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Equalizer reduces SNP bias in Affymetrix
microarrays
David Quigley

Abstract

Background: Gene expression microarrays measure the levels of messenger ribonucleic acid (mRNA) in a sample
using probe sequences that hybridize with transcribed regions. These probe sequences are designed using a
reference genome for the relevant species. However, most model organisms and all humans have genomes that
deviate from their reference. These variations, which include single nucleotide polymorphisms, insertions of
additional nucleotides, and nucleotide deletions, can affect the microarray’s performance. Genetic experiments
comparing individuals bearing different population-associated single nucleotide polymorphisms that intersect
microarray probes are therefore subject to systemic bias, as the reduction in binding efficiency due to a technical
artifact is confounded with genetic differences between parental strains. This problem has been recognized for
some time, and earlier methods of compensation have attempted to identify probes affected by genome variants
using statistical models. These methods may require replicate microarray measurement of gene expression in the
relevant tissue in inbred parental samples, which are not always available in model organisms and are never
available in humans.

Results: By using sequence information for the genomes of organisms under investigation, potentially problematic
probes can now be identified a priori. However, there is no published software tool that makes it easy to eliminate
these probes from an annotation. I present equalizer, a software package that uses genome variant data to modify
annotation files for the commonly used Affymetrix IVT and Gene/Exon platforms. These files can be used by any
microarray normalization method for subsequent analysis. I demonstrate how use of equalizer on experiments
mapping germline influence on gene expression in a genetic cross between two divergent mouse species and in
human samples significantly reduces probe hybridization-induced bias, reducing false positive and false negative
findings.

Conclusions: The equalizer package reduces probe hybridization bias from experiments performed on the
Affymetrix microarray platform, allowing accurate assessment of germline influence on gene expression.
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Background
Naturally occurring germline DNA variants in human
populations and distinct strains of model organisms
affect many phenotypes, including basal levels of gene
expression [1–4]. When the genotype of a variant is sig-
nificantly associated with expression of a nearby gene,
that variant is said to tag a cis-acting expression Quanti-
tative Trait Locus (cis-eQTL). Several groups have noted
that Single Nucleotide Polymorphisms (SNPs) can inter-
fere with hybridization of cDNA to the microarray

probes that span the SNP [5–8]. This technical artifact
produces spurious eQTL signals if only one strain or
population subgroup bears the SNP, as the artificially
lower gene expression appears to indicate a cis-acting
eQTL.
A recent publication highlighted this serious problem

which has caused incorrect findings to be reported and
replicated widely in the genetics literature [8]. Rama-
samy et al. suggested a protocol that removed micro-
array probes bearing SNPs, but did not provide software
tools to automate this approach. Previously published
packages predict the presence of SNPs that affect micro-
array hybridization using statistical models [7, 9, 10].
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The equalizer package provides a general solution to this
problem for the commonly used Affymetrix gene expres-
sion microarrays. equalizer can be applied to any experi-
ment performed on the Affymetrix Gene or IVT
platforms where founder sequences are known, includ-
ing humans. In this manuscript I compare equalizer’s re-
sults to the performance of a recently published method
for identifying probe bias by statistical measurements
[10]. I demonstrate the application of equalizer to
microarray data generated for an eQTL study of mouse
skin and mammary gene expression, as well as human
lymphoblastoid cell lines.
The equalizer package makes several contributions.

First, as it uses known genomic variants to identify
probes affected by SNPs, it does not require expression
measurements in replicate parental samples. Such repli-
cates are not available in human populations and may
not be available in individual studies of model organ-
isms. Second, it can remove any probe that intersects a
feature specified in a Variant Call Format (VCF) file, and
is not restricted to genes expressed in a particular tissue
used to identify potentially affected probes. It is straight-
forward to prepare custom microarray annotations for
any genome where variant information is available.
Third, while equalizer is fully compatible with Biocon-
ductor analysis tools, equalizer generates a new copy of
the Affymetrix array definition files and can be used by
any analysis pipeline.

Implementation
Affymetrix microarrays report a probeset expression
value summarized from an ensemble of probes. The lo-
cation and probeset assignments are controlled during
the normalization procedure by files available from the
manufacturer. equalizer improves the signal quality in
the presence of SNPs by selectively removing probes that
intersect the SNPs from their probeset assignments
(Fig. 1a). To create a modified Affymetrix description file
set, the user provides equalizer with the appropriate
platform description files freely available from the Affy-
metrix web site (http://www.affymetrix.com), including a
BED-formatted file describing all probe locations. The
user also provides one or more VCF files specifying the
location of SNPs or other genomic features that may
interfere with probe hybridization. equalizer then uses
the bedtools package [11] to identify probes which over-
lap with the location of a SNP and a software script writ-
ten in Python to create a new set of internally consistent
platform description files consisting of probesets where
these probes have been removed. equalizer also produces
a report indicating how many probes were removed
from each probeset. If every probe in a probeset is re-
moved by equalizer, the probeset itself is also removed
from the new annotation files. The resulting files are

suitable for use by any downstream normalization pipe-
line, including R’s oligo package [12] or the Partek Gen-
omics Suite. equalizer can be invoked either from an R
package (also called equalizer) or by calling a Python
script from the command line. If called from the com-
mand line, equalizer produces an R script that can be
used to create an R Platform Design Information package.

Results and discussion
eQTL analysis with equalizer
Genetic crosses between mouse strains with differing
susceptibility to cancer are a useful tool for identifying
genes which play a role in cancer biology. The goal of
these studies is to map loci associated with gene expres-
sion and other phenotypes. The SNP bias problem is
particularly obvious in genetic studies of model organ-
isms where the founder strains are not evolutionarily
equidistant from the reference strain against which the
microarray probes were designed. The inbred mouse
strain Mus spretus is separated by approximately two
million years of evolution from Mus musculus strains
such as C57BL/6, the reference mouse genome strain.
We have previously performed eQTL experiments using
backcrosses of the Mus spretus strain (SPRET/Ei) and a
Mus musculus strain (FVB/N) [4, 13]. Backcrossed mice
were generated by breeding inbred Mus spretus SPRET/
Ei animals with inbred Mus musculus FVB/N animals to
make an F1 generation, and then breeding F1 progeny
with the FVB/N line. Genotypes at any given locus on
backcross chromosomes one through nineteen are there-
fore expected to be 50 % heterozygous (SPRET/Ei, FVB/N)
and 50 % homozygous (FVB/N, FVB/N).
Analysis of published genome sequences for the strains

FVB/N and SPRET/Ei [14, 15] by equalizer indicated
that of the 833,910 probes on the Affymetrix Gene 1.1
ST array, 176,191 intersected a SPRET/Ei SNP while
only 24,196 intersected a FVB/N SNP. The imbalance
between SPRET/Ei and FVB/N SNPs was more extreme
on the older mouse M430 2.0 chip; of its 496,469
probes, 104,772 intersected a SPRET/Ei SNP while
10,296 intersected a FVB/N SNP. Probe-intersecting
SNPs could therefore affect eQTL results for either par-
ental genome, but were a priori more likely appear on
the SPRET/Ei genome at a ratio of more than 7:1 for
Gene ST array or 10:1 for the M430 array. An unusually
large number of cis-eQTL with lower expression associ-
ated with the SPRET/Ei allele would strongly suggest
technical bias due to probe hybridization artifacts.
To test equalizer I obtained 71 Affymetrix M430

2.0 microarrays measuring gene expression in mouse
skin and 115 Affymetrix Gene ST 1.1 microarrays
measuring gene expression of normal mouse mam-
mary tissue [4, 16]. eQTL analysis of a backcross design
tests all loci to determine whether animals heterozygous at
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a given locus show significantly different expression levels
for a given gene compared to animals with a homozygous
genotype at that locus. There are many phenotypic differ-
ences between Mus spretus and Mus musculus strains of
mice [17], but there is no reason to expect a priori that
these macroscopic differences would be consistently associ-
ated either higher or lower expression of any particular
gene when that gene is derived from a SPRET/Ei allele. We
therefore expect higher expression to be associated with
the heterozygous eQTL allele 50 % of the time.
I identified eQTL in the skin and mammary datasets

using a custom-written software package (eqtl) that

`performs linear regression for eQTL experiments
(see Methods). For each of the 16,588 probesets the
eqtl program tested the association between probeset
expression and genotype variation at each locus, reporting
the statistically strongest locus as a candidate eQTL. In
the skin dataset, mice bearing a SPRET/Ei allele at these
loci had lower average expression of the eQTL probeset
76 % of the time (P < 0.001, binomial test, Fig. 1b). In the
Gene ST dataset, 70 % of cis-eQTL had lower average ex-
pression for the SPRET/Ei allele (P < 0.001, binomial test,
Fig. 1c). As noted above, the expected value in both cases
in the absence of SNP bias was 50 %. After correction

Fig. 1 Equalizer reduces SNP eQTL bias. a Schematic illustration of equalizer operation. b,c,d,e Histograms of mean effect of a single mouse FVB/N
allele, calculated from the difference of mean expression levels for a given gene when divided by genotype at eQTL locus. At any given eQTL all mice
will be either homozygous (FVB/N, FVB/N) or heterozygous (FVB/N, SPRET/Ei). A value greater than zero indicates mice homozygous for FVB/N alleles
at that locus have higher expression levels. Histograms plotted for b M430 uncorrected skin, c Gene ST uncorrected mammary, d M430 corrected skin,
and e Gene ST corrected mammary
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using equalizer, this analysis reported lower average ex-
pression for the SPRET/Ei in only 57 % of genes in the
M430 experiment and 53 % of genes in the Gene ST ex-
periment (Fig. 1c and d).
After equalizer correction many eQTL significance

values changed. In the mouse mammary data, after cor-
rection 8104 of the 15,867 probesets (51 %) decreased in
statistical significance. However, considering only those
probesets where the uncorrected eQTL result was sig-
nificant at a FDR ≤ 0.05, 68 % of results decreased in sig-
nificance after correction. Genes with higher uncorrected
statistical significance were significantly more likely to
have reduced significance after correction, indicating
that many of the strongest results were inflated by
probe bias (Pearson r = 0.20, P < 2 x 10−16). However,
a large number of loci also increased in eQTL signifi-
cance after correction (Fig. 2a). This indicated that in
many cases probe interference artifacts were reducing
the statistical significance of eQTL effects. A typical
example was the cis-eQTL for the gene cell division
cycle 26 (Cdc26), which increased in statistical signifi-
cance after correction from P = 0.17 to P = 2 x 10−17

(Fig. 2b and c). Nine of the original 12 probes for this
probeset were removed by equalizer. The remaining three
probes reported lower average expression levels than the
original 12, but these remaining probes should be free
of SNP bias and therefore a more effective tool for
detecting eQTL.
Many individual strains of model organisms have

been sequenced, making it possible to have complete
knowledge of the possible genotypes of their progeny.
However, many human eQTL studies are conducted
without exome or whole genome sequences of the
participants. To test the applicability of equalizer to
human samples where individual genome sequences
may not be available, I identified SNPs with a minor
allele frequency greater than 5 % in Caucasian-
derived (EUR) and African-derived (AFR) genome se-
quences obtained by the 1000 Genomes Project [18].
This identified 6,972,489 EUR SNPs and 9,957,360
AFR SNPs. I then obtained microarray and genotype
data measured in lymphoblastoid cell lines derived
from 96 donors of European ancestry (EUR) and 95
donors of African ancestry (AFR) [19]. Of the 604,259
probes on the HG-U133 Plus 2.0 array, 16,849 over-
lapped a EUR SNP, while 26,454 probes overlapped
an AFR SNP. These numbers were dramatically lower than
those in the mouse genome experiments, reflecting the
relative proximity of human genomes to the human refer-
ence compared to that of the mice to the mouse reference.
As expected from the overall larger number of SNPs in
African-derived populations compared to Caucasian-
derived populations, African-derived samples had a larger
number of probe-intersecting SNPs than Caucasian-derived

samples. I then separately corrected gene expression for
Caucasian-associated and African-associated SNPs.
In both AFR and EUR samples the observed eQTL ef-

fect sizes and the changes in eQTL significance after
correction were smaller than those observed in the
mouse samples (Fig. 2d and e). In a mouse genetic back-
cross there are only two possible genotypes, and the ex-
pected minor allele frequency is 50 %. In contrast, the
minor allele frequencies in human populations varied
from 5 to 50 %. However, removing probes which inter-
sected SNPs still affected many cis-eQTL, and spurious
SNP-associated effects could be detected. HLA-DPA1 is
a member of the major histocompatibility complex, a
highly polymorphic family of genes crucial for immune
cell recognition and antigen recognition [20]. Uncor-
rected gene expression profiles suggested a strong eQTL
influencing expression of HLA-DPA1 in African-derived
samples (Fig. 2f ), but this relationship was not present
after removing the seven probes that intersected a SNP
(Fig. 2g).

Comparison to other approaches
The maskBAD algorithm recently published by Dannemann
and colleagues [10] attempts to identify probes with SNP
hybridization problems through a statistical model ap-
plied to replicates of each founder strain. To compare
equalizer to maskBAD, I trained maskBAD on previously
published microarray measurements of mouse skin from
four inbred FVB/N and four inbred SPRET/Ei mice. mask-
BAD was highly sensitive, assigning low quality scores to
most probes bearing a SNP, and high quality scores to
most probes lacking a SNP (Fig. 3a and b). As expected,
probes assigned high probe quality scores by maskBAD
despite the presence of a SNP verified by sequence ana-
lysis were more likely to be those reporting low expression
levels (Spearman rho = −0.48, P < 1 x 10−16). These probes
would usually be eliminated from downstream analysis
due to low signal quality. However, a significant minority
of probes expressed above background levels and bearing
SNPs would not be excluded by maskBAD. Figure 3c plots
the number of above-background probes bearing or lack-
ing known SNPs compared to their maskBAD quality
score. Of the 378,858 probes in probesets that were
expressed above background levels, 298,724 (79 %) do not
intersect a SNP. 269,113 probes (71 %) had a maskBAD
quality score above 0.2. At this stringency level maskBAD
would remove 70,312 (19 %) probes that lack a known
SNP and retain 40,701 (11 %) probes that that bear a
known SNP.

Discussion
Equalizer significantly reduced the effect of SNP bias,
although the correction was not complete. It is plaus-
ible that the remaining deviation from the expected
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Fig. 2 (See legend on next page.)
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value of 50 % is due in part to the fact that this ana-
lysis corrected only for the presence of SNPs and did
not account for other variants such as insertions, de-
letions, or germline copy number variations which
could also affect gene expression levels. There are
also large gene families such as the hair follicle kera-
tins which may be expressed systemically at higher or

lower levels in one species, and this would affect the
predicted effect of a single FVB/N allele for those
genes.
MaskBAD showed strong specificity and sensitivity if

the correct quality score cut-off was chosen, and for sit-
uations where the required data are available to train its
model, maskBAD is a valuable tool. Choosing a stringent

Fig. 3 MaskBAD scores for probes kept or excluded by equalizer. a,b Histograms of maskBAD scores for probes that (a) intersect a SNP and (b) do
not intersect a SNP in either FVB/N or SPRET/Ei genomes. c Number of probes in probesets expressed above background levels selected
at maskBAD quality scores ranging from 0 to 1, plotted separately for probes with no SNP in the probe (filled circles) and probes with a
SNP in the probe (open circles)

(See figure on previous page.)
Fig. 2 The effect of equalizer on eQTL results. a Plot of the change in eQTL statistical strength after correction vs. the uncorrected eQTL statistical
strength for mouse mammary data. b, c Expression of Cdc26 at the cis-eQTL locus (b) before correction and (c) after correction, showing an
increase in significance after correction. Expression levels are divided between homozygous (labeled FVB/FVB) and heterozygous (labeled FVB/
SPR) genotypes, where FVB indicates FVB/N and SPR indicates SPRET/Ei. P values indicate linear regression, box and whiskers plots indicate
median and first/third quartiles. d,e Plot of the change in eQTL statistical strength after correction vs. the uncorrected eQTL statistical strength for,
(d) human EUR data and (e) human AFR data. f,g Expression of HLA-DPA1 in human AFR samples (f) before correction and (g) after correction,
showing a decrease in statistical significance after correction. Expression labels are divided between the AA, AB, and BB versions of the rs1431400
genome variant. Plotted as 2b
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maskBAD quality cut-off would result in high sensitivity
and specificity, but the best value for this parameter is
hard to assess without the parental genome sequences.
The effect of SNPs on probe hybridization is complex,
and some SNPs which intersect a probe will have no de-
tectable effect on probe hybridization. This is more
likely to be true when SNPs are located near the end of
a probe rather than near the middle. Particularly in the
case of genes with multiple isoforms, the effect of a
given probe on the reported gene expression levels can
vary between different tissues. A conservative approach
which removes potentially compromised probes even if
they are not obviously a problem in a particular tissue is
therefore a reasonable choice. A future development
step for equalizer will be to generate a version of the
software entirely as an R package to avoid the require-
ment for calling a command-line script.

Conclusions
The equalizer package makes it straightforward to re-
move individual probes from Affymetrix annotations by
reading directly from VCF files describing genomic fea-
tures such as SNPs which may affect cDNA hybridization.
This reduces prevalence of false-positive findings in eQTL
mapping studies. Importantly, this correction also in-
creased the statistical significance of some eQTL, indicat-
ing that equalizer both reduced false positive signals and
allowed results previously obscured by SNP bias to be de-
tected. equalizer provides a complementary approach to
statistical methods such as maskBAD, and it can be ap-
plied in situations such as human experiments where
complete parental gene expression measurements are
unavailable.

Methods
Sequence and microarray acquisition and normalization
A VCF file for FVB/N and SPRET/Ei mouse genomes
using the MM10 annotation was downloaded from the
Sanger Mouse Genomes project, http://www.sanger.ac.uk/
resources/mouse/genomes. The backcross design ensured
that all SNPs were present at or near a 50 % minor allele
frequency. VCF files listing polymorphic loci in Cauca-
sian- and African-derived populations using the HG19 an-
notation generated by the 1000 Genomes Project were
downloaded from the NCBI Trace Archive May 2 2013
release, ftp-trace.ncbi.nih.gov [18]. Human variants were
included if their minor allele frequency was reported as ≥
5 % within their ethnic group. Raw microarray and human
genotype data were obtained from GEO (Human:
GSE24277; Mouse: GSE46077, GSE12248). Mouse geno-
types were downloaded from http://davidquigley.com/
reproduce.html. Microarray data were normalized using
the oligo package in R and the Platform Design Informa-
tion packages available from bioconductor.org [12, 21].

These packages were customized by equalizer as described
in the text. Microarray batch effects were removed using
ComBat [22]. Affymetrix platform description files using
annotations that matched the VCF files were obtained
from http://www.affymetrix.com.

Statistical analysis
Statistical analysis was performed with R [21] and the
eqtl program, a software package written in C++ that
performs linear regression of gene expression compared
to genotype. In analysis of human samples, cis-eQTL
were calculated using a window of one megabase around
the transcription start site for each gene. The eqtl pack-
age can perform cis-only or genome-wide eQTL analysis
and can run as a multi-threaded program to exploit
multiple-core computational clusters. Binary packages
for eqtl are available at davidquigley.com, and eqtl and
equalizer source code is freely available at https://
github.com/DavidQuigley/QuantitativeGenetics. Source
code to reproduce the analysis presented in this manuscript
is available at http://davidquigley.com/reproduce.html.

Availability and requirements
Project name: equalizer
Project home page: http://github.com/DavidQuigley/
QuantitativeGenetics/tree/master/equalizer
Operating system: platform independent
Programming language: Python, R
Other requirements: Bedtools 2.15 or higher
License: Apache 2.0
Any restrictions to use by non-academics: no restrictions
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BED: Browser Extensible Data; SNP: Single Nucleotide Polymorphism;
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Deoxyribonucleic Acid; VCF: Variant Call Format; mRNA: messenger
Ribonucleic Acid.
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