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Abstract

with each other and previous reports in most of cases.

Background: Scoring DNA sequences against Position Weight Matrices (PWMs) is a widely adopted method to identify
putative transcription factor binding sites. While common bioinformatics tools produce scores that can reflect the binding
strength between a specific transcription factor and the DNA, these scores are not directly comparable between
different transcription factors. Other methods, including p-value associated approaches (Touzet H, Varré J-S. Efficient
and accurate p-value computation for position weight matrices. Algorithms Mol Biol. 2007;2(1510.1186):1748-7188),
provide more rigorous ways to identify potential binding sites, but their results are difficult to interpret in terms of
binding energy, which is essential for the modeling of transcription factor binding dynamics and enhancer activities.

Results: Here, we provide two different ways to find the scaling parameter A that allows us to infer binding energy
from a PWM score. The first approach uses a PWM and background genomic sequence as input to estimate A for a
specific transcription factor, which we applied to show that A distributions for different transcription factor families
correspond with their DNA binding properties. Our second method can reliably convert A between different PWMs of
the same transcription factor, which allows us to directly compare PWMs that were generated by different approaches.

Conclusion: These two approaches provide computationally efficient ways to scale PWM scores and estimate the
strength of transcription factor binding sites in quantitative studies of binding dynamics. Their results are consistent

Keywords: Transcription factor, Position weight matrix (Position-Specific Scoring Matrix), Binding site strength

Background

Sequence-specific transcription factors (TFs) are key ele-
ments in the regulation of gene expression. Their binding
preferences to DNA have been studied extensively in vitro,
in vivo and using computational methods. /n vitro meth-
ods such as protein binding microarray(PBM) [1], high-
throughput SELEX measurements [2] and DNase I-seq
[3] have provided fundamental insight into the speci-
ficity of TF binding. The systematic compilation of DNA
sequences from such experiments (and along with them
catalogues such as TRANSFAC [4] or JASPAR [5]) have
long suggested that TFs do not just bind to one DNA
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motif, but can bind to a repertoire of similar sequences.
Stacks of such sequences give rise to alignment matrices,
in which each column represents the absolute count of
A, C, G and T nucleotide occurrences per position along
the length of the motif. We use “motif” in this manuscript
in reference to the PWM motif for a specific TF. Work
by Berg et al. [6] introduced a derivative of the align-
ment or position frequency matrix (PFM), the position
weight matrix (PWM, sometimes also noted as PSSM for
position-specific scoring matrices), which takes the log
likelihood of observing nucleotides taking their overall
frequency into account. Berg et al. [7] later showed that
the score obtained by comparing the PWM against a DNA
sequence is proportional to the binding energy between
this TF and the DNA. In most cases the actual bind-
ing energy between the protein and DNA is not known,
and the proportionality is scaled with a factor commonly
termed A. Berg et al. originally introduced X to relate the
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population of base-pair choices to binding free energy [6].
It is analogy to the inverse temperature factor in statistical
physics to describe the energy distribution and also to
serve as a factor in tuning the number of potential binding
sites in order to satisfy the constraints on overall energy
distribution.

There is no well-characterized and easily computable
way to determine the TF binding energy for specific DNA
sequences and to compare binding site strength between
different types of TFs at large scale. This is problem-
atic when scanning the genome with a library of PWMs,
as scoring functions treat each PWM independently, and
the absolute score associated with a “good match” to the
PWM of one transcription factor might be associated
with a mismatch for another factor. A more sophisti-
cated application of binding site strength estimation is,
for example, modeling the relationship between enhancer
occupancy and gene expression [8, 9]. The experimental
PBM approach [1] allows the estimation of the relative
binding strength of a protein to “naked” DNA in vitro,
but the data availability is restricted to a limited number
of TFs due to high cost of the technology. In addition,
PBMs are also not suitable for TFs with longer motifs, as
their accuracy will decrease with the length of the DNA
probe [1]. Therefore, PWM-based approaches are used to
computationally estimate TF binding affinity to a specific
sequence [8, 10].

In the majority of bioinformatic studies, the scaling fac-
tor A is unknown and PWM scores are used at face value as
measure of affinity. For example, in our own work [11] we
used the PWM score without scaling to compare binding
site strength across different TFs in E. coli, which might
lead to a bias due to the absolute differences between the
highest and lowest PWM scores across all TFs of interest.
One approach is to scale the PWM score by a p-value for
each specific score threshold [12]. This method provides
a good way to define putative binding sites by choosing
a proper statistical threshold, but it is difficult to cor-
relate these p-values with binding energy estimation, as
is required for quantitative studies of enhancer activity
[8, 9]. Other work has tried to assess the range of A on
the basis of fitting calculated affinity landscapes to ChIP-
seq profiles [13, 14]. However, ChIP data is intrinsically
noisy and the height of a ChIP peak may not accurately
represent the real binding affinity, undermining the sta-
bility and accuracy of A obtained from these methods.
In Roider et al. [13], the estimated A for the same TF in
different conditions diverged greatly in nearly one third
of TFs. Furthermore, there is a wide band of possible
A values that optimize the correlation. Aforementioned
fitting methods are further reliant on chromatin accessi-
bility data acquired under the same growing conditions or
development stages, which is sometimes not available for
specific TFs.
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We propose a simple approximation to estimate the
scaling parameter A based on existing PWMs, average
maximum mismatch energy tolerance estimated by high-
throughput binding energy measurements [15] and the
distribution of PWM scores across the genome of a spe-
cific organism. This method is independent of genome-
wide binding and accessibility data. Furthermore, in the
cases where there are potentially inconsistent PWMs for
a particular TF (e.g. derived on the basis of individual
binding sites vs. derived from high-throughput efforts),
we provide a method to convert the known A for one
PWM of the same TF into another suitable value for a
new PWM. This method is based on a computational
model of the facilitated diffusion of TFs on the DNA that
our group established earlier [16]. We calculate sequence-
specific residence times of TFs at the DNA, which is
correlated with affinity. We can therefore derive A for
different PWMs of the same TF on the basis of the consis-
tency of simulated residence time. These two strategies (a)
calculating X to scale PWM scores based on the mismatch
energy theory using a simple equation and (b) converting
the scaling parameter A between different PWMs of the
same TF on the basis of simulated residence time of facil-
itated diffusion provide simple but useful estimations of
binding energy across different TFs using properly scaled
PWM scores.

Methods
PWMs of TFs for yeast, fly and vertebrates
Position frequency matrices (PFM) used to con-
struct PWMs were downloaded from the JASPAR
database (JASPAR-CORE-2014 non-redundant PFM)
[5]. Additional sources of PFMs such as those
contained in the BioConductor package PWAMEn-
rich.Dmelanogaster.background [17] were used as a
source of different matrices for the same TFs. PFMs
constructed with less than 30 reference sequences of vali-
dated binding sites were removed, as we deemed those
insufficient descriptions of binding preference. Given that
typical TF binding sites span at least six base pairs, we
removed any motifs less than 6 base pairs in length.

A bioinformatics approach was used to derive PWM
scores [18] as follows:

L
»
Sj = Zlongjk (1)

where j is the DNA position for the PWM score calcu-
lation, L is the length of the motif and k represents k!
nucleotide in the PWM motif. In addition, if there is a spe-
cific nucleotide in position (j + k) on the DNA, f;, is the
frequency of this nucleotide in the whole genome of a spe-
cific organism. Nucleotide frequency used for this study in
each organism were as follows: D. melanogaster: 0.28 for
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A and T, 0.22 for G and C; S. cerevisiae: 0.31 for A and T,
0.19 for C and G; vertebrate including human and mouse:
0.29 for A and T, 0.21 for C and G. Please note that the
choice of background frequencies can be critical, and that
adjustments to local extrema may be necessary. We used
a pseudo-count p to adjust the frequency of nucleotides
and obtain v; . to avoid zero frequency as follows [19]

ikt ik
Zx nx,k + ll’

where p is chosen to be 1 [19] and we also show that
the choice of the pseudo-count p does not have signifi-
cant influence on our results (Additional file 1: Figure S6);
nyx is the frequency of certain nucleotide x in a specific
position k of the motif.

(2)

Vj,k

Simple equation to calculate A

A is the scaling factor that allows for direct comparison
of different PWMs in terms of binding energy to DNA.
Based on the mismatch energy theory for estimating TF
binding strength [7], the mismatch energy at a particu-
lar binding site j of TF species i in the genome can be
expressed as:

Emismatch,i,j = ASi,j/)\i = (Smax,i - Si,j)/)‘i (3)

where S;; stands for the PWM score at position j, Sy,
is for the maximum PWM score of TF species i and A; is
the scaling parameter we want to estimate. Note that the
mismatch energy we refer to in the text is derived from
information theory, with the unit of bits, which can also
be described as “mismatch bits”. This is useful in a vari-
ety of contexts, such as comparing the binding strength
of different TFs. In addition, the expected amount of time
that the TF is bound to a particular DNA sequence can be
estimated as:

Tj = 7.'0()\) . 6751‘/)L (4)

where S; is the PWM score at position j in the genome,
79 is the average residence time calculated as in [16].
This equation is widely used in simulations of TF binding
kinetics [20].

Given the utility of the A for estimating binding strength
and occupancy time, it is very important to have a simple
strategy for estimating it. We derive our equation based
on the following core assumptions: 1) The top 0.1 % of
the highest scoring matches of the PWM to intergenic
regions are considered to be possible TF binding sites,
as suggested by [21]. Their genome-wide study of differ-
ent eukaryotic TFs revealed an average of 1 binding site
in every 1-5 thousand base pairs of intergenic sequence.
This top 0.1 % threshold has also been similarly adopted
in other studies [10]. In addition, if varying this thresh-
old from top 0.01 % to top 1-10~* and 1-10>, the rank of
calculated A still shows good correlation in each group of
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organisms(Additional file 2: Figure S5). 2) The maximum
mismatch energy between the consensus binding motif
and specific DNA sequences is proportional to the infor-
mation content of the PWM matrix of the TF. Note that
the mismatch energy we refer to in the text is derived from
information theory, with the unit of bits, which can also
be described as “mismatch bits”. The information content
(If) of the PWM matrix is defined below [7],

L
If:Z Z Ppijlog, sz;k

k=1ieA,T,C,G

(5)

where k is the k& nucleotide in the PWM motif, f; is the
background nucleotide frequency, and p; x is the adjusted
frequency of nucleotide i in position k which is defined as
follows,

_ i +fio

Doinuig+
where nu; i is the frequency of certain nucleotide i in a
specific position k of the motif, and f; is the background
nucleotide frequency.

The lower boundary of potential binding sites is approx-
imated by the top 0.1 % of PWM scores following the
same reason as mentioned before and corresponds to the
maximum mismatch energy tolerance level as follows:

Pik

Smax,i - StopO.l %,i

A
where E, xrismatch,; Stands for maximum mismatch
energy tolerance for TF species i, thus, A; can be calculated
using:

Eppaxm ismatch,i =

_ Smax,i - StopO.l %,i

A= (6)

EmaxMismatch,i

Because different transcription factors have different
DNA binding domains, the maximum mismatch energy
range can vary from one TF to another. Since there is
only data available for 4 individual TFs using microflu-
idic platform-based binding energy measurements [15],
we estimated the maximum mismatch energy for other
TFs by using the available data as the average rate and
assuming that the mismatch energy tolerance is propor-
tional to the information content of the PWM as follows:

Ifi
<If >
where < E, xMismarch > stands for the average maximum
mismatch energy tolerance, which is chosen to be 6 bits as
is discussed below from the study of Maerkl et al. [15]; If;
represents the information content of a specific PWM and
< If > stands for the average information content corre-
sponding to the average maximum mismatch energy [15],
which is 13.2 bits. We reason that if the information con-
tent is a good indication of how specific a TF is, the energy

7)

Eaxsismatchi =< Emaxiismatch > X
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drop measured in bits between strong and weak binding
sites (Syax,i — Stopo.1 %,:)/Ai should have some relationship
with the binding specificity of a particular TF. The more
specific a TF is, the more significant the energy drop can
be. Given limited data in binding energy measurement, we
assume that the relationship is simply linear.

We chose an average mismatch energy tolerance of 6
bits based on the study by Maerkl et al. 2007 [15]. They
showed by mechanical trapping of molecular interactions
a significant decline in binding energy by at most 2 to
3 nucleotide mismatches, and each mismatch nucleotide
contributes 2 bits in mismatch energy. Even if more muta-
tions are introduced, the binding energy does not drop
further since it has already reached the background non-
specific binding energy level.

This experiment was applied only to TFs belonging to
the bHLH family. In the absence of more comprehen-
sive data, we must assume that all TFs share this value;
although if more general TF in-vitro binding energy mea-
surement results become available, we suggest adjusting
the specific top score threshold and corresponding aver-
age mismatch energy bits accordingly. Another report
featuring TFs from different families including: p53, Max,
Glucocorticoid Receptor [22] also provides additional
support for 6 bits as average mismatch energy tolerance
level since TFs from different families in their study have
similar binding kinetics.

In order to control for PWM motif length, in the anal-
ysis of A value comparison across different species and
TF families, each X value was transformed into a Z-score.
Specifically, PWM motifs were grouped by motif length,
with each group having more than 50 PWM motifs (The
groups were: 7-8 bp, 9-10 bp, 11-12 bp, 13-15 bp, >= 16
bp), and the A values were normalized by the mean and
standard deviation within each of these groups (Addi-
tional file 3: Table S3 lists the mean and standard deviation
value for each group, Additional file 4: Figure S3 depicts
the distribution of A at different motif lengths with color
coded points that represent different species).

Estimating A of a new PWM matrix for the same TF based
on the residence time landscape of the facilitated diffusion
model

Sometimes there may be more than one PWM available
for a specific TF. For instance, different TF motif databases
(such as JASPAR [5], SwissRegulon [23], FlyFactorSurvey
[24], and HOCOMOCO [25]) may have different versions
of PWM motifs for the same TFE. In order to directly
compare the TF binding energy when using two alterna-
tive versions of a PWM, it is important to have a way of
scaling the results by A. A can be adjusted using the formal-
ism introduced in the previous sections. As a compute-
efficient alternative, we developed a more optimal strategy
for estimating A, which does not require the assumption
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that the PWM information content influences the energy
mismatch tolerance. Instead, we base our strategy on the
estimation of the sequence specific residence time of a
particular TF, which is a biologically meaningful quantity
and can be correlated with in vitro sequence-dependent
sliding measurement of TFs [10]. For the same TF, the
distribution of the sequence-specific residence time cal-
culated by Eq. 4 should be as consistent as possible, even
when using slightly different PWMs if an appropriate A is
chosen for scaling. Based on this, given a known X for one
PWM, we are able to find another suitable X for the new
PWM.

Note that the stronger the PWM score, the more likely
it is that the sequence is bound by a TF and that the res-
idence time of a TF is a biologically meaningful quantity,
but there is a much greater number of weak and medium
strength binding sites than there are strong sites in the
genome. Therefore, if we scored each potential binding
site equally, the background of weak and medium strength
binding sites would have a greater affect on the estimated
A than the strong binding sites. Therefore, we compare
residence times across different quantiles on a logarithmic
binding strength scale so that the strongest binding sites
have the most influence on our X estimates.

Specifically, in the following analysis, we take the —logg
of the cumulative distribution of PWM scores and select
all binding sites with values greater than 3.0 (recall that
this corresponds to the 0.1 % percent of binding sites,
which were chosen as the lower boundary of weak bind-
ing sites). We divide these top-scoring binding sites into
bins every 0.1 log-quantile and calculate the average resi-
dence time for each of these bins. Our strategy identifies
the A that would produce the most similar residence times
for each of these log-quantiles. Assuming that for the first
PWM we already have an estimate of A, by either bind-
ing profile fitting or other methods, we can use Eq. 4
to calculate the residence time for each binding strength
log-quantile, as described above. In the following anal-
ysis of this paper, we borrow the values obtained from
Eq. 6 as pre-calculated X for proof-of-principle, since there
are very few well-characterized X values from profile fit-
ting. Note that 7 is calculated via the strategy described
in Zabet et al. [16] from all intergenetic regions in the
genome, which has a different value for each unique
PWM.

Now for the second PWM, we can vary A between the
potential values of 0.1 and 3, which was shown to be a
possible A range [13], and calculate the corresponding res-
idence times at each log-quantile level. We can now com-
pare the reference residence times from the first PWM
with the residence times for the second PWM across each
binding site strength level, and for each value of A. The 1
that minimizes the mean square error between two sets
of calculated residence times is chosen as the suitable A
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value for the second PWM matrix. Since outliers can have
a big influence on the mean square error, we calculated
the sum of the absolute differences for the natural loga-
rithm of residence times between the two PWM matrices
for these quartile bins (Eq. 8) to make a comparison with
the method that uses mean square error.

Zq | InTg) — In Ty e (8)

where g represents each quantile in the quantile series,
T4, is the residence time in a specific quantile of a partic-
ular A, Tgref 18 the residence time in the same quantile of
the known X of the reference PWM matrix. The A derived
by minimizing the mean square error or minimizing the
value of the above formula show good consistency with
adjusted R? of 0.9644 (p=6.3 - 10~°). Thus, there should
not be significant bias using either of these two methods.
The R scripts for both converting A between two PWM
matrices and estimating A using Eq. 6 are provided in the
following link: https://github.com/XyMa/PWM_scale.

Results

Estimating scaling parameter A for binding site affinity
across different species and TF families based on Eq. 6

The XA parameter is the critical link between PWM score,
the estimated binding energy and TF residence time.
Estimating TF binding site affinity by comparing PWM
scores at face value can lead to a large bias, especially
when this includes comparisons between many types of
TFs, because several properties of the PWM itself can
influence the PWM score. For example, the information
content of the PWMs is positively correlated to the maxi-
mum possible PWM score, as is shown in Additional file 5:
Figure S1 with an R? value of 0.597. Thus, the absolute
value of PWM scores cannot be compared directly across
different TFs as an indicator of binding site strength.
Proper scaling of PWM score is needed in order to com-
pare binding site affinity across different types of TFs.
Based on the methods proposed by Berg et al. [7], the TF
binding energy for a specific binding site can be computed
by Eq. 3 using the estimated A.

A calculated by this method are all within the range sug-
gested by Roider et al. [13], which are listed in Table 1
for different organisms. The values for vertebrate species
refer to all available vertebrate TFs obtained from the non-

Table 1 Maximum, minimum and the mean values of A in 3
groups of organisms

S. cerevisiae D. melanogaster Vertebrates
maximum 2.83 2.72 2.82
minimum 0.26 0.35 0.25
mean 1.25 1.40 1.73
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redundant PFM JASPAR database. The upper and lower
bound of A across all organisms are quite similar, in the
range of 0.25 to 2.83. This indicates that all eukaryotic TFs,
no matter which organisms they belong to, all share ener-
getically similar DNA binding mechanisms, since A can be
interpreted as a metric for the chemical property of sticki-
ness between the TF molecule and DNA. To demonstrate
the biological applications of this parameter, Fig. 1 shows
an example of the D. melanogaster Even-skipped stripe 1
enhancer with the comparison between PWM score and
the affinity estimation using A scaling. The usefulness of A
estimates becomes apparent when comparing the first two
binding sites indicated by blue arrows in this locus; the
second binding site has a higher PWM score, but its bind-
ing strength is lower than the first binding site once the A
scaling factor is taken into account. Similar situations also
appear in the overlapping binding site of Bicoid and Krup-
pel indicated by the third arrow. Thus, only comparing the
raw value of PWM score [11] may lead to false interpre-
tations of binding site importance. Although there is no
current experimental evidence for the relative importance
of binding sites for this specific enhancer, this example
serves to demonstrate how a different interpretation of
the contribution of individual binding sites can lead to
alternative testable hypotheses.

Next, we calculated A for each TF in S. cerevisiae, D.
melanogaster and available vertebrate TFs in JASPAR [5],
which are listed in Additional file 6: Table S1. Figure 2a to
2¢ show the overall A distribution in each group of organ-
isms. After controlling for motif length, there is a signifi-
cant difference between vertebrate and S. cerevisiae motifs
(Welch t-test p-value = 0.008) (Fig. 2d) and between D.
melanogaster and vertebrate motifs (p-value = 0.043),
but no significant difference between S. cerevisiae and D.
melanogaster. Furthermore, we grouped A values, normal-
ized by PWM motif length, according to different TF fami-
lies in JASPAR [5] (Fig. 3). The distribution of raw A values
across different TF-families are depicted in Additional
file 7: Figure S2. The basic leucine-zipper family and helix-
loop-helix family are two families with the highest average
z-score of X, compared with other groups with Welch
t-test p-values equal to 8.9-10~* and 3.7-107° respectively.
TF families that belong to the same superfamily show sim-
ilar A distribution. For example, 8-8-« zinc-finger family
and the zinc-finger nuclear receptor family both belong
to the zinc-finger TF super family, and no significant
difference is detected between these two (Welch t-test
p value = 0.35), while both are significantly lower than
the aforementioned two families (p-value = 0.012 and
5.0 - 107%). In addition, homeobox and forkhead TF fam-
ilies, both of which belong to the helix-turn-helix(HTH)
TF super family, show no difference in A z-score distribu-
tion (p value = 0.27), but appear to have lower average A
compared with leucine-zipper, helix-loop-helix family and
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Fig. 1 A comparison between PWM score and binding site strength in the D. melanogaster even-skipped stripe 1 enhancer. The even-skipped stripe 1
enhancer on chromosome 2R is dense with binding sites. We compare the raw PWM scores (circles) and the A-scaled binding strength (height of
the bars) for each of these binding sites, colour-coded by the type of TF. Based on raw PWM scores, one might assume that the Caudal site indicated
by the first blue arrow would have a lower binding strength than the Kruppel site indicated by the second blue arrow; Eq. 3 instead of Eq. 5, it
becomes evident that the opposite is the more likely scenario. The third arrow points to a location where a Kruppel and a Bicoid binding site
overlap. Here, the A adjusted binding strength estimates would suggest that Bicoid binding site is stronger, while a raw PWM score would suggest
the opposite. These results illustrate how using raw PWM scores may result in biased interpretation of the relative binding strength of TFs

zinc-finger super family (Welch t-test p-value equals to
52-107% 1.6 - 1077 and 2.2 - 1074, respectively).

Since A is the denominator to the PWM score dif-
ferences between one binding site and the consensus
sequence in Eq. 3, a larger A indicates lower mismatch
energy when AS; is the same. Thus, with the same possible

mismatch energy range, if A is larger, the PWM score can
have a greater range from the consensus sequence to the
potentially weakest binding site, which indicates that, as
suggested by Pabo et al. [26], the binding motif for the TF
family has higher flexibility. This is consistent with the fact
that the TFs in the zinc-finger super-family, including the
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Fig. 2 A distributions across difference organisms. The histograms depict the A values estimated from Eq. 6 for the JASPAR non-redundant core
motifs in S. cerevisiae (@), D. melanogaster (b) and available vertebrates (c) [5]. Subfigure D depicts the comparison between z-score distribution of A
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Fig. 3 1 z-score distribution comparison across major TF families.
BBA-ZF represents the A distribution for B-B-« zinc-finger family; NR
is zinc-finger nuclear receptor family; L-zipper stands for the basic
leucine-zipper family; HLH is helix-loop-helix family; Homeo is
homeobox family; FK is fork-head family and HMG is high mobility
group family. For each group, A was calculated by Eq. 6 and z-score is
obtained by normalizing A in each PWM motif length group

nuclear receptor and B-8-a zinc-finger families, are less
constrained to a particular motif than HTH super family.
Additionally, cross species comparison of A indicates that
from yeast to vertebrate, more flexible TF motifs are used,
which is consistent with the result from Itzkovitz et al. [27]
that organisms which appeared more recently in evolution
tend to use more TFs with motifs of higher flexibility.

Comparison of A values estimated with Eq. 6 to A values
derived from fitting ChIP-seq data

We compared our estimated A values with those esti-
mated from ChIP-seq experiments by Zabet et al. [14] (See
Fig. 4). Equation 6 provides a close approximation of all
five values estimated in this paper (adjusted R*> = 0.64,
p-value = 0.061). We also compare our results with the
A values reported by Roider et al. 2007 [13] for 11 yeast
TF motifs from TRANSFAC [4] (See Fig. 4). For each of
the 11 TFs, Roider and colleagues fit A values to ChIP-
seq data from cells grown in different growth mediums
leading to a range of potential A values for each TE. How-
ever, for each specific cell growth condition, only the most
optimal value of 1 was selected for each TF, even with cir-
cumstances in which there is a plateau in the parameter
space with many possible A values fitting the data nearly
equivalently. The range of A values from their study and
the estimated results from Eq. 6 using default parameters
are listed in Fig. 4. Our X value estimations are within, or
very close to, their estimated range for 8 out of 11 motifs
belonging to 6 out of 8 TFs (absolute differences within
0.25), but another 3 motifs for 2 TFs show poor correla-
tion. It is possible that in some specific cases the assumed
default parameters in Eq. 6 could deviate from the real
binding properties of these TFs, which can potentially lead
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to some bias in the estimation of A. Alternatively, these A
values might lie within the parameter plateau region, and
might be a suitable fit for the experimental data.

Converting A between different PWM matrices of the

same TF

In many cases there are two PWMs available for the same
TE, and one of these PWMs might already have a reliable
estimate of A from any number of experimental or compu-
tational approaches [14]. In such circumstances, we pro-
vide a strategy to estimate the unknown X associated with
the alternative PWM. It would be possible to calculate the
unknown A from Eq. 6, but this does not incorporate the
additional data available (i.e. the known 1). Our alternative
strategy not only incorporates this data, but also loosens
the assumption in Eq. 6 that the maximum mismatch
energy for DNA binding is proportional to information
content.

The procedure to compute a suitable X is based on the
concept of sequence-specific residence time (Eq. 4), as
illustrated in Fig. 5. Initially, a well-characterized X is com-
puted or measured for the first PWM of a particular TF,
and then we use this value to derive a A that is appropri-
ate for the second PWM of the same TF. As part of the
calculation of the A for the second PWM, Fig. 5¢c shows a
heatmap of the estimated residence times for a TF named
lame duck (Imd) in a particular binding strength quantile,
at different values of A (ranging from 0.1 to 3.0 as sug-
gested by both [13] and the range of estimated A using
Eq. 6 across different organisms). Both PWMs for the TF
come from FlyFactorSurvey database [24], but they are
derived from different reports with motif logos shown in
Fig. 5b. Blank regions in the heatmap indicate that the
choice of . would generate a residence time outside the
range of pre-calculated possible residence times using the
first PWM and the existing A value implying that the A
values for the second PWM are unsuitable. As shown in
the heatmap, blank regions often appear in very low values
of A. While if X is too large, the possible residence time
range from weak to strong binding sites is often very
restricted, meaning high affinity sites cannot be distin-
guished from low affinity sites efficiently. A values with
residence times all within the reference range can be
further selected, as specified in Methods. Figure 5d—f
compares the residence time values between two differ-
ent PWMs, at different values of A for the second PWM.
We see that the A in Fig. 5d and 5f would not allow
for consistent residence times between the two PWMs,
but Fig. 5e does provide consistent results. Therefore, the
A adopted in Fig. 5e is picked up as the suitable value
for the second PWM. More examples of residence time
heatmaps for converting A between different PWMs are
shown in Additional file 8: Figure S7. In order to eval-
uate the consistency of A estimation between the above
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TF name Estimated A from
Zabet et.al, 2014

Gt 1

Kr 2

Bcd 1.5

Hb 1

Cad 1.5
PFM name from  Estimated A range from
TRANSFAC Roider et.al, 2007
GAL4_01 0.25-1.45
GAL4_C 0.25-1.30
GCN4_01 0.50-0.60
GCN4_C 0.50
HSF_04 0.80-0.90
HAP1_B 0.75
MCM1_02 1.45-1.70
MIG_1 0.90
ABF1_01 0.60-0.65
ABF1_C 0.45-0.50
RAP1_C 0.15-0.60

Estimated A from Motif logo
Equation 6
1.17 TGS
1.93 -AaCCCITT
1.44 - TAATCc
0.70
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TTTAT-
Estimated A from Motif Logo
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Fig. 4 Comparison of A values estimated with Eq. 6 to A values derived from fitting ChIP-seq data of Zabet et al. [14] and Roider et al. [13]

method and using Eq. 6, we use the examples of 20
D.melanogaster TFs with more than 1 version of PWMs
available from different experiments. These PWMs are
obtained from the BioConductor R package PWMEn-
rich. Dmelanogaster.background [17] and their labels are
listed in Additional file 9: Table S2. Since there are only
few A available from binding profile fitting, just for the
purpose of illustration, the reference values of A were pre-
calculated from Eq. 6 instead. New A values for PWMs
obtained from other experiments are computed using
both methods and they show good consistency with each
other (adjusted R? = 0.88, Additional file 10: Figure S8).
Converting A between these two PWMs in the opposite
direction also show similar results (data not shown). It
indicates that both methods provide consistent estimates
of A, even though they have different core assumptions.

Discussion

TF binding site strength estimation using PWM-based
methods is essential for modelling TF-DNA interaction
in functional genomics; but a proper scaling parameter
is needed when using the PWM score to estimate TF
binding energy. Therefore, we provide two independent
methods for estimating the scaling parameter XA in dif-
ferent conditions. The simple Eq. 6 is widely applicable,
since it only requires a PWM as input, which is easy to
implement compared to methods using fitting to ChIP-
seq [13, 14]. Our second method converts a A specific to
one PWM into A for a different PWM of the same TF. It

is based on the definition of sequence-specific residence
time from the facilitated diffusion model of TFs on DNA
[16]. This method is particularly useful for converting a
previously estimated A into the one associated with a more
up-to-date or otherwise alternative PWMs.

These two methods are consistent with one another
(Additional file 11: Figure S4) and with previously
established methods. For instance, Eq. 6 can also pro-
vide very similar results compared with the estimated XA
from ChIP-seq data fitting [13, 14]. Although our esti-
mates of A are mostly consistent with those estimated by
Zabet [14] and Roider [13], it is not possible to robustly
compare our X estimates to experimentally derived values
at large scale, as this data is simply unavailable. Having
more such data would also enable us to adjust currently
fixed parameters in our equation for different TF families,
such as the top-scoring threshold, instead of assuming a
uniform value across all TFs. The consistent value range
of A in different organisms calculated by this method
provides additional support for the applicability of this
simple equation. Moreover, the estimated distribution of
A values for different TF families make sense in the light of
motif choice for each of the TF families [28]. For example,
TFs in the zinc-finger TF super-family, including nuclear
receptor zinc-finger and B-B-« zinc-finger families, have
more flexible binding motifs, which can suit a wider
range of possible binding sites than the helix-turn-helix
super-family, which has a more restricted motif consensus
sequence [26]. In contrast, some TF families belonging to
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Fig. 5 Conversion of A between two PWM matrices for the Imd transcription factor. The flow chart shows the procedure to obtain an optimised A,
given two different PWMs and one known and one unknown A (a). Subfigure b illustrates the two alternate PWMs for Imd which are available in the
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2.0, respectively. The curve in Subfigure E has the lowest mean square error, and so we assign PWM2 to havea A = 14

the same super-family and sharing similar binding domain
properties can have a strong similarity in A distribution,
e.g. homeobox family and forkhead family which both
belong to the helix-turn-helix super-family. The two TF
families that show the highest average z-score of A values
(namely, basic leucine-zipper and helix-loop-helix fami-
lies) tend to form homodimers and heterodimers, though
some TFs in other TF families also tend to dimerise e.g.
some members in homeobox family. If PWM motifs for
either monomers or dimers are available, the correspond-
ing A scores can be roughly estimated following the same
procedure using Eq. 6, or we can further use the second

method mentioned before to convert A values between
different PWMs by the keeping residence time consistent.
However, our method only considers TF-DNA interac-
tion, ignoring the effects of TF-TF interactions that could
stabilize TF binding.

There are some points that should be noted when using
the simple equation method: first, it cannot be applied
to very short TF motifs that are less than 6 base pairs
in length. Since this method depends on calculating the
difference between the PWM score of the 0.1 % high-
est scoring matches and the maximum score, if the motif
is only 5 base pairs in length, the number of possible
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choices for sequence combination of 5 base pairs is only
1024, then the top 0.1 % highest scoring matches is very
likely to be nearly equal to the maximum score. How-
ever, most eukaryotic motifs are more than 6 base pairs
long. Eukaryotic TFs on average cover 15 bp of DNA
with a core motif length of 8-15 bp [8]. Thus, this limi-
tation should not be a problem in the majority of cases.
However, if a higher threshold e.g. top 1-107° is applied
with certain adjustment for average mismatch bits in the
denominator, it requires the PWM motif to be at least
10 bp long, which will limit the applicability of this simple
method. The default cut-off threshold for binding sites is
the top 0.1 % of the highest scoring matches, but varying
the threshold up to the top 0.001 % does not significantly
influence the rank of A (Additional file 2: Figure S5). Note
in Eq. 6, the average mismatch energy bit score in the
denominator is the one corresponding to the certain top
PWM matches threshold, which means if a new threshold
is adopted, the average mismatch energy bit score should
be updated accordingly, but given very limited binding
energy measurement data, it is difficult to select spe-
cific values for each corresponding binding site strength
level. Thus, we simply compared the rank correlation of A,
which is not affected by the linear scaling factor of aver-
age mismatch energy bits. Although we estimate A by top
scoring genomic sequences, it will not substantially affect
the analysis if this is done on random sequences with the
same GC content, since given the size of the genome, local
binding site patterns will not have much influence on the
general distribution of binding site strength. Additional
file 1: Figure S6 shows that the number of unique
k-mers passing the 0.1 % top scoring matches threshold
in genomic sequences correlates well with that in random
sequences of the same GC content.

Another assumption in this method is that the mis-
match energy tolerance range measured in bits is pro-
portional to the information content of the PWM. This
assumption can deal with the bias from the differences in
information content of most PWMs; however, it might not
hold for PWMs with extremely high information content.
For example, the yeast transcription factor IXR1 has an
information content of 47 bits according to the PFM from
JASPAR [5], which is substantially larger than the average
information content of 13.2 bits. In that case, the bind-
ing energy will probably be overestimated, which leads to
a lower 1, but these cases are very rare and only 7 PWMs
in our analysis (less than 1.5 %) have information content
greater than 20. Further, we note that the experiment by
Maerkl et al. [15] was applied only to TFs belonging to
the bHLH family. In the absence of any alternative data,
we simply assume that this value is scaled by the infor-
mation content of the PWM; although if more in-vitro
binding energy measurements should become available
in the future, we suggest adjusting the specific top score
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threshold and corresponding average mismatch energy
bits accordingly.

There are two limitations of this method, which can
potentially lead to some biases between different organ-
isms and different TF families. One limitation is related to
the calculation of mismatch energy tolerance in different
groups of TF families. We apply a single cut-off thresh-
old of the top 0.1 % highest scoring matches for weak
binding sites suggested by Wunderlich et al. [21], but it
could be possible that for different TF families, different
thresholds should be used due to variations in their DNA
binding domains. However, it is difficult to choose spe-
cific thresholds for every TF family based on the currently
available data. Further, from the definition of information
content of the PWM, it sums up information content gain
from each nucleotide [20]. It implies that longer motifs
including more flanking base pairs will have higher infor-
mation content compared to the shorter ones with only
core motifs, which is an artefact of computation. How-
ever, there is no satisfactory way to deal with this problem.
One possible solution is using the information content
per nucleotide instead of the total information content,
but this may be problematic as the information content
contributed by flanking sequences constitutes only a very
small fraction compared to core motifs. Thus, if dividing
total information content by the length of the motif, the
dilution of information content could lead to even larger
biases. Therefore, instead, in our analysis of comparing A
value distribution across different organisms and TF fam-
ilies, we control for motif length by normalizing it to the
mean in each motif length bin. Another potential solu-
tion is trying to define a core motif from one PWM, but
this requires detailed knowledge about the TF of interest.
Additionally, A will not be a reliable measure of the bio-
chemical stickiness of the TF to the DNA if the PWM itself
is not an accurate representation of TF binding. A PWM
assumes that each nucleotide position independently con-
tributes to TF binding affinity, which may not be the case
[29, 30]. For instance, a study by Storm et al. [31] used both
a single nucleotide model and a di-nucleotide model to
fit the binding energy measurements [15]. Although they
found that the di-nucleotide model provides a better fit to
the experimental data, the single nucleotide model could
also perform well when non-specific binding energy was
taken into account. In addition, the composition of the
position frequency matrix of the PWM may contain biases
due to the difficulties of attaining an unbiased validated
binding site set. Nevertheless, A can give us insights about
DNA binding properties of TFs.

Also, it should be pointed out that residence time in this
paper refers to an estimate based on biophysical models
[10, 16]. However, other papers report inconsistent scales
of residence time according to different experimental
approaches. For example, the residence time estimations
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obtained by Competition-ChIP methods [32] do not share
the same order of magnitude compared to the residence
times measured by FRAP or single molecular tracking
[22, 33, 34], which can probably be an artifact of exper-
imental methods or alternatively, the range of residence
time truly varies greatly across different TFs [35]. Because
the experimentally determined values are not compara-
ble to each other, we simply adopt bioinformatics-based
approaches to compute residence time. Since our method
converts A between different PWMs of the same TF under
the concept of residence time, it avoids fitting inconsis-
tent experimental observations and potential variations in
DNA-binding kinetics for different TFs.

Although in many cases PWMs are not optimal rep-
resentations of binding motifs, they have become almost
universally adopted to identify potential TF binding sites.
It is important to remember that the value of a PWM
score is not directly correlated to the binding energy, but
rather depends on the scaling parameter A. Previously,
researchers either assumed that A has similar values across
different PWMs or estimated it through computationally
intensive binding profile fitting methods [13, 14]. There
are several alternative ways to identify potential bind-
ing sites based on the p-value of the PWM score [12].
Other studies provide tools to combine more local infor-
mation e.g. DNA sequence conservation and epigenetic
marks with PWMs to identify potential binding sites with
higher confidence [36]. These methods are useful in defin-
ing potential binding sites, but their results are difficult to
interpret in terms of TF binding energy which is widely
used in modeling TF binding dynamics and enhancer
activity [8]. Here we provide two simple strategies for esti-
mating A, which will let us more clearly link PWM scores
with the energetics of TF binding.

Conclusion

Using PWMs as representations of binding motifs have
become widely adopted to identify potential TF bind-
ing sites. It is important to remember that the value of
a PWM score is not directly correlated to the binding
energy, but rather depends on the scaling parameter A.
Previously, researchers either assumed that A has simi-
lar values across different PWMs or estimated it through
computationally intensive binding profile fitting methods
[13, 14]. There are several alternative ways to identify
potential binding sites based on the p-value of the PWM
score [12]. Other studies provide tools to combine more
local information e.g. DNA sequence conservation and
epigenetic marks with PWMs to identify potential binding
sites with higher confidence [36]. These methods are use-
ful in defining potential binding sites, but their results
are difficult to interpret in terms of TF binding energy,
which is widely used in modeling TF binding dynamics
and enhancer activity [8]. Here we provide two simple
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strategies for estimating A, which will let us more clearly
link PWM scores with the energetics of TF binding. One
approach is to simply apply Eq. 6 to estimate A only based
on the given PWM and genome background sequences
of a specific organism. It provides results consistent with
those estimated by Zabet [14] and Roider [13] in most
cases, though there is a small number of exceptions. Fur-
ther, A value distribution for different TF families from
this method are consistent with DNA binding proper-
ties of TF families [26, 28], which further supports the
applicability of this simple method. Another approach
converts A between two PWMs of the same TF based on
the consistency of residence times. It is useful when we
get alternative versions of PWMs from different databases
and want to estimate binding site strength in a consistent
manner. Both of the approaches we developed are much
compute-efficient than previous methods of TF binding
profile fitting [13, 14].

Additional files

Additional file 1: Figure S6. Comparison of unique k-mer number
passing 0.1 % top PWM score threshold in genomic background versus
that in random sequences. For each TF PWM motif, we calculated the
logarithm of the number of unique k-mers that passes the threshold in
both genomic background and random sequences that have the same GC
content and they correlate well with adjusted R? equals 0.98, p-value

< 1076, (PDF 14.8KB)

Additional file 2: Figure S5. Correlation of A rank obtained by using
different top score thresholds in Eq. 6. We compare the A rank for different
TFs in each group of organisms (subfigure A, B for S. cerevisiae, C and D for
D. melanogaster, E and F for vertebrate PWM motifs) by adopting a different
top score threshold of top 0.01 % or 0.001 % instead of the default value of
0.1 % in Eq. 6. The adjusted R? for the A rank correlation between 0.1 % and
0.01 % thresholds for S. cerevisiae, D. melanogaster, and vertebrate motifs are
0.94,0.89 and 0.80, respectively, with p-values all less than 1078, As for the A
rank correlation between 0.1 % and 0.001 % thresholds, the adjusted R? are
0.87,0.92 and 0.74, respectively (p-values all less than 1070). (PDF 33.2KB)

Additional file 3: Table S3. (TXT 0.232KB)

Additional file 4: Figure S3. Estimated A distribution in relation to PWM
motif length. Each color coded point represents a specific A value of a TF
estimated by Eq. 6 for S. cerevisiae (green), D. melanogaster (red), and
vertebrate (blue).There is a positive correlation between estimated A value
and TF motif length with adjusted R? equals 0.33. (PDF 22.6KB)

Additional file 5: Figure S1. The relationship between maximum PWM
score and information content of PWMs. Individual dots represents each
PWM generated from the non-redundant PFM JASPAR-CORE database [5]
after the filtering procedures specified in the Methods section. There is a
strong positive correlation between the information content of the PWM
and the maximum possible PWM score that could be generated by that
PWM, with an adjusted R? value of 0.597. (PDF 25.9KB)

Additional file 6: Table S1. (TXT 12.7KB)

Additional file 7: Figure S2. Estimated A distribution across major TF
families. BBA-ZF represents the A distribution for 8-B-« zinc-finger family;
NR is zinc-finger nuclear receptor family; L-zipper stands for the basic
leucine-zipper family; HLH is helix-loop-helix family; Homeo is homeobox
family; FKis fork-head family and HMG is high mobility group family. For
each group, A was calculated by Eq. 6. (PDF 5.33KB)

Additional file 8: Figure S7. Heatmaps for A conversion between
different PWMs. These are additional examples of heatmaps of
sequence-specific residence time that are used for A conversion between
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different PWMs of the same TF. Alternative versions of PWMs are from
BioConductor R package of PWMEnrich.Dmelanogaster.background [17].
Each column of the heatmaps represents a specific A value and each row
represents a specific binding site strength level. (PDF 25.5KB)

Additional file 9: Table S2. (TXT 1.015KB)

Additional file 10: Figure S8. Consistency of A estimation between two
methods. This figure shows the correlation between A values obtained

from Eq. 6 and from A conversion using the heatmap of sequence-specific
residence time. The adjusted R? is 0.88, p-value = 5.9 - 10>, (PDF 11.1KB)

Additional file 11: Figure S4. Comparison of A values calculated by using
different pseudo-count values in PWMs. Subfigure A shows the comparison
between the A values obtained by using PWMs with pseudocounts of 1
and 3 (the adjusted R? is 0.973), while subfigure B compares pseudocounts
of 1and 0.3 (the adjusted R? is 0.978). Each dot represents a TF from 100
randomly chosen vertebrate TFs in JASPAR database [5]. (PDF 31.2KB)
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