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Abstract

distance-to-geometry problem.

data and the prior knowledge.

known from literature and genomic repositories.

Background: The knowledge of the spatial organisation of the chromatin fibre in cell nuclei helps researchers to
understand the nuclear machinery that regulates DNA activity. Recent experimental techniques of the type
Chromosome Conformation Capture (3¢, or similar) provide high-resolution, high-throughput data consisting in the
number of times any possible pair of DNA fragments is found to be in contact, in a certain population of cells. As these
data carry information on the structure of the chromatin fibre, several attempts have been made to use them to
obtain high-resolution 3D reconstructions of entire chromosomes, or even an entire genome. The techniques
proposed treat the data in different ways, possibly exploiting physical-geometric chromatin models. One popular
strategy is to transform contact data into Euclidean distances between pairs of fragments, and then solve a classical

Results: We developed and tested a reconstruction technique that does not require translating contacts into
distances, thus avoiding a number of related drawbacks. Also, we introduce a geometrical chromatin chain model
that allows us to include sound biochemical and biological constraints in the problem. This model can be scaled at
different genomic resolutions, where the structures of the coarser models are influenced by the reconstructions at
finer resolutions. The search in the solution space is then performed by a classical simulated annealing, where the
model is evolved efficiently through quaternion operators. The presence of appropriate constraints permits the less
reliable data to be overlooked, so the result is a set of plausible chromatin configurations compatible with both the

Conclusions: To test our method, we obtained a number of 3D chromatin configurations from Hi-C data available in
the literature for the long arm of human chromosome 1, and validated their features against known properties of
gene density and transcriptional activity. Our results are compatible with biological features not introduced a priori in
the problem: structurally different regions in our reconstructions highly correlate with functionally different regions as
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Background

The packing of DNA in living cells is obtained through sev-
eral mechanisms, both general (due to general princples,
irrespective of DNA sequence) and specific, i.e. mediated
by proteins that recognise specific motifs and bring in
close proximity parts of DNA that may be very distant in
the genomic sequence. The first level, mediated by histone
octamers, produces a fibre of about 11 nm. This fibre, in
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turn, is supposed to be organised into a 30 nm-wide struc-
ture, whose existence, however, is still debated [1, 2]. Most
current information on packaging is derived from data
that are not necessarily consistent with a single conforma-
tion, because they are obtained from a pool of cells which
are not synchronized, even if they are of the same kind.
As a result of the activities involving DNA (transcription,
replication, repair, silencing etc.), in different individual
cells, DNA organization can be slightly different, while
responding to the same general principles. It is also to be
kept in mind that DNA is not a rigid entity, and its struc-
ture changes from moment to moment in the same cell,
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both to respond to external stimuli (allowing for either
transcription regulation or DNA repairs, if necessary), and
to allow for regular compaction, as clearly recognisable at
large scale during mitosis. It is well established that, in
interphase cells, most chromosomal DNA is organised in
‘chromosome territories’ [3], and it is increasingly appar-
ent that chromosomal organisation is one of the factors
involved in regulation of gene function.

A step ahead towards an understanding of this spa-
tial organisation has been enabled by fluorescence in-
situ hybridisation techniques (FISH [4, 5]), which can be
used to locate specific DNA sequences in the genome
and measure the distances between pairs of fragments.
More recently, Chromosome Conformation Capture (3C,
[6]) and a number of related techniques (4C [7], 5C [8],
Hi-C [9, 10]) fostered a major boost in chromatin studies,
as they provide high-throughput, high-resolution contact
data for a full genome at a relatively low cost. The output
of each such experiment is a matrix of contact frequencies
between pairs of DNA fragments in a uniform popula-
tion of cells. The average size of the individual fragments
depends on the restriction enzymes used. For example,
the fragment sizes in the data we use here, obtained by
enzyme Hindlll, are of about 4 kbp. The raw contact
matrices can thus have a very high genomic resolution,
but the data come from millions of cells, so stable results
can only be obtained by binning the matrices to lower
resolutions (typically, 100 kbp). A new experimental pro-
tocol [11] applied to individual cells confirms the validity
of Hi-C results, pointing out that the intra-chromosomal
structures are substantially stable across different cells,
whereas a marked variability of inter-chromosomal inter-
actions has been revealed. Since Chromosome Conforma-
tion Capture data carry information about the 3D spa-
tial configuration of the chromatin chain, many research
groups in the last decade have been trying to develop
specific reconstruction algorithms.

The earliest attempts in this sense used constrained
optimisation techniques, mostly looking for an explicit
and deterministic relationship between the contact fre-
quencies and the Euclidean distances between pairs of
fragments in the 3D conformation [6, 12—-14]. The intu-
itive strength of this choice is that pairs of fragments
that are frequently in contact are likely to be spatially
close, whatever their genomic distance; vice versa, pairs of
fragments with a few contacts are assumed to be farther
apart. In [6], a theoretical expression for worm-like chains
[15] is adopted, whereas [12] and [13], among others,
assume some negative-power relationship between the
distances and the contact frequencies. Other approaches
include fitting an empirical distance-frequency law to
FISH experimental data [16], and using a golden-section
search to choose among a parametric family of relation-
ships [14]. In [17], it is proposed to correlate contact
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frequencies with the presence or absence of chromatin
contacts rather than with average distances. Once the
distances between all the possible pairs of loci have
been determined, the optimisation approaches estimate
the best-fit 3D structure from different models, such
as piecewise linear curves [12] and bead-chain models
[13, 16, 18, 19], by also enforcing various constraints
derived from known geometric and topological features
of the chromatin fibre. In [13] and [16], the constraints
are derived from polymer physics. Polymer models for the
chromatin fibre have also been proposed in [20-24]. In
[11], the 3D structure is obtained by restrained molec-
ular dynamics simulations, at fine or coarse resolutions,
where the restraints are flexible target distances derived
from the Hi-C data. In [25-27], polymer models with
no frequency-distance conversion are proposed, with dif-
ferent strategies to match the computed and measured
contact frequencies.

Simple constrained optimisation in high-dimensional
applications suffers from known drawbacks, such as trap-
ping in local modes and unaccountability of biases. More-
over, without an explicit probabilistic model accounting
for noise, the estimated structures might not be represen-
tative of statistically significant conformational features.
This motivated the proposal of a number of proba-
bilistic approaches, ranging from Markov Chain Monte
Carlo sampling on an unconstrained fragment distribu-
tion [28] to a Bayesian approach with Poisson likelihood
and uniform prior, also including known biases into the
solution model [29, 30]. Again, assuming a determinis-
tic frequency-distance relationship is a popular choice
in these approaches. However, [31] proposes a method
where distances and contacts are related probabilistically,
through a Poisson distribution.

In our view, there are a number of drawbacks that must
be overcome to get accurate and reliable 3D reconstruc-
tions of the chromatin structure. First of all, we share
the concerns about the use of deterministic relationships
between contact frequencies and Euclidean distances. If
the original contact matrix has null elements, infinite
mutual distances can only be avoided if sets of mutually
adjacent fragments are binned together until the related
contact matrix has all nonzero entries. This sets the
genomic resolution achievable well below its theoretical
possibilities. Moreover, we checked the topological con-
sistency of the structures obtained from real data through
the most popular frequency-distance relationships found
in the literature [32] and, as already observed in [33], we
found that the distances inferred are often severely incom-
patible with the Euclidean geometry. Translating contacts
into distances is not appropriate for one more reason: two
fragments often found in contact are likely to be spatially
close in nearly all the configurations assumed by the chro-
matin, but the converse does not need to be true. Nothing
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says that two DNA fragments that are seldom in contact
are also far from each other.

A second aspect to be considered is the use of a suit-
able chromatin model to constrain the solution. Enforcing
a data fit with no constraint on the mutual positions of the
fragments increases tremendously the domain of the fea-
sible solutions, thus decreasing one’s confidence in their
plausibility. In [30, 34] no geometric constraint is imposed
on the solutions, and yet biologically plausible conforma-
tions are found. The price to be paid for this result is
the large number of parameters to be estimated and the
multiple heuristic sampling processes involved.

The approach we propose in this paper includes a con-
strained modified-bead-chain model and a Monte Carlo
sampling on a likelihood function built directly from the
contact data. This frees us from binning the matrix if
not needed to stabilise the data, even though zero-valued
entries are left, and avoids the solution of a distance-to-
geometry problem based on inconsistent data. By direct
inspection of the data structure, or from knowledge of
confined domains that do not interact with other seg-
ments of the genome [27, 35], we can partition the data
matrix so that each such domain can be reconstructed
separately and then, recursively, lower the resolution to
find the spatial relationships between larger and larger
chromatin segments with fixed internal configurations.
At each resolution considered, the contact matrix must
be partitioned by direct inspection or other relevant
knowledge. The spatial structure at the finest resolu-
tions is then reconstructed assuming that the structure
of each subchain is not modified by its interactions with
the other domains. This allows us to choose the most
appropriate resolution for each segment, thus attaining
an accurate reconstruction at both local and global lev-
els. To sample the solution space, the chain configuration
is evolved by quaternions [36], which offer advantages
over the popular rotation matrices using Euler angles.
Indeed, altering the bead positions by quaternions is
independent of Cartesian coordinates, maintains topolog-
ical constraints, and is less expensive computationally: it
only involves generating planar and dihedral angles and
inter-bead distances. The only constraint that needs to
be checked is related to spatial interferences between
beads.

In what follows, we describe our approach, give details
on our present algorithmic choices, and report on the
results obtained from the data set provided in [9].

Methods

A multiscale modified bead-chain chromatin model

To build our chromatin model, we exploit the fact that
the DNA sequences in some genomic regions show many
internal contacts and very weak interactions with the
rest of the genome [35]. This entails a contact frequency
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matrix with a number of diagonal blocks with relatively
large entries, associated to row and column ranges whose
entries are much smaller almost anywhere else. Each such
block lists the number of mutual contacts of the restric-
tion fragments within one of the above-mentioned regions
(called topologically associating domains, or TADs), whose
3D configuration does not depend on the rest of the
sequence, and can thus be reconstructed from the data in
the related diagonal block alone. The spatial relationships
among different TADs depend on the data outside the
diagonal blocks. To account for such a lower resolution
structure, we consider each TAD as a single locus, and bin
the contact matrix so that it corresponds to a single entry.
Then, a new block structure can be identified and esti-
mated. This procedure can be repeated recursively until
the lowest significant resolution is reached. The result is
a chromatin model whose structure can be represented at
multiple resolutions.

We consider each locus, at any resolution, as a bead in
a chain [37]. Given a chromatin fibre composed of sub-
chains of known structures, we try to find their mutual
positions, without changing their internal configurations,
by modelling each of them through its geometric cen-
troid, its start point, and its end-point. These three points
and their mutual positions, associated with the estimated
size of the subchain, constitute one bead of our model.
The lengths of the segments joining the endpoints with
the centroid, and the related angle, cannot be changed
during the evolution of the model. Conversely, the pla-
nar and dihedral angles defining the position of each bead
with respect to the adjacent ones can be varied, subject
to possible constraints establishing flexibility and mutual
distance ranges. The beads are linked in their biological
order, with the end point of each bead coinciding with the
start point of the next. Figure 1 illustrates how four con-
secutive subchains are schematised as modified beads and
then connected to form a chain at a lower resolution. Of
course, the structure of the fragments at the maximum
allowed resolution is not known, so the centroid and the
endpoints of each subchain collapse into a single point,
that is, the beads become simple spheres.

The advantages offered by this model consist in a better
accuracy in the reconstruction of the chain at succes-
sive resolutions. The lengths of the bonds linking each
bead to its immediate neighbours are such that the beads
cannot penetrate their neighbours and cannot be too far
apart from them. The angles between adjacent bonds are
constrained so that the chain curvature cannot be higher
than biologically/physically permitted. Finally, the overall
size of the chain in its 3D configuration cannot exceed
the value of the size of the nucleus (i.e, 5 to 10 um). As
opposed to what happens in [28] and [30], these con-
straints limit the feasible positions of any subset of loci,
even though they do not affect the data fit term chosen to
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Fig. 1 Modified bead-chain model. a-d Consecutive fragments of the chromatin fibre, represented as bead sequences (red balls linked by yellow
segments), and as centroid-endpoints triples (blue balls linked by blue segments). The green spheres represent the assumed sizes for the beads at
the lower resolution. e Lower-resolution chain composed by the fragments in a-d
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solve the reconstruction problem, as described in the next
subsection.

Contact frequency fit

We mentioned the difficulties arising when attempting to
translate contact frequencies into distances, and the biases
affecting the measured data [29, 38]. Our choice to build a
data-fit criterion bypassing both these drawbacks consists
in including the contact frequencies #;; from the contact
matrix directly into the criterion. We assume that the bead
pairs characterised by the largest contact numbers are
likely to be in contact, whereas we do not say anything on
the pairs with fewer contacts. The rationale for this choice
is twofold: first, whatever their entity, the biases introduce
the largest errors in the smallest contact frequencies; sec-
ond, we do not try to enforce any target distance between
pairs of beads. We just say that a pair must be in close
contact, so we try to minimise its distance, subject to the
constraints imposed on the whole chain, and weighted by
the related contact frequency. In this way, the importance
of any pair in the data fit is proportional to the contact fre-
quency. In formulas, let C be the 3D configuration of the
chromatin segment under study (a matrix containing the
coordinates of all the bead centers), d;; be the Euclidean
distance between the i-th and the j-th beads, and £ be the
set of pairs included in the data fit. We are free to exclude
the pairs with low contact frequencies from £, with the
advantage of saving computation time. Our data fit term is

() = Z nij - dij (1)
ijeL

where, if x; and x; identify two bead centers, it is d;; =
[Ix; — x;||; note that Eq. (1) does not imply any restriction
on the contact matrix. Accepting a contact frequency to
vanish simply means that the corresponding pair does not
affect the data fit. Of course, all the configurations with d;;
vanishing for each (i, j) in £ are unconstrained minimisers
of (1). Each such configuration has all the pairs of loci in
L in contact, and all the others in arbitrary positions. This
does not mean, however, that such configurations will all
be reached: the geometrical constraints prevent the final
structure from reaching all those minima, thus producing
solutions that are consistent with both the data and our
prior knowledge.

Estimation strategy

Monte Carlo sampling

Let C be the configuration of a bead chain at any res-
olution. In our present implementation, we estimate
it by sampling a probability density function p(C)
exp[ —®(C)]. The sampling is implemented by a Monte
Carlo procedure with a classical annealing schedule
[39, 40]. In synthesis, given the current chain configura-
tion, a randomly altered configuration is proposed and
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included in the sample upon a probabilistic test. During
the iteration, the data fit term ®(C) is modified by divid-
ing it by a decreasing temperature parameter, to make the
distribution more peaked around its maxima. When the
temperature has reached its minimum value, the samples
generated should be clustered around the set of absolute
maxima of the distribution. In our case, we expect that dif-
ferent configurations match the data equally well, so the
distribution function is not expected to show very definite
maxima. Thus, the simulated annealing is not used as a
global optimiser: various configurations can show similar
(low) values of the data fit and can be assumed as highly
plausible solutions.

Model evolution: Quaternions

To evolve our model, we use quaternions rather than Euler
angles (see Additional file 1, or reference [36] for a more
complete account). Quaternions can represent very well
rotations in a 3D space, as they are a simple framework
to understand and visualise rotations using an angle and
a rotation axis. Furthermore, quaternions avoid several
problems involving rotations, such as singularities and
numerical instabilities related to orthonormal matrices
(e.g., gimbal lock [41]). Finally, quaternions are less expen-
sive than Euler angles, as they only need to store 4, as
opposed to 9, real numbers, and composing two rotations
needs 16 multiplications and 12 additions, as opposed to
27 multiplications and 18 additions.

Quaternions are employed in many fields, including
molecular dynamics and bioinformatics [42—44]. To see
how their properties can be applied to perturb our model,
let us consider the quadruple of consecutive beads in
Fig. 2. Our model is a series of concatenated quadruples
of this type. Once all the distances between the centers of
consecutive beads and all the planar and dihedral angles
are fixed, the position of each bead with respect to all the
others is defined, and can easily be perturbed to obtain
different chain conformations complying with the con-
straints. The planar angles are perturbed through simple
quaternion operations by rotations around the normals
to the corresponding planes, and the dihedral angles are
perturbed by rotations around the intersection of the rel-
evant planes. As an example, referring again to Fig. 2, a
perturbation of angle v, is obtained by rotating vector
B;;Bz around the direction of the cross product between
BfBg and Bg_Bg; a perturbation of angle ¢; is obtained by
rotating vector Bszg around vector B;;BZ. These opera-
tions maintain the chain topology, so the only constraint
to be checked, if relevant, is the one that excludes spatial
interference between beads.

Overall recursive procedure
The recursive procedure we propose is described in this
pseudocode:
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Fig. 2 Quadruple of consecutive beads in a chain model. The two triples B; — B, — B3 and B, — Bz — B4 determine, respectively, the planes Py and
P, and the associated planar angles ¥ and . Planes Py and P, in turn, determine the dihedral angle ¢,

structure = procedure(cont .matr, constraints)
1) extract the diagonal blocks from cont .matr
2) For all the extracted blocks

a Populate set L;

b Set the initial bead chain configuration Co;

¢ Compute ®(Cp) as in Eq. (1);

d Iterate in i (assuming a cooling schedule Ty — ...
Ty — ...)

- Check stop criterion: if satisfied, save C; and leave

- Generate C* by perturbing randomly the bond
lengths, the planar and the dihedral angles of the
current configuration C;

- In the perturbed configuration, evaluate the
distances between the beads belonging to the
pairs in L;

- Compute ®(C*)

¢<ci)—d><c*)]

- If{®(C*) < ®(C;) or random[0,1] < e[ Ti
and constraints are satisfied

Ciy1 =C*
else
Cit1=C;

3) if # of diagonal blocks = 1

structure = C (hierachical composition of all the
saved configurations)

output structure

leave
4) constraints = geometrical features of all the sub-
chains + parameters and constraints at the new resolution
(Fig. 1 a-d)
5) cont.matr = bin(cont.matr) (binning in accor-
dance to the current blocks)
6) structure= procedure(cont .matr, constraints)

We wrote Python 2.7.2 procedures implementing this
recursion for two hierarchical levels (see Additional files 2,
3 and 4). At the highest resolution, we used external infor-
mation on possible TADs to extract the diagonal blocks;
further binnings should be based on the values assumed
by the matrix elements, possibly using some appropriately
chosen threshold. Note that step 2) can be performed in
parallel for all the extracted blocks. This means that pos-
sible parallel computing capabilities can fully be exploited.
Note also that this procedure produces one overall struc-
ture, at maximum resolution, per run. As per the remarks
in the previous section, different runs normally produce
different structures. Another way to proceed, for each data
and parameter set, is to save all the stable subchain con-
figurations at any resolution, and then sample each such
set to produce the structures at the subsequent resolution.
This strategy allows us to produce a potentially very large
set of solutions, while saving much computation time.
This is what we have done with the experiments reported
below.

Results and discussion

For our first experiments, we selected Hi-C data from
the long arm of human chromosome 1 made available
in [9]. The original resolution of these data was 100 kbp
(Additional file 3). We partitioned these data with the help
of the TADs identified in [35], thus obtaining 25 subchains
of sizes ranging from 700 kbp to 1.8 Mbp (Additional
file 4). After reconstructing the internal structures of these
domains, we binned the data matrix so as to make a single
entry from each of the blocks in the first partition, and run
the algorithm again to estimate the entire chain at the new
resolution. The structures of the original and the binned
matrices are visualised in Fig. 3.
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matrix obtained by binning the original

=T

Chrl: q_start=150.28 Mbp, q_stop=179.44 Mbp

Fig. 3 Experimental data. Heatmaps, in logarithmic scale, representing the contact matrix for the long arm of chromosome 1, from a Hi-C
experiment on human lymphoblastoid cells (GM06990, [9]). Main diagonal removed for visualisation convenience. Left: Original 292 x 292 matrix at
a resolution of 100 kbp. The 25 highlighted diagonal blocks represent the contacts in the topological domains used for binning. Right: 25 x 25

The starting size of each bead at each resolution was
based on the number of internal contacts in the diagonal
elements of the matrix. Intuitively, having many contacts
between fragments belonging to the same locus means
that the related DNA segment is very compact, so its
size is small. Conversely, a few internal contacts mean a
less packed locus, corresponding to a large bead in the
chain. The other fundamental measures influencing our
reconstructions are the lengths of the bonds between
adjacent beads and the maximum planar angles described
in Fig. 2. The lengths of the bonds have been derived
from the sizes of the different beads, and are allowed to
vary in specified ranges. The planar angles have been
settled starting from biologically reasonable values con-
sidering the possible bending of the chromatin chain
at each scale; then, the final values have been chosen
on the basis of the overall size of the reconstructed
chain, which must fit in the nucleus. This approach
provides reconstructions that are already equipped with
the appropriate measurements. The parameters used
for all our experiments are reported in the caption to
Fig. 4.

With these fixed initial parameters, we run repeatedly
the algorithm on the same data set to produce many con-
figurations with comparable values of data fit, that is, with
nearly equal (high) compatibility with the Hi-C data. From
a two-class classification of the different configurations,
we identified the basic types exemplified in Fig. 4, top pan-
els (see also Additional files 5, 6 and 7). It is easy to see
that the configuration on the left is less packed than the
one on the right. To check the validity of these results, we
used experimental data relative to GM06990, the human
lymphoblastoid B cell line used for the Hi-C experiments
that produced our data. Data from the ENCODE database

were explored using the UCDS genome browser [45, 46].
We analyzed the tract of chromosome 1 used for the
experiment, and selected two genomic regions. The first,
encompassing 3.5 Mbp, spans from g = 153.3 Mbp to
q = 156.8 Mbp, and is rich in genes, strongly sensitive
to DNasel, highly expressed (high level of Tanscription
Factor Binding Sites) and with a high content of H3K4,
which is a histone modification associated with highly
expressed DNA. The second region, spanning from g =
162 Mbp to g = 165.5 Mbp, has a low gene density, is
more resistant to DNasel digestion, has low CTCF binding
and low H3K4 level of methylation.? The highly expressed
domains are known to be much less packed than the
domains poor in genes or with low transcriptional activ-
ity [47]. To verify the existence of this property in our
results, following [48], we compare the genomic distances
between pairs of loci with their Euclidean distance. The
result is shown in the plots in Fig. 4, bottom panels, which
represent the mean-square Euclidean distance between
pairs of loci in the two stretches, as a function of their
genomic distance. In the configuration shown on the left,
the highly expressed domain is actually spread on a larger
distance than the poorly expressed domain; in the config-
uration on the right, conversely, both domains occupy a
small volume. This unexpected result could either depend
on insufficient constraints, or capture real configurations
assumed in some of the cells. In any case, Fig. 5 shows the
boxplots for the two stretches, summarising 40 different
results obtained using the same parameters (Additional
files 5, 6, 7). Apparently, the two stretches show a sub-
stantially different statistical behaviour, and the poorly
expressed region normally occupies much less space than
the highly expressed region, although their genomic spans
are nearly the same. These first tests thus demonstrate the
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@ Poorly expressed region
@ Highly expressed region

Poorly expressed region
— — Highly expressed region
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Fig. 4 Example results. Top: the two typical configurations resulting from the data in Fig. 3 (measurements in nm). The model parameters used are:
i) cardinality of sets L for the high-resolution subchains: 20; ii) cardinality of set £ for the low-resolution chain: 40; iii) minimum distance between
beads, at maximum resolution, to avoid interference: 120 nm; iv) maximum distance between any two beads: 10 um; v) maximum angle between
two consecutive bead pairs (curvature): 100 °. The red and blue beads belong, respectively, to a highly expressed and a poorly expressed regions.
Bottom: mean-square Euclidean distances between pairs of beads, as functions of their genomic distances, for the red and the blue regions
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biological plausibility of our results. The analysis of larger
data sets, possibily using different cell types, will enable
further refinement and confirmation of the validity of our
method.

Conclusion

We propose a new approach to estimate chromatin con-
figurations from contact frequency data. The novelties
introduced are a modified bead-chain model evolved by
quaternion operators, and a data-fit function that does

not require to translate frequencies into distances. The
3D structure can be estimated by applying our algorithm
recursively at different resolutions. In order to keep the
model compliant with known physical and biological fea-
tures, any prior information available must be translated
into geometrical constraints.

Our first results from real Hi-C data show that the
configurations obtained are compatible with biological
information that has not been introduced in the prob-
lem. Indeed, the geometrical constraints we introduce are
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Fig. 5 Structural differences. Boxplots from 40 results of the type in Fig. 4, obtained through the same parameter set. Top: highly expressed domain.
Bottom: poorly expressed domain. The boxes include the second and third quartiles; the whiskers extend for (at most) 1.5 times the interquartile
range above the 3@ and below the 277 quartiles. Cross marks: extreme outliers; Diamond marks: mean values

uniform along the chain, so the structural differences only
depend on data. Thus, we demonstrated that structurally
different regions in our reconstructions highly correlate
with functionally different regions as known from litera-
ture and genomic repositories.

Besides extending the experimentation to further data
and target features, our future activity will deal with the
optimisation of our code, in order to help the choice of
the most appropriate parameters, include an explicit treat-
ment of data biases, along with all the available biological
knowledge, and allow structure estimation for larger and
larger genomic regions.

Endnotes
Thttp://www.geometrictools.com/Documentation/
RotationIssues.pdf (last additions. accessed: 2015, May

5th).
Zhttp://genome.ucsc.edu/ENCODE/ (last accessed:
2015, April 287).
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Additional file 1: Basics on quaternion algebra.

Additional file 2: Python code for structure reconstruction at two
levels of resolution (in this version, the relevant diagonal blocks must
be provided as input).

Additional file 3: 292 x 292 contact frequency matrix used to run the
experiments reported in this paper.

Additional file 4: Bounds of the topological domains used to
partition the original matrix.

Additional file 5: Plots of the 40 outputs used to build Fig. 5
(measurements in nm).

Additional file 6: Coordinates of all the 100-kbp beads for the 40
configurations shown in Additional file 5 (measurements in nm).
Additional file 7: Grapher file (For Mac OSX 10.9.5) showing the 3D
structure of the reconstructed chain (in this example, Configuration1
from Additional file 6. To display other configurations, the coordinates in
the 5 point sets can be replaced by the corresponding data).
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