between
conditions in two ways depending on whether the value
of A, is larger than one. Specifically, we generated & from
uniform distribution ¢/ (3, 20) for each gene. If the value of
Ag > 1, we let the fold change between the gene expres-
sion values of DE genes to be &, or Ag1 = Ag/\/g and
Agr = Ag \/?g for up-regulated genes, and gy = Ag* \/g
and Ay = Ag/ \/g for down-regulated genes. If the value

of A; < 1, we let the absolute difference in the gene
expression values to be &, or we let 151 = A, + &; and
Ag2 = Mg for down-regulated genes, and As1 = Ay and
Ag2 = Ag + & for up-regulated genes in condition 2. For
an EE gene, we had Ag1 = Ago = Ag.

Then we generated the data using negative binomial
distribution of ygu id NB(¢r, %%gf\g[) for gene g, and
the overdispersion parameters ¢; and ¢ were set to
have ¢1 = 1 and ¢y = 8 respectively for DE genes; and
¢1 = ¢o = 4 for EE genes.

All methods applied in setting I of simulation study II
were also used for data analysis in this simulation study.
The results in Table 4 displayed that the confident differ-
ence criterion method with a control of FDR at 0.05, the
edgeR method with common dispersion parameter over
genes, the edgeR with gene-wise dispersion parameter, the
BaySeq, the NBPSeq, the NOISeq methods successfully
controlled the FDR at 0.05. Additionally the confident dif-
ference criterion method, the NBPSeq method, the edgeR
method with a common dispersion parameter over genes
also provided a good and comparable control of FNR of
less than 0.2, while maintaining low levels of FPR and
ENDR.

Real data analysis

We used a real data set obtained using customized Bovine
Affymetrix arrays (Davis, Talbott, Yu, and Cupp, unpub-
lished results) to illustrate the proposed method. Fifteen
arrays composed of three replicate arrays under three bio-
logical conditions were produced to screen for DE genes
associated with prostaglandin F2o(PGF) treatment after
30 min, 1 h, 2 h, and 4 h compared to the control treatment
(saline). For simplicity, we focused on detecting genes
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Table 4 Performance evaluation under Study Il (Setting Il), (G = 5000, 500 DE gene)*

Method CDE CCDE CCEE FNR FPR FDR FNDR
twocri.(yy =0.4) 654.6(54) 4609(23) 4306.3(5.2) 0.078(0.005) 0.043(0.001) 0.295(0.006) 0.009(0.000)
(yo =0.6) 490.0(3.9) 434.1(24) 44442(34) 0.132(0.005) 0.012(0.001) 0.114(0.006) 014(0.001)
(¢ =0.05) 415.7(5.0) 400.6(3.5) 44849(2.7) 0.199(0.007) 0.003(0.001) 0.036(0.006) 0.022(0.001)
edgeR'(¢ =0.05) 420.0(86) 11.7(84) 44917(28) 0.177(0.017) 0.002(0.001) 0.020(0.001) 0.020(0.002)
edgeR?(¢ =0.05) 399.4(10.2) 386.3(9.8) 4486.9(4.6) 0.227(0.020) 0.003(0.001) 0.033(0.011) 0.025(0.002)
DESeq(¢ =0.05) 443.6(15.9) 409.3(15.1) 4465.8(5.3) 0.181(0.030) 0.008(0.001) 0.077(0.011) 0.020(0.003)
BaySeq(¢ =0.05) 331.0(15.5) 327.0(14.9) 4496.0(2.2) 0.346(0.030) 0.001(0.000) 0.012(0.006) 0.037(0.003)
NBPSeq(¢ =0.05) 422.3(79) 27(79) 44904(3.1) 0.175(0.016) 0.002(0.001) 0.023(0.007) 019(0.002)
EBSeq(¢ =0.05) 332.9(14.0) 2484(11.1) 44156(94) 0.503(0.022) 0.019(0.002) 0.253(0.023) 0.054(0.002)
NOISeq(¢ =0.05) 196.8(11.0) 191.4(10.8) 44946(25) 0.617(0.022) 0.001(0.001) 0.028(0.013) 0.064(0.002)
SAMSeq(¢ =0.05) 274.3(15.7) 21(7.7) 4437.8(10.9) 0.576(0.015) 0.014(0.002) 0.226(0.029) 0.061(0.001)
TSPM(¢ =0.05) 129.9(10.5) 80.1(89) 44502(7.1) 0.840(0.018) 0.011(0.002) 0.383(0.046) 0.086(0.002)

#Empirical estimates of the standard deviation were reported in the parentheses

edgeR! estimates common dispersion parameter for all tags; edgeR? estimats tag-wise dispersion parameters

¢denotes the false discovery rate

using the confident difference criterion methods (Method
I and Method II) that were regulated 1 h or 2 h after
PGF treatment. The data were extracted, normalized and
summarized using the Robust Multi-array Average (RMA)
[12] method at the exon level via the Affymetrix expres-
sion console. The data set contains 21724 genes. Note that
some genes may have multiple probe replicates ranging
from one replicate to 266 replicates, and the data from
different probes of the same gene may have large varia-
tion even after RMA normalization. We centered the data
from each probe of the same gene to the mean log inten-
sities of that gene, and excluded 3116 genes with only a
single probe replicate from the analysis to make sure that
the parameters were estimable. Additionally, we excluded
2137 low expression genes if two-thirds or more (six out
of nine) samples on this gene had gene expression values
measured by the geometric mean expression values across
different probes less than 10. Of the remaining 16471
genes with replicate probes, we used zgjy to denote the Kt
biological replicate sample of the log 2 scale gene expres-
sion intensity for probe j of gene g under condition ¢. Note
that the index j was added to the previous notations for
the log intensity values as data are available for multiple
probes on the same gene. We assumed normal distribu—
tion for the log?2 intensities with zg ~ N (Mgtk: ),
and the same prior for jy as what we set for Xy in the
Model for microarray data subsection. The variance
parameters are assumed to follow inverse gamma distri-
bution with agzt* ~ IG(af, Bf) with of = 2 and B}
G(ag, By). Weseta; = 1and B ~ IG(a*, B*) where both
* = B* = 1. During computation for controlling the
FDR, we reuse these settings of the prior distributions on
the parameters gy and oy for DE genes. For EE gens,

we assume that zgy ~ N (Mgtics agz*), and make similar
augment for the prior distributions of their parameters
Mgtk and ng* as the DE genes. The proposed confident
difference criterion methods were applied to assess the
evidence of differential expression on each gene and iden-
tify DE genes with the cutoff value equal to be 0.4, 0.6 or a
value that controls the FDR at 0.05.

In addition, we analyzed the real data using the exist-
ing methods including SAM, LIMMA, and EBarrays as
described in the Simulation Studies section for identifica-
tion of DE genes. Since the existing methods were devel-
oped for data with single probe replicate on each gene,
we calculated the mean log intensities over all probes for
each biological sample on each gene to quantify the cor-
responding gene expression. The genes were declared to
be DE if the false discovery rate was no more than 0.05.
We used Venn diagrams to demonstrate the overlap of
DE genes identified by Method I (Fig. 2, Left Panel) or
Method II (Fig. 2, Right Panel), to the DE genes identi-
fied by SAM and EBarrays (Fig. 2). The results showed
that more genes were identified to be DE by the pro-
posed Method I and Method II than the existing methods.
Specifically, 1050 DE genes were identified by Method II,
while 896 genes were identified to be DE by either SAM
or EBarrays. Of note 340 out of 353 DE genes identified
by LIMMA were also identified by SAM (data not shown),
and 951 of 991 DE genes identified by Method I were also
identified as DE by Method II. We found that SAM iden-
tified 375 DE genes, all of which were also identified by
other methods. For example, 358 (95.5 %) genes identified
by SAM were also identified by Method I or II; and 342
(91.2 %) genes identified by SAM were also identified by
EBarrays method. The EBarrays method identified 863 DE
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Fig. 2 Number of identified DE genes out of 16471 genes from real data analysis. Two venndiagrams present the overlapping among the DE genes
identified separately by Method I/Il, SAM, and EBarrays with the false discovery rate controlled at 0.05 from the real data

genes, out of which, 643 (74.5 %) genes were also identi-
fied by Method I or II. Method I identified 116 of the 324
genes identified by LIMMA when comparing all four time
points versus control in the same dataset, while Method II
called 105 out of 387 genes DE that were also called DE by
LIMMA within the whole dataset. In addition, many genes
identified to be DE only by Method II not by Method
I show a linear trend among the average gene expres-
sion across conditions observed from samples collected
with longer time after treatment, and larger data varia-
tions under the control condition than those observed at
other time points after treatment. For example, the aver-
age log2 gene expression of THBS1 increased from 9.22
under control condition to 10.35 at 2h after treatment,
and the standard deviation equaled 0.88 under the control
condition, and 0.37 at 2 h after treatment. This gene was
only detected to be DE by Method II and was shown to
play roles in angiogenesis [37].

The genes identified solely by Method I or Method II
were analyzed by Ingenuity Pathway Analysis (IPA, Build
version: 313398M, Content version: 18841524 (Release
Date: 2014-06-24) to determine biological functions and
pathways associated with the newly identified genes.
Genes identified solely by Method I and not by SAM
or EBarrays were analyzed by IPA which identified sev-
eral major canonical pathways such as hepatic fibrosis /
hepatic stellate cell activation, glucocortiocoid receptor
signaling, agranulocyte adhesion and diapedesis, and role
of IL-17A in arthritis (Additional file 2: Table S1). Many of
the canonical pathways identified have either established
or potential roles in corpus luteum function indicating
that Method I identified DE genes that are biologically
relevant within the model. Method I also identified IL1B
(P = 2.12E — 08) and TNF (P = 3.03E — 08) as upstream
regulators of the genes found exclusively by Method I,
which also fits with known and suspected mechanisms of
PGF action within the corpus luteum [1, 24].

Genes identified solely by Method II were also ana-
lyzed by IPA which identified canonical pathways such
as hepatic fibrosis/hepatic stellate cell activation [21],
glucocorticoid receptor signaling, IL-8 signaling, and

granulocyte adhesion and diapedesis. Upstream regula-
tors of gene found solely by Method II included: IL1B
(P = 4.56E — 13), TGFB1 (P = 1.19E — 11), and IENG
(P = 1.82E — 11). The IPA results both concur with
current literature and offer new insights into the possi-
ble mechanism(s) of action of PGF in the corpus luteum
[1, 9, 11, 21]. These and similar canonical and regulatory
functions were also identified when the complete dataset
(30 min, 1 h, 2 h, and 4 h) was analyzed by IPA. These
network functions are in agreement with the known or
suspected changes in biological function in the corpus
luteum following PGF treatment in several species [1, 5,
22, 27]. Several of the genes identified by Methods I and
II are known to be involved in regulation of the fate of
the corpus luteum after PGF treatment, and were also
identified as DE genes in our larger data set and a simi-
lar microarray dataset examining the effects of PGF in the
cow [22]. For example, genes that code for chemokines
(e.g., CCL3 and CCLS8) and prostaglandin synthesis (e.g.,
PTGS2) were found to be significantly up-regulated at 1
and 2 h using Methods I and II which were not identi-
fied using LIMMA. However, CCL3, CCL8, and PTGS2
were all identified as significantly up-regulated in later
time points using LIMMA, which conservatively identifies
DE genes. Therefore, it seems possible that Methods I and
IT may provide a more sensitive approach to identify the
temporal patterns of gene expression.

Conclusion

In this paper, we have proposed a new differentially
expressed gene selection algorithm, which controls the
FDR based on predictive Bayesian estimates. The sim-
ulation studies empirically showed that the proposed
confident difference criterion methods outperform the
existing methods when comparing gene expressions
across different conditions for both microarray stud-
ies and sequence-based high-throughput studies. For
the analysis of the real data, the method II success-
fully identified more clinically important DE genes than
the other methods. In comparison to Method I, the
Method II provides a much better sensitivity rate, but
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slightly a lower specificity rate based on the simulation
studies.

In scenarios where the data are not symmetrically dis-
tributed, we need to model the data with other types
of distributions (e.g., a gamma distribution). The confi-
dent difference criterion method proposed for comparing
both means and variances can also be extended to evalu-
ate the differences in multiple parameters defined in the
non-normal data distributions. In addition, the Euclidean
distances used in the proposed confident difference cri-
terion method may also be extended to other types of
distances to measure the difference among the distribu-
tions under two or more biological conditions. In the case
of two conditions, the entropy-based distance such as
the Kullback-Leibler (KL) divergence may be considered.
However, the distribution of the entropy-based statistics
is quite difficult to characterize and, hence, it is quite
challenging to choose the cutoff value for the entropy
statistics. Such extensions need to be further investigated.
Finally, we note that all models considered in this paper
assume that the gene expressions are independent across
genes. The proposed confident difference criterion meth-
ods do not require the independence assumption. How-
ever, the performance of the confident difference criterion
methods under the correlated models need to be further
examined.

Availability and requirements

All analyses results presented in this paper were obtained
using codes developed in FORTRAN with IMSL library.
We have also implemented the proposed method in
R for windows (32 bits). The R codes can be obtained
at the websites: http://www.unmc.edu/publichealth/
departments/biostatistics/facultyandstaff/cdc_micro.zip
and  http://www.unmc.edu/publichealth/departments/
biostatistics/facultyandstaff/cdc_ RNASeq.zip.

Additional files

Additional file 1: Methods. Mathematical Proof for Propositions 1 and 2.

Additional file 2: Real Data Analysis Results. Canonical Pathways
identified by Methods I and II.
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