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Abstract

unknown function, as a test case.

performs as well as an array of conventional algorithms.

Background: Selective pressures at the DNA level shape genes into profiles consisting of patterns of rapidly evolving
sites and sites withstanding change. These profiles remain detectable even when protein sequences become
extensively diverged. A common task in molecular biology is to infer functional, structural or evolutionary relationships
by querying a database using an algorithm. However, problems arise when sequence similarity is low. This study
presents an algorithm that uses the evolutionary rate at codon sites, the dN/dS (w) parameter, coupled to a
substitution matrix as an alignment metric for detecting distantly related proteins. The algorithm, called BLOSUM-FIRE
couples a newer and improved version of the original FIRE (Functional Inference using Rates of Evolution) algorithm
with an amino acid substitution matrix in a dynamic scoring function. The enigmatic hepatitis B virus X protein was
used as a test case for BLOSUM-FIRE and its associated database EvoDB.

Results: The evolutionary rate based approach was coupled with a conventional BLOSUM substitution matrix. The two
approaches are combined in a dynamic scoring function, which uses the selective pressure to score aligned residues.
The dynamic scoring function is based on a coupled additive approach that scores aligned sites based on the level of
conservation inferred from the w values. Evaluation of the accuracy of this new implementation, BLOSUM-FIRE, using
MAFFT alignment as reference alignments has shown that it is more accurate than its predecessor FIRE. Comparison of
the alignment quality with widely used algorithms (MUSCLE, T-COFFEE, and CLUSTAL Omega) revealed that the
BLOSUM-FIRE algorithm performs as well as conventional algorithms. Its main strength lies in that it provides greater
potential for aligning divergent sequences and addresses the problem of low specificity inherent in the original FIRE
algorithm. The utility of this algorithm is demonstrated using the Hepatitis B virus X (HBx) protein, a protein of

Conclusion: This study describes the utility of an evolutionary rate based approach coupled to the BLOSUM62 amino
acid substitution matrix in inferring protein domain function. We demonstrate that such an approach is robust and

Background

The initial steps when investigating phylogenetic relation-
ships or protein functions usually relies on performing ac-
curate sequence alignments. Typically, tools such as
BLAST [1] are employed to search a biological database
like GenBank [2]. Once a statistically significant match has
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been made with a protein of known function, hypotheses
concerning the putative function or evolutionary history
[3] can then be generated for the query sequence. Chal-
lenges arise when sequence similarity is low. Conventional
alignment approaches are not sufficiently robust to detect
homology in rapidly evolving sequences, evolutionary dis-
tant organisms or in sequences that have nucleotide and
amino acid biases. Sequences may share important func-
tional and evolutionary relationships in the range of low
similarity, for example in the region of 20 to 30 % (the
“twilight zone” of sequence alignment [4, 5]) or even when
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similarities are as low as 15 % [6, 7]. Structural data are
frequently used as the standard of truth in these cir-
cumstances, however, they are often challenging to per-
form computationally and limited [8]. In the absence of
structural data, amino acid residue match or percentage
identity based performance measures are used in com-
paring algorithm alignment quality performances. How-
ever, residue based performance measures are flawed [9]
and biased as they miss similarities that can only be de-
tected by structural approaches or evolutionary based
approaches.

Selective pressure is used to indicate the effects of nat-
ural selection on genes and can be used as an indicator of
molecular evolution [10]. Evolutionary pressures resulting
from natural selection at the DNA level have been found
to mould genes into patterns of sites that are highly con-
served (resistant to change) and those that are poorly con-
served (evolving rapidly). The level of conservation can be
inferred from the ratio of the non-synonymous substitution
rate (dN or Ka) to the synonymous substitution rate (dS or
Ks) and corrected for opportunity, loosely referred to as the
evolutionary rate, represented by the parameter w or dN/dS
[11]. It has been demonstrated that these patterns of evolu-
tionary rates or “Evolutionary fingerprints” [12] can be used
as a similarity metric in a sequence alignment algorithm. A
novel alignment algorithm Functional Inference using
Rates of Evolution (FIRE) was developed to address the low
similarity challenge [13]. FIRE uses the evolutionary
rate (w=dN/dS) at codon sites, rather than individual
amino acid residue identities to align sequences thus cir-
cumventing the problem of low sequence similarity. FIRE
alignments provided a proof of concept that the evolution-
ary rate could be used as an alignment metric and that in
some cases at least, sequences with similar selection pres-
sure profiles at codon sites have functional similarity.
These findings supported the hypothesis that protein
domains under similar selective pressures measured
through the evolutionary rate may be responsible for
similar functions. It has also been suggested that the
distribution of the evolutionary rates on a gene could
be used in an approach that is analogous to homology
searching using a query sequence [12]. Aligning se-
quences based on their evolutionary rate profiles could
therefore offer an additional method for testing func-
tional and evolutionary relationships. One of the major
limitations of the FIRE approach, however, was the
finding of numerous false positives, particularly when
two unrelated highly conserved domains were aligned
[13]. This study evaluates the current version of the al-
gorithm (FIRE) and describes the implementation and
evaluation of the new, more robust algorithm, which
we call BLOSUM-FIRE.

In this study, the evolutionary rate was coupled with
a standard BLOSUM substitution matrix in a dynamic
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scoring function. In doing so the problem of false
positives was addressed. The new algorithm (BLO-
SUM-FIRE) performs as well as MAFFT, T-COFFEE,
MUSCLE and CLUSTAL Omega algorithms. An evolu-
tionary rates database (EvoDB) is reported and described
elsewhere (manuscript accepted in Database) and can be
queried with FIRE data. As a test case, the enigmatic hepa-
titis B virus X protein (HBx) was examined with
BLOSUM-FIRE. The Hepatitis B Virus (HBV) has been
implicated in diseases such as Hepatocellular carcin-
oma (HCC) [14], chronic hepatitis and liver cirrhosis
affecting millions of people worldwide. One of the chal-
lenges in understanding the biology of the HBV has
been the failure to elucidate the numerous functions of
the HBx protein [15]. Experiments have failed to con-
clusively identify the role played by the protein in the
hepadnavirus life cycle [16]. Consequently, its structure
and function has sparked controversy and speculation.
This controversy is attributed to a lack of homology to
any known protein in biological databases, exacerbated
by the fact that the structure has defied conventional
structure determination methods [17]. Here we provide
alignment evidence that the protein may harbour viral
endopeptidase functions.

Methods

The FIRE algorithm

The FIRE algorithm is implemented in the Python pro-
gramming language, it finds the optimal alignment of two
amino acid sequences using the Bayes Empirical Bayes
(BEB) maximum likelihood estimates (MLEs) [11] of the
evolutionary rate (o = dN/dS) at codon sites. FIRE requires
two multiple sequence alignments (MSAs) of nucleotide
sequences with their corresponding phylogenetic trees to
generate a pairwise amino acid alignment. A modified
Needleman-Wunsch algorithm [18] determines the global
alignment between the sequences based on a dynamic
programming (DP) approach. The generation of align-
ments requires MSA files and their corresponding phylo-
genetic tree files which are used as input for the
CODEML program found in the Phylogenetic Analysis by
Maximum Likelihood (PAML) suite of software [19] to
produce the BEB MLEs of w at codon sites. This pre-
processing using CODEML provides the rst output files
which are consequently used as input for the FIRE algo-
rithm to generate alignments.

Data sets

For the initial evaluation of the algorithm, data sets used
in the concept paper were utilised [13]. To evaluate the
BLOSUM-FIRE algorithm evolutionary rate profiles of
the Pfam (Protein family) [20] database were compiled
into the evolutionary rates database (EvoDB) described
elsewhere (manuscript accepted in Database).
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To demonstrate the utility of the database evolutionary
profiles of the enigmatic HBx protein were used. HBx
was chosen because functional inference has been elu-
sive. HBx curated nucleotide sequences were obtained
from [21]. An alignment of 20 nucleotide sequences of
the HBx was generated using the CLUSTAL Omega
(ver. 1.2.0) program and phylogenetic trees inferred from
the FastTree program (ver. 2.1.7) [22]. MLEs of w were
determined using the CODEML program in PAML (ver.
4.4) suite of software.

To infer the domain functions of HBx the EvoDB data-
base was used. EvoDB (www.bioinf.wits.ac.za/software/
fire/evodb) is a database of 98 % of the gapped nucleo-
tide sequence alignments for the PFAM-A database. It
provides the evolutionary rate (w=dN/dS) profiles
determined under the M2a model (CODEML algorithm
in the PAML suite) for 97 % of the PFAM domains. The
clustering of proteins into families in PFAM using domain
functions provided a suitable framework for implementing
a searchable database for inferring domain functions. The
database was compiled for use by BLOSUM-FIRE. Briefly,
BEBs [11] o MLEs at codon sites were calculated using
the CODEML program (PAML ver. 4.4) [19] under the
M2a Model (NSsites = 2). This parameter assumes one ra-
tio for all the branches and allows for the detection of
positive selection at codon sites. The w MLEs were ex-
tracted from the rst CODEML output file and used to
compile the w MLE profiles for each dataset. This rst file
contains supplemental results including: Naive Empirical
Bayes (NEB) probabilities for the site classes of o, a list of
positively selected sites, log likelihood values and the
BEBs. These rst files for PFAM domain analysis using
CODEML under the M1la and M2a models are available
for download on EvoDB. Individual domains form func-
tional units and are less variable than multi-domain pro-
teins. The evolutionary rates at codon sites across discrete
domains provide signature profiles of w values, which may
be used for homology detection [13]. An independent
study of RNA viruses based on a novel model of sequence
evolution also demonstrated that protein-coding regions
were moulded into sites of varying selective pressure [12].

To evaluate the accuracy of the new BLOSUM-FIRE
algorithm against widely used algorithms: CLUSTAL
Omega, MUSCLE and T-COFFEE using MAFFT as a
reference, 20 datasets were used. The datasets consisted
of w profiles of unrelated and related domains using
nucleotide sequence data for the PFAM-A domains ob-
tained from EvoDB.

Evaluation of the FIRE algorithm with real data

The limitation of the FIRE algorithm identified in the
concept paper of [13] was that the algorithm produced
false positive results in certain datasets . Those data
sets where the FIRE algorithm produces false positives
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were identified, analysed and the correlation between
the statistical distribution of the w values and the qual-
ity of alignments produced was investigated. To further
explore the problem posed by false positives, 100 align-
ments of evolutionary rate profiles of the PFAM-A
database were investigated. Alignments were generated
using the FIRE algorithm and the number of residues
aligned was counted as a measure of the quality of
alignment. Alignments were then generated using the
CLUSTAL Omega algorithm (ver. 1.2.0) [23] and
MAFFT (ver. 7.130b) algorithm [24] using default
parameters. Each alignment was scored using the num-
bers of aligned residues normalised by maximum
sequence length indicated by the identity score. Our
identity score is equivalent to the percentage identity
score (PID) [9] normalised between 0 and 1 for intui-
tive comparison to a FIRE algorithm score. To assess
the false positive rate we defined a false positive as any
alignment with a FIRE score above 0.6 for functionally
unrelated domains. This threshold was adopted from
the concept study where domains with this score or
higher were inferred to share similar domain functions.
Each alignment was scored using the numbers of
matched residues normalised by the maximum se-
quence length indicated by the identity score. In such
scenarios, structural data could provide a standard of
truth for evaluating alignment quality [25]; however,
the requirement for MSAs in BLOSUM-FIRE and the
limited availability of domain structures made this im-
possible in this study.

Evaluation of FIRE using simulated data

The FIRE algorithm had reduced specificity in highly
conserved data sets resulting in false positives. Simu-
lated data sets were therefore created to investigate
false positives further. Highly conserved datasets were
created such that the o values were in the range
[0,0.02] across all coding sites. Simulations were carried
out using real and truncated datasets generated by a
combination of custom scripts and manual editing of
input files to insert sites of positive selection. Align-
ments were generated using FIRE default parameters
for gap open and gap extension penalties of 0.5 and 0.1,
respectively. The simulated datasets were then aligned
using the MAFFT and CLUSTAL Omega algorithms.

Coupling FIRE with a BLOSUM substitution matrix

Evaluation of the false positive results identified in the
concept paper [13] revealed that the homogeneity of
highly conserved data, where the variance of w values
was low, resulted in reduced specificity. To address this
challenge the new algorithm called BLOSUM-FIRE was
implemented by incorporating the identity of the amino
acids using the BLOSUMS62 substitution matrix [26].
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Recently, the efficacy of substitution matrices has been
questioned with the development of search approaches
that do not utilise amino acid substitution matrices, for
example, the CS-BLAST tool, is a novel search ap-
proach in which context-specific (CS) substitution
matrices were incorporated into the BLAST algorithm
[27]. At the same time, MIQS (Matrix to Improve
Quality in Similarity search), a more robust matrix, has
been developed from numerous matrices using princi-
pal component analysis for detecting remote homolo-
gies, for example, in transmembrane regions [28].

Empirical experiments with simulated data sets pro-
vided the framework for coupling FIRE and the BLO-
SUMS62 substitution matrix. We propose a scoring
function that scores the aligned amino acids depending
on their conservation measured through the o param-
eter. To simplify the task of generating alignments
using the Needleman-Wunsch DP algorithm, a unified
scoring function was required. Therefore, for two
amino acids: i and j with evolutionary rate values of w;
and wj, the guiding principles for the BLOSUM-FIRE
scoring function are:

e Determine the BLOSUM amino acid score s5(i,),
from the BLOSUM matrix using the identity of the
aligned residues.

e Determine the selective pressure on the amino acids
using the values of ; and ;.

e Scale the BLOSUM score using the following
principles of selective pressure: w > 1 is positive
selection, w < 1 is negative selection or purifying
selection and w =1 indicates neutral selection.

o Determine the similarity of w; and w; values
normalised between 0 and 1 to a score called
similarity.

e Use the selective pressure to scale BLOSUM values
to a BLOSUM comparable score called selection.

e Combine the similarity score and selection score to
obtain the BLOSUM-FIRE score.

e Use a modified Needleman-Wunsch DP algorithm
to obtain the global alignment of the amino acid
sequences.

To simplify the scoring function, a single value was re-
quired to score the similarity of the evolutionary rates
(dN/dS) and selection of the selective pressure adjusted
BLOSUM score. We formulated an additive scoring
scheme such that:

BLOSUM-FIRE = similarity + selection
Therefore, the BLOSUM-FIRE scoring function scores

amino acid residues using BLOSUM scores which are
subsequently adjusted according to selective pressure
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and this is added to similarity score of w values aligned
at codon sites.

Approximating selective pressure and scaling the
BLOSUM score

The o value is widely accepted as a proxy for the evolu-
tionary pressure on an amino acid at a codon site. This
has been extended to indicate whether the amino acid
has a functional role and identifying the coding regions
in a genome [29, 30]. An » value close to zero indicates
strong selective pressure, while an @ >1 means non-
synonymous substitutions may offer some fitness
advantage to the function of the protein concerned at
that site. In addition, amino acid variability at such sites
with elevated w values is expected. On the other hand,
o <1 indicates negative or purifying selection and & =1 in-
dicates neutral selection. We propose an approximation
equation based on these selective pressure guidelines. This
equation was chosen as it is monotonic and, more import-
antly, it approximates the relationship between o values
and the selective pressure according to theoretical guide-
lines, for example, detecting sites under positive selection
[31]. Let a be the w value of amino acid; and b is the o
value of amino acid;, the approximated selective pressure
on the two aligned amino is acids such that:

sely, = e (@th) (1)

where sel,, is the approximated selective pressure at the
codon site in the range [0,1]. The selective pressure
(sel,p) provides information that is untapped by conven-
tional alignment algorithms. Such an approximation
given by Equation (1) emphasises the quality of align-
ments based on the level of conservation at the amino
acid level. We propose that this selective pressure can be
used to scale BLOSUM scores. This selective pressure
scaled BLOSUM score called selection is given by the
equation:

selection = BLOSUM X sel, (2)

The premise of the FIRE principle is that amino acid
sequences under similar selective pressures share simi-
lar functions. Several studies have demonstrated that
highly conserved sites can be used as a proxy for func-
tionality, for example, ConSurf [32] and Rate4site [33];
it has also been demonstrated that natural selection im-
prints genes with evolutionary fingerprints which can
be used as gene identifiers [12]. Our concept study [13]
demonstrated that at least in some cases those domains
that are under similar selective pressures inferred from
the evolutionary rates can be responsible for similar
functions. While amino acid sequences under similar
selective pressures may share similar functions the con-
verse is not true. Let a be the evolutionary rate () of
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amino acid; and b the o value of amino acid;, where i
and j are indexes in amino acid sequences, then the
similarity sim,; of the evolutionary rates can be calcu-
lated such that:

Simgy = l_mlltj(zs,lb) if aorb>1 (3)
or
simgp = 1-la-b| if a and b <1 (4)

Either Equation (3) or Equation (4) can be used to cal-
culate the similarity sim,,;, to the absolute difference nor-
malised in the range [0,1]. Therefore, sim,; maximises
the absolute normalised differences at codon sites.

Coupling the BLOSUM matrix approach with the FIRE
approach

To couple the two approaches an assumption that an
amino acid match is analogous to the similarity of low
evolutionary rates at a highly conserved site was
adopted. Therefore, an identical match score in amino
acid residues was proposed to be equivalent to a FIRE
score of 1 for a highly conserved site. A proportionality
constant (K) was proposed for the FIRE approach score
or sim,, to be comparable to BLOSUM scores. Let
simg, from Equation (3) or (4), be the similarity
between the w values at sites a4 and b, therefore the
BLOSUM comparable score is given by:

F =K X simgy (5)

where F is a BLOSUM comparable score, K is the pro-
portionality constant obtained from the substitution
matrix and sim,, is described in Equations (3) and (4).
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To calculate K, an assumption that an identical amino
acid match is analogous to a match at codon sites where
the evolutionary rates are close to zero was adopted.
The proportionality constant (K) is the mean amino acid
identical match scores determined from the BLOSUMG62
matrix and it was found that K = 5.64. Using this propor-
tionality framework we adopt the BLOSUM approach
and weigh ambiguity characters in the same manner as
regular amino acids.

The BLOSUM-FIRE scoring function

The strength of the FIRE approach is its ability to detect
shared functions using w values at low sequence similarity
without using the amino acid identity. The BLOSUM ap-
proach is effective for aligning sequences using amino acid
identity. The FIRE algorithm produced false positives
when sequence conservation was high. This is because at
high conservation the high similarity of the w values cre-
ates “noise” for the scoring function resulting in poor
alignments. Under such conditions the power of aligning
sequences based on dN/dS values at amino acid sites be-
comes weak. Therefore, at high conservation the BLO-
SUM score is more acceptable than a FIRE score.

To allow the algorithm to be dynamic between the
two approaches: BLOSUM to FIRE depending on the
selective pressure on the amino acids the equations were
combined, resulting in a dynamic scoring scheme such
that:

BLOSUM-FIRE = BLOSUM x sel,, + K
X simgp(1-selyp) (6)

Conversely, the approach recognises that when con-
servation is low the BLOSUM score may not be strong
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evidence. It has not left our attention that determining
evolutionary rates requires nucleotide MSAs, which
can be challenging to obtain. Therefore, to mitigate this
challenge the database EvoDB is provided (described
above) and BLOSUM-FIRE allows for the comparison
of protein sequences with evolutionary rate profiles in a
one sided comparison. However, this comparison may
not be as robust as a pairwise evolutionary rates com-
parison. To allow for this one-sided comparison, the
algorithm assumes that all the protein residue sites for
the protein sequence without @ MLEs are highly con-
served such that w = 0.

A variable gap penalty scheme

The affine gap penalty scheme used in the FIRE algo-
rithm proposed by [34] and [35] was modified for the
BLOSUM-FIRE algorithm to make it more variable
depending on the selective pressure at codon sites. A
variable gap penalty scheme similar to the form de-
scribed by [36] is proposed. Furthermore, Equation (1)
was also adopted for approximating the selective pres-
sure at codon sites to determine the gap penalties. The
proposed variable gap penalty uses the same principle
for adjusting BLOSUM scores. Consequently, those
sites that are highly conserved have relatively high gap
penalties given by the equation:

P=ge*+tle™ (7)

where P is the total gap open penalty g, is the initial gap
open penalty ¢, is the initial gap extension penalty /, is
the length of the gap, e “ is the approximated selective
pressure at the codon site, a is the w value where the
gap is opened and similarly, e * is the approximated
selection pressure where x is the w value for the site
where the gap is extended. Therefore, gaps are extended
based on the level of conservation at each site where the
gap open penalty and its extension thereof varies as a
function of the evolutionary rate at each site. According
to this penalty scheme, variable sites are more likely to
be gap insertion or extension sites than conserved sites.

Determining optimal gap penalties for the new BLOSUM-
FIRE algorithm

Theoretical guidelines for the determination of gap
penalties are scarce. In this study an empirical ap-
proach similar to the investigation by [37] was adopted.
The datasets consisted of 50 amino acid sequences with
their w MLEs of varying sequence lengths randomly
selected from the Pfam-A seed alignments database
(ver. 27.0) [20]. The BLOSUM-FIRE score was used as
a proxy for the quality of the alignments, the score is
the mean of the sequence identity and the normalised
evolutionary rate score (old FIRE score) for that
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alignment. We aligned the Pfam sequences against each
other for iterations of the gap penalties. Iterations were
carried out using gap open penalties in the range [0,11]
and gap extension penalties in the range [0,6]. Analysis
was only carried out on the gap penalties and the
BLOSUM-FIRE score for that alignment.

Evaluating the effect of MSA quality on the final
alignment

We evaluated the effect of sequence number and MSA ac-
curacy on the final alignment. To evaluate the effect of
number of sequences on the final alignment, 10 Pfam fam-
ilies were randomly selected and using between 3 and 20
taxa we investigated how shuffling the order of sequences
in the MSA affected the BLOSUM-FIRE score. The do-
mains with the varied number of sequence were aligned
with the same domain with 20 sequences. The effect of

FIRE algorithm scores and alignment
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L

Fig. 2 Alignment produced by the FIRE algorithm for simulated
highly conserved sequences compared with conventional
algorithms: CLUSTAL Omega, MAFFT and T-COFFEE. The first line in
the FIRE output indicates the normalised score of w score matches
and the second line is the FIRE score for the alignment, FIRE scores
above 0.6 indicate functional similarities in the sequences. The FIRE
alignment demonstrates a false positive result
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MSA accuracy on the final alignment was investigated
using the heat shock hsp70 (PF00012) domain using
nucleotide sequence data corresponding to the manually
curated Pfam alignments from EvoDB. Using the MAFFT
algorithm and by iteratively increasing the gap open pen-
alty from O to 3 in increments of 0.1, we were able to ob-
tain alignments of varying quality and accuracy using the
comparison against the alignment generated using default
parameters as a performance measure. These alignments
were then aligned to the reference alignment to evaluate
the effect on the final alignment. Phylogenetic trees
for the above experiments were determined using the
CLUSTALO program and o profiles were determined
under the M2a model using CODEML.

Resources

The resource requirement of an algorithm is an important
consideration as some algorithms may require prohibitive
resources or running times. While BLOSUM-FIRE has
not been optimised for performance, we assessed the time
and resource requirements for generating alignments from
the MSAs to the final pairwise alignment. For this analysis,
the heat shock hsp70 domain was used; we trimmed the
sequence to 900 nucleotides to approximate the average
length of a protein. Alignments were then de-aligned and
iteratively added from 3 sequences to 30. Resources were
measured using the Unix time command. Execution times
were measured for the generation of alignments and cal-
culating the phylogenetic tree and determining the w
MLEs. Furthermore, the time taken to generate the final
alignment using BLOSUM-FIRE was also measured.
Resources were measured on one of the nodes on our
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cluster (WITS-CORE). This is an Intel (R) Xeon (R)
machine with 15 E5630 processors at 2.53GHz running
the Scientific Linux operating system. The machine has
a cache size of 12M and 23GB RAM. All experiments
were carried out on a single core using default algo-
rithm parameters.

Evaluation of BLOSUM-FIRE performance

The conventional approach when evaluating the per-
formance of a sequence alignment algorithm is to make
use of a sequence alignment benchmark. However, the
reliance on pre-processed data makes it a challenge to
evaluate the BLOSUM-FIRE approach. The MAFFT
algorithm is well known for its accuracy and speed, for
example, [38] and more recently [39] and was therefore
chosen as a reference aligner for evaluating the new im-
plementation. Datasets comprised 10 unrelated and 10
related domains obtained from EvoDB. To demonstrate
the utility of our approach and EvoDB, we simulated
the 10 related datasets by randomly selecting and gener-
ating an alignment of 10 taxa from the selected families
with total sequence numbers in the range [14,187] and
these were then aligned against their full alignments. The
quality of alignments was measured using the Sum of Pairs
Score (SPS) and Total-Column score (TC) implemented in
the bali_score tool provided with the BAIiIBASE benchmark
database [40]. The SPS is the ratio of number aligned pairs
in the test alignment to the number in the reference align-
ment; it evaluates the quality of the alignment produced.
The TC score is a binary score of the comparison of the test
and reference alignment for each column and the SPS was
measured with MAFFT as the reference alignment.
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The statistical significance of the alignments

To evaluate the significance of the results, a statistical
framework was required. The inference of homology re-
quires assessment of the statistical significance of an
alignment to identify those real alignments from those
due to chance. A p-value framework was implemented
to assess the statistical significance of the alignments in
EvoDB. The HBx w MLEs were shuffled and used to
query the EvoDB database. The scores of the alignments
were tested for statistical significance using a p-value
statistical framework. In this framework, the fraction of
shuffled alignments scoring higher than the actual align-
ment was determined and this provided the p-value for
that alignment. The functions of those proteins that
were statistically significant were assessed by analysing
the alignments produced. The BLAST algorithm finds
statistically significant regions of local similarity between
two sequences. The most statistically significant results
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found by BLOSUM-FIRE were then assessed using the
BLAST algorithm to determine their statistical signifi-
cance using a local alignment approach.

Results and discussion

Evaluation of the FIRE algorithm using real and simulated
data

To demonstrate false positive results, 100 random
alignments of varying sequence lengths were aligned
using FIRE. The quality of alignments was inferred
from identity scores. Alignments were then performed
using the CLUSTAL Omega and MAFFT algorithms
(Fig. 1). The results indicate that the FIRE algorithm
scores are relatively high; however the distribution of
the identity scores indicates that the alignments are
poor. Therefore, the FIRE algorithm had a high rate of
false positives (28 %) presented by high algorithm

-
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Fig. 4 Determining the optimal gap penalties. The plots were produced using the median of the 5 high scores (above) and the median of the
5 low scores (below). The scores were obtained from 6930 alignments from iterating through the gap parameters using an affine gap
penalty scheme
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Pairwise alignment algorithm memory requirements
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Fig. 5 Resource requirements for the BLOSUM-FIRE algorithm and other widely used algorithms. BLOSUM-FIRE is not optimised for performance
and has the highest execution times and requires the most memory after T-COFFEE compared to the widely used algorithm. It is important to
note that BLOSUM-FIRE is implemented in an interpreted language and the other algorithms are implemented in compiled languages

Pairwise alignment algorithm execution times
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Execution time (s)

BLOSUM-FIRE
Algorithm
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scores with low alignment identity scores and poor
alignments compared to the conventional approaches.
Using highly conserved truncated simulated datasets,
the canonical false positive result provided by the FIRE
algorithm is provided in Fig. 2 and for comparison the
same alignment produced by conventional algorithms.
These results demonstrate the false positives challenge
of the evolutionary rate (FIRE) approach [13]. The FIRE
algorithm has a very high algorithm score for the align-
ment, however, the alignments are poor. It is important
to note that the comparison of quality performance
using MAFFT as reference alignments to obtain the
SPS or the number of residues matched through an
identity score (Fig. 1) are biased, only structural com-
parison approaches can provide better standards of
truths or benchmarks [41]. However, the challenge is
that generating the evolutionary rates used for the FIRE
algorithm where MSAs are used instead of single se-
quences means that a structural comparison framework
is difficult to implement. This brings to question
whether counting the number of matched residues is a
valid quality performance measure. Without structural

data residue based performance measures such as PID
or the identity score (Fig. 1) present the most viable op-
tion although their use is not recommended [9]. On the
other hand, the aim of this work is to demonstrate that
our coupled approach can perform as well as residue
based approaches. Numerous benchmarks exist for
assessing the performance of algorithms [40], however,
these cater for protein sequence analysis, the unique re-
quirement of BLOSUM-FIRE for MLEs of evolutionary
rates through CODEML means that these benchmarks
cannot be utilised.

Approximating selective pressure at codon sites and
scaling the BLOSUM score

We compared the quality performance of the evolu-
tionary rate based approach (FIRE) with the conven-
tional BLOSUM substitution matrix based algorithm.
The results of the comparisons provided the theoretical
framework required to conceptualise an approach to
couple the evolutionary rate based approach with a
conventional BLOSUM matrix. Equation (1) was used
to approximate the proposed relationship between the

Alignment and tree generation times
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T T T
MSA and tree generation (ClustalO)

Alignment and tree generation time(s)
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Number of sequences in alignment

of sequences

Fig. 6 The time requirements for generating alignments using CLUSTALO and determining the evolutionary rate profiles scales with the number

N
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The effect of sequence number on the BLOSUM-FIRE score

BLOSUM-FIRE algorithm score
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Fig. 7 The effect of randomly adding homologous sequences from other taxa and performing an alignment on BLOSUM-FIRE score using
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total o values and selective pressure sel,, at aligned
amino acid sites. We looked into exploiting the infor-
mation provided by the o parameter as an indicator of
selective pressure to scale BLOSUM scores. The select-
ive pressure at codon sites is used to scale the BLO-
SUM score using Equation (1). Therefore, according to
the approximation, the impact of the BLOSUM score
decreases with increased w value as the selective pres-
sure sel,, on the amino acids decreases. The rationale
is that the selective pressure on the codon site de-
creases as we move from negative selection (v <1) to
positive selection (w >1). A three dimensional heat map
providing the correlation between o values: a and b
and the approximated selective pressure sel,;, is pro-
vided in Fig. 3.

To determine optimal gap penalty parameters for
BLOSUM-FIRE, alignment scores were obtained from

iterations of the gap open penalty from 0 to -11 and
gap extension penalties from 0 to -6 were used to gen-
erate Fig. 4. The plots show heat maps for the optimal
gap open penalty and gap extension penalty for proteins
of low sequence similarity. A gap open penalty of -4 and
extension penalty of -1 was identified.

Resources and accuracy

We compared the resource requirements of our algo-
rithm with other widely used algorithms. The relatively
high executive times and resident memory requirements
(Fig. 5) for BLOSUM-FIRE are not surprising as it is im-
plemented in Python an interpreted language and widely
used algorithms are implemented in compiled languages
optimised for performance. At this point we provide
BLOSUM FIRE, as a viable alternative to the widely used
tools and future versions of BLOSUM-FIRE will be

a) FIRE alignment
>Glyco_tranf EmNAAVOQTL,
>Glyco_tranf_ select JVIEAFV]

Consensus/80%

b) BLOSUM-FIRE alignment
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C) BLOSUM alignment
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Consensus/80%
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cDEAslp hl. HpL Ah .Lhlps-hsR......
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Fig. 8 Comparison of alignments for the Glycosyltransferase family 28 N-terminal domain (PF03033.15) using 4 taxa for the Glyco_tranf_select
and 36 taxa for the Glyco_tranf. These alignments demonstrate the difference between the BLOSUM-FIRE and the individual approaches used in
its conceptualisation
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BLOSUM-FIRE alignment quality performance comparison
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Fig. 9 Accuracy of the BLOSUM-FIRE algorithm compared with widely used algorithms and for comparison the FIRE and BLOSUM based algorithm
scores. MAFFT alignments were used as references to obtain the Sum of Pairs scores. Datasets (1-10) are unrelated and (11-20) are related
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implemented in faster and optimised compiled program-
ming languages. The results for the typical resource re-
quirements (Fig. 6) for the pre-processing showing the
times required for the maximum likelihood estimation
with CODEML and generation of tree and alignment, in
this case using CLUSTALO scales with the number of
sequences and maybe prohibitive. To address this chal-
lenge we have provided EvoDB and work is in progress
to integrate BLOSUM-FIRE into EvoDB to provide a
user friendly web interface in a similar form to BLAST
and GenBank.

The evaluation of the effect of MSA accuracy (results
not shown) on the final alignment revealed that there is
a correlation between the accuracy measured through
the SPS and TC scores and the BLOSUM-FIRE algo-
rithms score for alignments. Therefore, the choice of
alignment must be made appropriately. The evaluation
of number of sequences on the final alignment (Fig. 7)
revealed that generally adding more homologous se-
quence results in an increase in the BLOSUM-FIRE
score. On the other hand, the results demonstrate the
importance of choosing representative taxa to obtain
more accurate results as has already been suggested by
the work of [42]. The efficacy of our approach relies on
the accuracy of input data from MSAs, phylogenetic

trees and calculated w profiles. Anisimova et al. [42]
examined the accuracy of detecting sites under positive
selection using the CODEML program and found that
sequence length had a small effect on the accuracy of
the model results. It was also found that the numbers
of taxa, size of the tree and sequence divergence
were correlated with model accuracy. In line with guide-
lines in the CODEML documentation a range of 4 to
20 sequences is recommended for analysis. We also sug-
gest monitoring sequence divergence through the dS
parameter and recommend stringent total dS in the range
[0.1,0.9] and advise caution for those evolutionary rate
profiles not meeting this criterion.

Performance of the BLOSUM-FIRE algorithm

We evaluated the performance of BLOSUM-FIRE by com-
parison with conventional, widely used algorithms CLUS-
TAL Omega, MUSCLE and T-COFFEE, using MAFFT
reference alignments to obtain the SPS. Additionally,
alignments produced by a plain BLOSUM62 based algo-
rithm are provided for comparison to demonstrate the dif-
ference between the new algorithm and a standard
BLOSUM matrix based algorithm. Figure 8, annotated
using CHROMA [43], displays alignments for the Glyco-
syltransferase domain provided to demonstrate the

Table 1 The top 5 statistically significant results of HBx aligned against EvoDB PFAM-A profiles

PFAM ID Description of family BLOSUM-FIRE score PID dN/dS sim Residues Matched p-value
PF00739.14 Trans-activation protein X family. 062 76 049 113 00
PF05407.7 Rubella virus endopeptidase family. 049 20 0.77 33 762%107°
PF10895.3 Hydrophobic abundant protein (HAP) family. 048 18 0.77 27 228x10°4
PF03866.8 RimK-like ATP-grasp domain family. 047 18 0.76 29 381x10°°
PF05417.6 Protein of unknown function (DUF2715). 046 25 067 41 685x 107

PFAM ID is the accession number of the PFAM family, BLOSUM-FIRE score is the algorithm score, PID is the percentage identity score of the aligned sequences,
dN/dS sim is the similarity of the dN/dS values (old FIRE algorithm score) and residues matched is the number of identical amino acid matched
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BLOSUM-FIRE Score : 0.49
Percent Identity score : 20
Residue Matches : 33/169

dN/dS similarity score(old FIRE)

x_protein.fire
PF05407.7

x_protein.fire
PF05407.7

x_protein.fire

of aligned residues is relatively low

:0.77

MAARVC...CQL..DP..ARDVLCLR. .PVGAESRGRPVSGPFGTLPSPS
WRCRGWQGMPQVRCTPSNAHAALCRTGVPPRVSTRGGELDPNTCWLRAAA

.SA. .VPAHGAHLSLRGLPVCAFSSAGPCAL. . .RFTS.ARRMTTVNAHQ
NVAQVARACGAYTS . AGCPKCAYGRALSEARTHEDFAALSQRWSASHADA

LPKVLYKRTLGLAMSTTDL. . EAYFKDCLFKDWEELGEEIRLMIFVLG. .

PF05407.7 SPDGT . GDPLDPLMETVGCACSRVWVGS . EQEAPPDHLLVSLHRAPNGPW
x_protein.fire GCRHKLVCSPAPCNFFTSA
PF05407.7 GVVLEVRARPEGGNPTGHF

Fig. 10 Top scoring alignment for HBx protein and PFAM family PF05407.7 corresponding to the rubella virus endopeptidase family. The number

difference between the individual approaches and the
coupled approach. The BLOSUM-FIRE and BLOSUM
alignment on its own exhibit differences confirming that
the new BLOSUM-FIRE is not swamped by the BLO-
SUMG62 based approach; it does not outweigh the evolu-
tionary rate based approach as the alignments differ from
those produced by the BLOSUM based approach. Using a
pairwise approach does not take advantage of some the
heuristic MSA algorithm features, for example, alignments
generated do not benefit from the consistency objective
function in the T-COFFEE algorithm. Therefore, our com-
parison only evaluated the efficacy of aligning residues. At
the same time BLOSUM-FIRE is a pairwise sequence
alignment algorithm; this makes such a comparison fair.
Modifications and improvements to the algorithm were
evaluated by comparing the quality performance measured
through residue identity scores using datasets of low
sequence similarity. The quality performance results

(Fig. 9) of BLOSUM-FIRE compared against widely used
algorithms is provided. The results reveal that in almost all
instances BLOSUM-FIRE performs better than CLUS-
TALO and FIRE. The results also show that MUSCLE and
T-COFFEE have the best accuracies. Comparison of the
performances of BLOSUM, FIRE and BLOSUM-FIRE
demonstrate that the new implementation is different from
its individual approaches: BLOSUM and FIRE. It is import-
ant to note that to evaluate the accuracy of BLOSUM-FIRE
using MAFFT may not be appropriate or accurate and
may be biased as MAFFT is only using residue homology
to generate alignments. However, we provide this compari-
son to show that our algorithm based on this coupled ap-
proach has accuracies similar to conventional algorithms.

EvoDB results for the HBx query
To demonstrate the utility of the BLOSUM-FIRE algo-
rithm, the enigmatic HBx was aligned against all the

Plot of omega similarity versus codon position: x_protein.fire vs PF05407.7.fire
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Fig. 11 Plot of dN/dS similarity against codon position for the HBx and rubella endopeptidase protein family. The green line indicates the 60 %
similarity threshold; the HBx and rubella endopeptidase protein dN/dS distributions are similar
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PF05407.7 fire

Range 1: 60 to 75 Graphics

Sequence ID: Icl|7061 Length: 166 Number of Matches: 1

Score Expect Method
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8/17(47%) 10/17(58%) 1/17(5%)

Query 48

Sbict 60

the transaction X family found by the BLAST algorithm

Fig. 12 BLAST alignment for the HBx and rubella virus endopeptidase sequence. This was the only statistically significant alignment in addition to

evolutionary rate profiles on EvoDB (a database of evolu-
tionary profiles for the Pfam-A entries). The evolution-
ary rate profile of the HBx and EvoDB were determined
using the CODEML program (see methods). The top
five statistically significant alignments are provided in
Table 1. BLOSUM-FIRE was able to accurately identify
the HBx family, PF00739.14, as the most statistically
significant. Comparison of the old FIRE and BLOSUM-
FIRE scores demonstrates how robust the coupled
approach is over the FIRE approach. The BLOSUM-
FIRE score is the mean of the dN/dS similarity score
and the normalised identity score of the alignment.
These results also demonstrate the limitations of the
evolutionary rate (FIRE) approach scores indicated by
the dN/dS sim score.

Since the association with the trans-activation X family
is well known, we became interested in the similarity
with the Rubella endopeptidase family as these domains
have been found to play vital roles in viral replication.
The BLOSUM-FIRE alignment for the HBx and rubella
endopeptidase family is shown in Fig. 10. The codon
similarity against codon position plot for the HBx and
the rubella endopeptidase produced by the BLOSUM-
FIRE algorithm is provided in Fig. 11. The plot reveals
that the @ MLEs distribution for the two protein do-
mains has high similarity even with a PID sore of 20 %.
We also provide the BLAST alignment (Fig. 12) for the
two proteins for comparison and the results show that
there is a statistically significant region of similarity be-
tween the HBx and the rubella endopeptidase family.
However, analysis of the BLAST results reveal a poor E-
value when compared to the low E-values (generally an
E value of 107 is used for inferring homologous rela-
tionships). The biological relevance of these results has
not be established although the two proteins have vital
roles in viral replication.

Some of inherent limitations of BLOSUM-FIRE ap-
proach to sequence alignment are the assumptions made
when measuring positive selection under the M2a model
using the CODEML program in the PAML suite. One of
these assumptions is that for those sites under positive se-
lection there have been numerous substitutions at that site

across the phylogeny [11]; however, the selection pressure
may vary across the lineages for example in HIV [44].
Additionally, it is assumed that the non-synonymous
substitution rate value varies at codon sites while the
same value is used for the synonymous substitution
rate, this assumption can be violated in real data [45].

Conclusion

This work provides evidence for the efficacy of an evo-
lutionary rate based approach to sequence alignment;
we also address the challenge of low specificity. We
show that coupling evolutionary rates with conven-
tional amino acid substitution matrices produces robust
algorithms comparable in performance to conventional
approaches to sequence alignment. We note that the
approach has inherent limitations as methods and
models of measuring the site by site evolutionary rate
accurately still remain a challenging field. This work
supports the hypothesis that proteins under similar se-
lective pressures share similar functions. We provide a
proof of concept that evolutionary rate profiles can be
used as an alignment metric and that in certain cases at
least the similarity of these evolutionary rate profiles
can be used to infer domain functions. Additionally, we
show that aligning sequences based on their evolution-
ary rate profiles could be used to extend the traditional
alignment techniques in testing hypothesis in homology
inference. The BLOSUM-FIRE software, user informa-
tion and sample data files are freely available for down-
load at http://www.bioinf.wits.ac.za/software/fire.
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