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Abstract

Background: Gas chromatography coupled with mass spectrometry (GC-MS) is one of the technologies widely used
for qualitative and quantitative analysis of small molecules. In particular, GC coupled to single quadrupole MS can be
utilized for targeted analysis by selected ion monitoring (SIM). However, to our knowledge, there are no software tools
specifically designed for analysis of GC-SIM-MS data. In this paper, we introduce a new R/Bioconductor package called
SIMAT for quantitative analysis of the levels of targeted analytes. SIMAT provides guidance in choosing fragments for a
list of targets. This is accomplished through an optimization algorithm that has the capability to select the most
appropriate fragments from overlapping chromatographic peaks based on a pre-specified library of background
analytes. The tool also allows visualization of the total ion chromatograms (TIC) of runs and extracted ion
chromatograms (EIC) of analytes of interest. Moreover, retention index (RI) calibration can be performed and raw
GC-SIM-MS data can be imported in netCDF or NIST mass spectral library (MSL) formats.

Results: We evaluated the performance of SIMAT using two GC-SIM-MS datasets obtained by targeted analysis of: (1)
plasma samples from 86 patients in a targeted metabolomic experiment; and (2) mixtures of internal standards spiked
in plasma samples at varying concentrations in a method development study. Our results demonstrate that SIMAT
offers alternative solutions to AMDIS and MetaboliteDetector to achieve accurate detection of targets and estimation
of their relative intensities by analysis of GC-SIM-MS data.

Conclusions: We introduce a new R package called SIMAT that allows the selection of the optimal set of fragments
and retention time windows for target analytes in GC-SIM-MS based analysis. Also, various functions and algorithms
are implemented in the tool to: (1) read and import raw data and spectral libraries; (2) perform GC-SIM-MS data
preprocessing; and (3) plot and visualize EICs and TICs.
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Background
Gas chromatography coupled with mass spectrometry
(GC-MS) is one of the technologies widely used for qual-
itative and quantitative analysis of small molecules. The
technology is useful in studies that aim to evaluate the
metabolite levels in biofluids and tissues. The use of elec-
tron impact (EI) ionization enables the instrument to gen-
erate mass spectra for different compounds by shattering
biomolecules in multiple fragments.
Although GC-MS instruments are mostly used for

untargeted analysis of metabolites, selected ion monitor-
ing (SIM) allows users to monitor a subset of fragments
with their related mass values in a certain retention time
(RT) range for a set of targets. This targeted method is
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expected to lead to increased sensitivity compared to full-
scan, as the mass spectrometer monitors a small fraction
of the mass range in the former case. The fragments for
a targeted method are usually selected in such a way that
they are the most unique choices per target. The most
unique fragment is used for quantification, whereas the
remaining fragments are used as qualifiers to help with the
identification. However, it is not always easy to pick appro-
priate fragments, because of the presence of background
analytes overlapping with the targets of interest.
Several tools have been developed to process the raw

GC-MS data. These include freely available tools such
as automated mass spectral deconvolution and identifica-
tion system (AMDIS) [1] from NIST, MetaboliteDetector
[2], TagFinder [3], and TargetSearch [4] or commercial
software such as Mass Profiler Professional (MPP) [5] by
Agilent and ChromaTOF by Leco [6].

© 2015 Nezami Ranjbar et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0681-2-x&domain=pdf
mailto: hwr@georgetown.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Nezami Ranjbar et al. BMC Bioinformatics  (2015) 16:259 Page 2 of 12

Although many of these tools can be used for analysis
of GC-SIM-MS data, some additional features are desired.
For example, after peak deconvolution, it is considerably
effective to define only a subset of the fragments from
the same chromatographic peak to be used for spectral
matching. Although MetaboliteDetector allows manual
definition of suchmass ranges, one cannot define themass
for each compound separately or at least over a certain
range of RT. Also, the values can not be imported from a
table at once. Moreover, the user is required to re-enter
the values when repeating the same analysis.
The limitation to define target-specific fragments leads

to interfering chromatographic peaks from fragments that
do not belong to the analyte of interest. The goal is to
ensure that appropriate fragments are selected, partic-
ularly the unique mass to be used for the purpose of
quantification. Due to a lack of software tools, the selec-
tion of such fragments is typically performed manually by
the user. Tools such as TagFinder [3] and TargetSearch [4]
limit the peak detection, peak grouping, and analyte iden-
tification to apex of the peaks. Although, there are some
advantages when working with apex of the peaks in case
of interference, in some cases, based on the overlapping
pattern of the interfering compound, the location and the
intensity of the apex of particular fragments may change
significantly.
Even if other tools such as XCMS [7] can be used

to perform peak detection and deconvolution, they lack
algorithms required for peak grouping followed by spec-
tral matching which are necessary for identification and
alignment steps in GC-MS data analysis.
In addition as in many SIM analyses only a few frag-

ments are selected to be monitored, the regular weighted
dot-product used for calculation of spectral matching is
not adequate to pinpoint most of the fragment peaks.
Also, for a large sample size, the manual curation of error
occurred in the peak detection and analyte identifica-
tion steps is not feasible [4]. Therefore, a tool capable of
automatically detecting and estimating the intensities of
fragment peaks with overlapping components is desired.
In a response to this demand, we introduce a new

tool for analysis of GC-SIM-MS data which addresses
the aforementioned shortcomings of available software.
Our tool provides guidance to users on the selection of
the appropriate fragments before running the experiment
based on a pre-specified library of background analytes.
Also, the user can provide his or her in-house library
including potential background analytes or any combina-
tion of libraries at hand. Moreover, we use a combina-
tion of both apex and EIC information when performing
peak detection to improve the estimation of the similarity
scores.
Although GC-MS instruments are quite reproducible in

terms of RT, it is very helpful to use retention index (RI) as

a standard method for the purpose of alignment and iden-
tification. A mixture of RI standards will be used for this
purpose where the RT differences between the standards
are known. While several RI standard mixtures, such as
FAME and Alkanes are available, users can create their
own set of RI standards to use them with their in-house
libraries.

Implementation
SIMAT has been implemented as an R/Bioconductor
package. The run time is shorter than analysis of typical
GC-MS data acquired in full-scan mode, because the tool
does not search for chromatographic peaks over the entire
span of RT.

Inputs
First, tools such as HP ChemStation by Agilent and Chro-
maTOF by Leco are used to convert the data to the
standard netCDF format. As GC-SIM-MS analysis is a
targeted method, the RT and spectral information of the
targets should be provided by the user. In addition, a
library can help improve the selection of the appropriate
fragments. Also user may provide the preferred fragments
per analyte to be used as quantifier mass. However, if
user does not provide this information, SIMATwill decide
based on other criteria outlined in following sections.

Algorithm
As shown in Fig. 1, SIMAT has several functionalities
including optimal fragment selection, baseline correc-
tion, peak detection and deconvolution, RI calibration
(optional, requires RI standards information), metabolite
identification, quantification, and visualization.

Optimal fragment selection
A list of quantifier and qualifier fragments is required
per target analyte prior to analysis by GC-SIM-MS. The
most unique fragment from the spectrum of each tar-
get is usually selected manually. This is a time consuming
task where users are prone to make errors particularly
when overlapping fragments are involved. We define two
analytes as overlapping if their RTs or RIs are within a
pre-specified tolerance criterion. The overlapping ana-
lytes can be determined from the target list, by using a
comprehensive mass spectral library such as Fiehn [8]
and NIST [9], or an in-house library including known
and unknown background analytes from the experimental
runs.
Although the uniqueness of the fragments is the most

reasonable feature to decide on the appropriate quanti-
fiers and qualifiers, the relative intensity of the fragments
should be taken into account as an important criterion
too. In other words, a fragment F may be unique for ana-
lyte A considering the overlapping analytes B and C, but
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Fig. 1 SIMAT pipeline. The SIMAT pipeline flowchart for experimental design and analysis of GC-SIM-MS data

its relative intensity in the spectrum of the analyte A may
be too small, e.g. less than 5% of the top three most abun-
dant fragments. Therefore, F is not a good choice as a
quantifier of A.
Another important consideration is the grouping of tar-

gets in RT windows. This is because the intensity could
decrease if too many targets are inserted in one window.
Therefore, there is a limit on the number of targets per RT
window based on the mass and total number of fragments
for each target in that window.
By providing a library including RTs or RIs for each

compound, the tool can come up with a sorted list of pre-
ferred fragments and RT windows (segments) for a list of
targets. However we recommend the user to run several
technical and analytical replicates of exemplar samples, to
review the background signals and select candidate frag-
ments for each analyte of interest. This initial evaluation
can be done manually or automatically using the optimal
fragment selection function in SIMAT.
By comparing the mass of each fragment for each target

with those of other targets or library compounds within a
specified range of RT or RI (when provided), we calculate
the penalty score as below to sort the fragments for each
target:

Pi,j = 1
ai,j

Omi,j∑
k=1

exp
(

−|ri − rk|
δR

)
(1)

where mi,j and ai,j are the mass and intensity of the jth
fragment from the spectrum of the ith target, ri is the
RI of the ith target, and k is the index of all fragments
sharing the same mass of that fragment, i.e. Omi,j . There-
fore, a fragment with a lower P is preferred. Here, δR is
the parameter to control the tolerable range of the differ-
ence in RI. Thus, the larger δRmeans less sensitivity in RI
mismatch.
SIMAT provides users with flexible options regarding

the input method of target information and selection of
fragments through optimization. As shown in Fig. 2, the
user can choose among three modes, i.e. target, library,
and combined:

• Target mode: The user provides the targets as an
MSL file including RT, mass, and intensity for each
fragment.

• Library mode: The user provides a target table, e.g. in
csv format, and a library in MSL format. The user may
provide either the mass of fragments or the number of
desired fragments. Alternatively, the user can provide
just the name of the target. In this situation, the tool
retrieves the intensity, RT and RI for which the
fragment mass are provided by the user. Optimization
is done for those targets with no mass information to
select the top fragments based on the desired
number. If the desired number is not provided, the
algorithm uses an adjustable default value.
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Fig. 2 Optimization flowchart. Flowchart of target list processing and fragment selection by optimization in three different modes

• Combined mode: The user can provide both targets
and the library in MSL format. In this case, first, an
aggregated library is made by merging the target file
and the provided library. Then, the algorithm follows
as the previous case with the list of targets obtained
from the MSL file.

In the above three modes, by setting a flag in the related
function, the user may force the optimization algorithm
to be applied to all entries whether the mass of fragments
are provided or not. However, in this case the algorithm
still follows the desired number of fragments if provided
by the user, otherwise, a default value is used.
The optimization module is the most time consuming

step in SIMAT. The running time depends on the num-
ber of targets as well as the number of compounds in
the library and the complexity of their spectra. For a tar-
get list of size 50 and a library with 1000 compounds,
the optimization may take several minutes on a desktop
computer.

Baseline correction
Baseline correction is performed at the beginning of the
SIMAT processing pipeline. This is done for each frag-
ment separately, as each monitored mass may have a
different level of background signal. Alternatively, base-
line correction can be performed using the tools applied
for data conversion.

Peak detection and deconvolution
Before peak detection, a smoothing filter is used. Then,
the profiles of the quantifiers are utilized to locate and
evaluate the reliability of the corresponding fragment
peaks for each target. This is done by comparing the
similarity scores of all candidate peaks with the target ana-
lyte using spectral matching and RI distance. Therefore,
all candidate peaks in vicinity of the expected RT of the
target, are evaluated to pinpoint the best fit.
After peak deconvolution, a peak shape quality score

(QS) is assigned to each retrieved EIC by measuring its
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goodness of fit using a Gaussian shape. The generated
QS is used to evaluate the reliability of identification and
quantification results to help us decide whether or not to
include the EIC of a fragment in calculating the similarity
score or estimating the intensity of the analyte.
Because of the modular design of the tool, the peak

detection algorithm can be replaced with any function the
user prefers as long as the superseded version provides the
location of the fragment peaks in a numeric vector.

Retention index calibration
We recommend using RI standards to allow RI calibration
as it helps improve peak detection and analyte identifi-
cation, leading to less false positives. The calibration is
done by regressing a piecewise linear model using the RT
values of the RI standards. Then, the learned linear model
is used to estimate the RI of the target analytes. This infor-
mation will be used in our peak detection step, i.e., by
comparing the RI of detected analyte to those of targets in
the library, analyte identification can be performed more
reliably. Also, because of the modular design of the tool,
the RI calibration function can be any function with the
same properties provided by user.
Although SIMAT provides an RI calibration solution,

the user is not limited to using this option. If the user does
not provide any RI information, the RTs are directly used
to perform the analysis. In this case, it is recommended
that the user provides the length of the search window
around the expected RT of each target. An estimated value
can be obtained by running few samples in full scan (pro-
filing mode) and averaging the shifts in RT of some known
compounds. If this value is not provided by user, SIMAT
uses a default value of 4 sec.

Analyte identification
The regular weighted dot-product-based similarity scores
are not adequate for analyte identification based on SIM
data in which very few fragments are present for each ana-
lyte. Therefore, we used a mixed score, i.e. Eq. 2, based
on two spectral matching scores: (i) the weighted dot-
product of spectra as shown in Eq. 3; (ii) the average
pairwise intensity comparisons between two spectra using
the ratios of all fragments as stated by Eq. 4:

S1,2 = N1SDP + N1∩2SPR
N1 + N1∩2

(2)

SDP =
(
mT

1 m2
)wm (

aT1 a2
)wa√( M∑

i=1
m2wm

1,i a2wa
1,i

) ( M∑
i=1

m2wm
2,i a2wa

2,i

) (3)

SPR = 1
N1∩2

N1∩2∑
k=1

min
(

αk ,
1
αk

)
(4)

where N1 and N1∩2 are respectively the number of frag-
ments in the unknown analyte’s spectrum and the number
of shared fragments between the unknown analyte and the
reference analyte from the library. Also, m and a are vec-
tors of fragments’ mass and intensities, respectively. The
wm andwa are the weights associated withmass and inten-
sity andM is the maximum possible number of fragments.
Moreover:

αk = a2,k
a2,k−1

a1,k
a1,k−1

(5)

which means depending on the size of the product of the
ratios of paired intensities, we always select the value to
make sure all summation terms in Eq. 4 are non-negative
values less than 1.
The original idea for the mixed score was introduced in

[10]. However, we improved the performance of the sec-
ond score by using all pairwise ratios when performing the
comparison between two spectra:

S∗
PR = 1

N∗
1∩2

N1∩2∑
k=1
�>k

min
(

α∗
k,�,

1
α∗
k,�

)
(6)

where:

N∗
1∩2 = (N1∩2

2
)

(7)

and:

α∗
k,� = a2,k

a2,�
a1,k
a1,�

(8)

Different overlapping patterns may occur depending
on the distance of interfering compounds and their rela-
tive intensities leading to different and some times quite
incomparable spectral matching scores. Therefore the
user can choose to use either the AUC-based or apex-
based scores. Finally, it is possible to use a weighted
combination of the two where the default weights are 0.5,
but they can be modified by the user:

SC1,2 = wSApex1,2 + (1 − w)SAUC
1,2 (9)

where 0 ≤ w ≤ 1.
The following equation is used to calculate the RI simi-

larity score [2]:

SR1,2 = exp
(

−|r1 − r2|
δR

)
(10)

where δR is the decay rate of the difference between RIs.
The overall similarity score is then calculated based on the
product of SC1,2 from Eq. 9 and SR1,2 from Eq. 10. Because of
the modular design of the software, the penalty function
can be replaced by any other function in case required.

Quantification
When the analyte of interest is detected reliably in pre-
vious steps, the related intensity is calculated based on
both the apex of fragments and the AUC of each fragment
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using the corresponding EIC. Therefore, the tool provides
the intensities for all quantifier and qualifier fragments
per analyte. However, it is recommended to use the inten-
sities from the quantifier mass for relative quantitative
comparisons.

Visualization
The pipeline provides functions which enables the user to
plot the TIC of a run, or a set of runs. The tool is also able
to visualize the profile of any target in an individual run by
plotting the EIC of all corresponding fragments. The EIC
plots also include a subplot showing a pseudo chromato-
graphic peak based on the expected EICs for all fragments
and the spectral information of the targets. The mass of
each fragment is shown while plotted in different colors.
In addition, two vertical dashed lines show the expected
and attained RTs of the target respectively.

Outputs
The primary output of the tool is a table including the
name of the target analytes with their quantitated inten-
sities across runs. In addition, if the user chooses to use
optimal fragment selection, a list of analytes with their
preferred fragments will be provided to be used in the
GC-SIM-MS data acquisition.
The tool also provides the EICs of the detected analytes

where the user can visually evaluate them. This can be
done for individual analytes in a specific run, or by provid-
ing a range of runs (using run names or run orders) and a
range of compounds (or compound names) from the list of
targets. The generated EICs can be used for further analy-
sis, such as visual inspection of randomly selected targets
to ensure the accuracy of the data preprocessing step.

Results and discussion
To evaluate the performance of SIMAT, we used two
experimental data sets, Data Set 1 and Data Set 2. Data Set
1 is from a targetedmetabolomic experiment that includes
86 subjects representing two disease groups. Data Set
2 contains 40 runs from a spike-in experiment using
mixtures of four internal standards. We analyzed these
two data sets with AMDIS+MPP,MetaboliteDetector, and
SIMAT. The evaluation performance was based on the
number of correctly detected analytes. The parameter
settings are provided in Additional file 1. Also, we illus-
trate different functions in SIMAT using a demo data set
(DSdemo). All three data sets were analyzed by GC-SIM-
MS using the metabolite extraction and data acquisition
methods described in the following sections.

Metabolite extraction
Plasma metabolites were extracted by adding 1mL of
working solution composed of acetonitrile, isopropanol,
and water (3:3:2) containing myristic acid d27 to 30μL
of plasma. After vortexing, samples were centrifuged at

Table 1 Percentage of detected targets for different similarity
score thresholds for Data Set 1

Score threshold 0.60 0.70 0.80

SIMAT 92.3 89.0 85.3

AMDIS + MPP 61.9 47.4 34.6

MetaboliteDetector 70.2 65.5 53.7

14,500 g for 15min at room temperature. The supernatant
was then divided into two, 460μL each, for analysis by
each of the GC-MS system.
We derivatized the dried samples in each batch prior to

injection following a two-stage process of oximation fol-
lowed by trimethylsilylation (TMS) [11, 12]. Briefly, 20 μL
of a 20 mg/mL methoxyamine hydrochloride in pyridine
was added to the dried extracts, vortexed and incubated
at 80 °C for 20min. After returning the samples at room
temperature, 91μL of MSTFA + RI standards was added,
vortexed and incubated at 80 °C for 20 minutes. Samples
were then centrifuged at 14,500 rpm for 15min, and 60 μL
of the supernatant was transferred into 250 μL clear glass
autosampler vials. The labeled internal standards were
purchased from CDN isotopes and RI standards were
purchased from TCI chemicals.

Data acquisition
The data sets were acquired by analyzing the metabo-
lite extracts using a 7890A Agilent Gas Chromatograph
coupled with a 5975C single quadrupole Mass Spec-
trometer (GC-qMS). Agilent J&W DB-5MS column (30m
× 0.25mm × 0.25μm film 95% dimethyl 5% diphenyl
polysiloxane) + 10m Duraguard Capillary column was
used. Prior to GC-MS analysis, retention time lock-
ing (RTL) was performed using myristic acid d27 at

Fig. 3 Similarity score histogram. Histogram of similarity scores for
targets detected in Data Set 1. As shown most of the targets had
similarity score above 0.8 threshold
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Fig. 4 Target EIC. Extracted ion chromatogram of monitored fragments for a target in Data Set 1. Using a modified spectral matching score in
combination of RI calibration, SIMAT is able to pick the correct chromatographic peak among multiple cases

16.727min. The samples were then injected in splitless
mode, with the injection port held at 250 °C. The initial
oven temperature was held at 60 °C for one minute and
then ramped at 10 °C/min to 325 °C and held for 10min.
The post run was one minute to allow the oven cool down
to 60 °C. MSD transfer line was held at 290 °C, ion source
at 250 °C and the mass analyzer at 150 °C. The GC-qMS
data were acquired in 37.5min with 5.9min solvent delay
at normal scan rate in the mass range 50-600Da.

Data Set 1: targeted metabolomic experiment
Data Set 1 was obtained by a targeted analysis of 69
metabolites in plasma from 86 subjects using an Agilent
GC coupled with a single quadrupleMSDmass spectrom-
eter in SIM mode.
Table 1 shows a comparison between different tools

based on the number of peaks detected with a similar-
ity score higher than a threshold. As shown in the table,
SIMAT leads to detection of more metabolites compared
to other tools for the same threshold of similarity score.
For example, SIMAT detected 85.3% of the targets with a
score higher than 0.8 out of 1.0 while using AMDIS+MPP
and MetaboliteDetector, only 34.6% and 53.7% of the
analytes were detected for the same threshold of 0.8,
respectively. At best, we were able to detect 61.9% of
metabolites with a score higher than 0.6 in all runs using
AMDIS+MPP. Similarly, using MetaboliteDetector, we
detected 70.2% of total analytes in all runs with a score
higher than 0.6. Figure 3 illustrates the histogram of the
similarity scores of the targets detected by SIMAT. Also,
Fig. 4 shows an example of the EIC obtained by using
SIMAT.
Figure 5 illustrates the histogram of the targets when

optimal target selection is not used. Figure 6 shows
two analytes to demonstrate the power of using optimal
fragment selection versus choosing fragments based on

the Fiehn SIM library. As illustrated, the selection of the
fragments based on default values suggested by the library
is not always efficient. In fact, in some cases, it may even
make the detection of the analytes very difficult which
subsequently may lead to inaccurate quantification of the
targets.

Data Set 2: spike-in experiment
Data Set 2 was acquired by the same instrument as Data
Set 1. It consists of 40 runs including 39 runs of three tech-
nical replicates of four standards (Table 2) at 13 different
concentration levels ranging from 1× to 2−12×, where the
base concentration 1× was specifically determined based
on each standard. The standards were spiked-in plasma

Fig. 5 Similarity score histogram. Histogram of similarity scores for
detected targets when default fragments from the Fiehn SIM library
were used with Data Set 1. Compared to Fig. 3, the scores are shifted
to the left, indicating that the identification is not as confident as the
former case, where fragments are selected by optimization
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Fig. 6 EIC comparison. Comparison between the EICs of two analytes before (top row) and after (bottom row) using optimal fragment selection in
Data Set 1. This shows the effectiveness of choosing appropriate fragments by using optimization techniques while a pre-specified library of
background compounds is provided by the user

samples. This allows us to evaluate the power of our tool in
quantification of the targets in the presence of background
analytes. Also, for quality assessment, a sample including
all four standards with the base concentration was ran at
the end of queue in full scan.
Figure 7 shows the log intensity of the quantifier

and qualifier fragments for the four standards deter-
mined by SIMAT. As shown in the figure, because of
existing background, some fragments hit the baseline

Table 2 List of spike-in internal standards in Data Set 2

Internal standard Quantifier Qualifier 1 Qualifier 2

glutamic acid d5 161 235 263

tryrosine d2 218 282 181

myristic acid d27 312 76 135

phenylalanin-phenyl d5 219 200 274

concentration and remain almost flat below a certain level.
For instance, in the case of tyrosine d2, the fragment
with mass 218 is not a good choice, as its trend shows
that another analyte sharing the same fragment exists in
vicinity of tyrosine’s elution time. While the background
may originate from known or unknown compounds, this
example shows that appropriate choice of fragments for
monitoring is very important, mainly for low abundant
analytes.
In summary, using SIMAT, we were able to detect all

the standards in all runs at each concentration level con-
sidered in this study using 0.8 as the cutoff score. In
comparison, on the basis of the number of missing values
and the confidence of the similarity scores, AMDIS+MPP
and MetaboliteDetector detected 52% and 64% of the
total target analytes across all runs with a similarity score
threshold of 0.8, respectively.
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Fig. 7 Spike-in experiment. Reproducibility of the spike-in standards over a wide range of concentration levels in Data Set 2

Data processing example
Here, we demonstrate how SIMAT can be used for pro-
cessing of GC-SIM-MS data through a demo data set
embedded in the package. The list of analytes in this data
set is shown in Table 3. After installation, we start by
loading the package and example data sets included in the
SIMAT library:

# load the package library(SIMAT)

# load data already extracted from a CDF

file data(Run)

# load the target table information data

(TargetTable)

# load RI table from RI standards data

(RItable)

# load the background library data

(Library)

Before advancing to the next steps, we can check the
total ion chromatogram (TIC) of the run as shown in
Fig. 8:

# plot the TIC of the selected Run plotTIC

(Run = Run)

Now we need to get the Targets from provided target
table and the library:

# get targets info using target table and

# provided library

Targets <- getTarget(Method = "library",

Library = Library,

target.table = target.table)
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Table 3 List of 17 analytes in the package’s embeded data set

Analyte QF QL1 QL2 QL3 RI

epsilon-caprolactam 56 98 170 171 703.8

norvaline 72 73 74 75 791.7

valine 144 73 147 218 897.5

urea 189 66 74 190 920.2

phosphoric acid 300 211 73 314 954.8

proline 59 142 143 216 978.5

threonine 117 218 219 291 1061.8

trans–hydroxy-L-proline 230 231 304 147 1134.2

aspartic acid 188 202 218 232 1191.3

phenylalanine 91 120 130 146 1223.4

glutamic acid d5 132 147 251 252 1289

glutamic acid 128 156 246 247 1292.1

lauric acid 257 129 132 57 1326.6

arabitol 217 205 117 319 1389.4

sorbose 103 217 218 307 1549.7

linoleic acid 67 75 81 337 1880.7

arachidic acid 117 129 132 145 2103.9

QF: quantifier, QL: qualifier, RI: retention index (FAME)

To find the corresponding chromatographic peaks in the
run, we can call getPeak function:

# get the peaks for this run corresponding

to

# Targets

runPeaks <- getPeak(Run = Run,

Targets = Targets)

Following that, the extracted ion chromatogram (EIC)
of the retrieved chromatographic peaks can be visualized
using plotEIC function:

# plot EIC of the first peak (target) on

# the list

plotEIC(peakEIC = runPeaks[[1]])

# plot EIC of the last peak (target) on

# the list

plotEIC(runPeaks[[length(runPeaks)]])

# plot EIC of multiple peaks (targets)

for (i in 1:length(runPeaks)) {plotEIC

(runPeaks[[i]], fig.name = paste("EIC",

as.character(i), sep = ""))}

However, the above is done without RI calibration. To
adjust for RI, first we call getRI to create a function
which can be used to calculate the RI given the RT:

# create the RI calibration function

calcRI <- getRI(RItable)

Here, calcRI is a function which accepts RT values as
its argument:

# calculate the RI of an RT = 12.32min

calcRI(12.32)

Also, calcRI can be used with the getPeak func-
tion to redo the data preprocessing, but this time, with RI
calibration:

# get the peaks for this run corresponding

to

# Targets using RI calibration

runPeaksRI <- getPeak(Run = Run, Targets =

Targets, calcRI = calcRI)

To work with the fragment selection function, i.e.
optFrag, we can use the example background library, i.e.
Library. This is recommended to be done before the
experiment, as after running the experiment, it may not
be possible to find an optimum choice among the set of
monitored fragments. We can also check the difference

Fig. 8 TIC example. An example of total ion chromatogram (TIC) of a run visualized by SIMAT
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between the default set of the fragments, and the ones
selected by optFrag function:

# get an optimized version of the target

list optTargets <- optFrag(Library =

Library, target.table = target.table,

forceOpt = TRUE)

# check the fragments of the first target

# the mass of fragments Targets$ms[[1]]

# the intensity of fragments Targets$sp[[1]]

which gives the mass of fragments as 56, 98, 170, and 171
with relative intensities of 152, 148, 1000, and 156, respec-
tively. On the other hand, we can check the optimization
results:

# check after optimization

# the mass of fragments optTargets$ms[[1]]

# the intensity of fragments optTargets

$sp[[1]]

which generates the mass of fragments as 170, 171, 185,
and 112 with relative intensities of 1000, 156, 141, and
36, respectively. Although two of the fragments are the
same as the original choice, their order has changed after
optimization. Also, two new fragments are selected that
can be used as qualifiers. As illustrated, Fig. 9 assures us
that the fragment with mass of 170 is a better choice as a
quantifier for this analyte.
In the example above, the optFrag function is

used directly. However, it is usually used within the
getTarget function, where the user can set if optimiza-
tion is desired.
More example data sets are available for testing the tool

at http://omics.georgetown.edu/SIMAT.html.

Conclusions
We introduce a new R package called SIMAT that allows
the selection of the optimal set of fragments and reten-
tion time windows for target analytes in GC-SIM-MS
based analysis. Also, various functions and algorithms
are implemented in the tool to: (1) read and import raw

Fig. 9 Target EIC. Extracted ion chromatogram (EIC) of monitored fragments for an analyte. Although 56 is considered as the quantifier fragment,
170 is a better choice as suggested by the optimization algorithm in SIMAT

http://omics.georgetown.edu/SIMAT.html
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data in netCDF format and spectral libraries in NIST
MSL format; (2) perform GC-SIM-MS data preprocess-
ing including baseline correction, peak detection and
deconvolution, retention index calibration, analyte iden-
tification, and quantification; and (3) plot and visualize
EICs and TICs, which can be used for manual curation
of the retention times or other parameters used for data
preprocessing.
Because the tool aims to locate selected ions, the pro-

cessing time is reasonably short compared to algorithms
that look for all possible chromatographic peaks. By using
experimental data sets, we evaluated the performance of
the method and showed that it is capable of retrieving tar-
get analytes with a run time as short as 10min for a data
set with 86 GC-SIM-MS runs.
Finally, although SIMAT is tailored to process GC-

SIM-MS data, the implemented algorithms can be uti-
lized to search for targets in data acquired in full scan
mode. It can also help determine the most appropri-
ate fragment for quantification of analytes in untargeted
analyses.
Future work will focus on development of a GUI

for the tool. Other improvements in the peak detec-
tion algorithms, data visualization, and supporting more
input data formats for the raw and library data will be
considered.

Availability and requirements
Project name: SIMAT
Project home page: http://omics.georgetown.edu/
SIMAT.html
Operating system(s): Platform independent
Programming language: SIMAT is available as an R
package as a free and open-source tool on Bioconductor
repository. Moreover, the tool is available as a set of m-
files which can be run in MATLAB.
License: GNU GPL-2
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Parameter settings and compound names
including derivatization. This file includes parameter settings used in
MetaboliteDetector and AMDIS. It also includes the name of the
compounds in Table 3 with the derivatization as listed in NIST GC-MS
library. (PDF 190 kb)
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