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CompGO: an R package for comparing and
visualizing Gene Ontology enrichment
differences between DNA binding experiments
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Abstract

Background: Gene ontology (GO) enrichment is commonly used for inferring biological meaning from systems
biology experiments. However, determining differential GO and pathway enrichment between DNA-binding
experiments or using the GO structure to classify experiments has received little attention.

Results: Herein, we present a bioinformatics tool, CompGO, for identifying Differentially Enriched Gene Ontologies, called
DiEGOs, and pathways, through the use of a z-score derivation of log odds ratios, and visualizing these differences at GO
and pathway level. Through public experimental data focused on the cardiac transcription factor NKX2-5, we illustrate the
problems associated with comparing GO enrichments between experiments using a simple overlap approach.

Conclusions: We have developed an R/Bioconductor package, CompGO, which implements a new statistic normally
used in epidemiological studies for performing comparative GO analyses and visualizing comparisons from .BED data
containing genomic coordinates as well as gene lists as inputs. We justify the statistic through inclusion of experimental
data and compare to the commonly used overlap method. CompGO is freely available as a R/Bioconductor package
enabling easy integration into existing pipelines and is available at: http://www.bioconductor.org/packages/release/bioc/
html/CompGO.html packages/release/bioc/html/CompGO.html

Background
Gaining biological insight from high-throughput data under-
pins systems biology. However, determining biological “func-
tion” or indeed “relevance” from lists of genes or DNA
regions (loci) remains problematic. Ashburner et al. proposed
a structured Gene Ontology (GO) approach for grouping
genes into conceptual “ontologies” based on their annotated
or predicted biological functions [1]. GOs are organized into
a hierarchical network where broad functionality sits at the
top (e.g. cell) and fine functionality at the bottom (e.g. cal-
cium ion binding). Individual genes can have multiple GOs.
The accumulation of gene annotations and subsequent
classification of thousands of ontologies has seen the devel-
opment of a number of tools using a range of statistical
approaches to identify “semantic” patterns, or GO enrich-
ment, within a given list of genes [2]. GO enrichment is

typically determined using a hypergeometric test (or modi-
fied version) or similar over-representation test based on
gene sets alone or, for example, signatures derived from the
correlation of gene expression profiles [3–5].
However, few methods have been developed to determine

how similar or different experiments are using a GO ap-
proach; most are focused on different visualization methods
and are not adaptable to existing pipelines, requiring users to
reformat and manually input data into third party web ser-
vices. For instance, WebGestalt [6] and GOEAST [7] are
webservers that visualize multiple gene list inputs by overlay-
ing their individual statistics onto a GO directed acyclic
graph. Enrichment maps visualize GO enrichment from
multiple gene lists as a network; edges derived from the
Jaccard coefficient (JC) of GO gene set overlap [8]. However,
enrichment maps are difficult to resolve when more than
two experiments are compared and do not indicate overall
differences between experiments. Comparative GO [9], a
web based GO tool, via the Kolmogorov-Smirnov statistic,
compares observed GOs to an expected GO distribution,
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however is limited to bacterial gene lists and visualization
of pairwise comparisons.
Motivated by our interest in DNA binding experiments

(e.g. ChIP-seq or DamID) and their similarities/differ-
ences, we developed a tool that would enable rapid com-
parison of multiple experiments unconstrained by input
type (gene list or loci) or species, and taking advantage of
existing unsupervised clustering and dimensionality re-
duction methods (e.g. hierarchical clustering and principle
component analysis), implemented in R for classification
of experiments based on GO. We present an open-source
implementation of a comparative GO approach, CompGO,
which is readily adaptable to existing analysis pipelines for
performing these functions and implement a log odds ratio
[10, 11] normally applied to epidemiological studies for
comparing GO enrichment directly. We justify the use of
this statistic for direct comparisons by assessing experimen-
tal data recently published [12].

Implementation
GO enrichment
We developed an R package, CompGO, to assess similar-
ities and differences between experiments using a log odds
ratio scoring (z-score) [10, 11] of GO enrichment (Eqs. 1–
4); the pipeline is outlined in Fig. 1. CompGO is compliant

to R/Bioconductor [13] standards (available in Bioconduc-
tor version 2.14 onwards) and therefore takes advantage of
prebuilt statistical and visualization functions already in-
cluded in R [14]. CompGO enables users to input data of
either annotated gene symbols/identifiers or BED file for-
mat. CompGO utilizes existing packages in Bioconductor,
rtracklayer, to annotate loci using transcript coordinates de-
rived from UCSC genome databases [15], RDAVIDWeb-
Service [16] to interrogate the DAVID GO database and
KEGG.db to visualize enrichment of annotated pathways
[17]. We use DAVID (The Database for Annotation,
Visualization and Integrated Discovery) [4] as a GO refer-
ence dataset, but the principles and method could be ap-
plied to any GO database.

Differential GO enrichment
GO count data was derived from the 2x2 contingency table
for each GO term returned by RDAVIDWebService. In
addition to the statistics returned by DAVID, we implement
a log odds-ratio, δ, [10, 11] scoring for determination of GO
enrichment (Eq. 1). Extension to a comparative log odds-
ratio (Eq. 3) enables differential GO enrichment for each GO
term to be calculated by direct comparison of 2x2 contin-
gency tables derived from different experiments, also enab-
ling comparison of experiments with different background
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Fig. 1 Overview of the CompGO pipeline and implemented functions. a The “annotateBedFromDb” function annotates DNA coordinates from
BED files against transcript coordinates from a reference genome, “getFnAnot_genome” queries gene lists using the RDAVIDWebService and
returns statistics and counts of each GO term and “doZtrans.single” calculates the log odds ratio of GO term enrichment. Note: users can supply
their own background genome regions; by default the whole genome is used. b Given log odds ratios, multiple experiments can be reduced
into a single matrix for Principle Component Analysis or Hierarchical Clustering, via “plotPCA” and “plotDendrogram” respectively. c Differentially
Enriched GOs (DiEGOs) between pairs of experiments are calculated via the differential log odds ratio and top DiEGOs can be visualized via
Directed Acyclic Graphs, “plotZRankedDAG”, and top differentially enriched pathways via “viewKEGG”. CompGO functions are colored red
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distributions or coverage. Here zi is the z-score for the i-th
GO term:

zi ¼ log δið Þ
SE δið Þ ð1Þ

given a Standard Error, SE (δi), for each term, i, where
n1 to n4 are the four components (observed counts, total
genes, background counts, background genes tested) of
the i-th 2x2 contingency table.

SE δið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

þ 1
n2

þ 1
n3

þ 1
n4

r
ð2Þ

p-values are not derived from log odds ratios, but 95 %
confidence intervals could be assigned to enrichment scores
as zi ± 1.96SE (δi). The greater the absolute zi, the greater
the odds a term was enriched than by chance alone.
When computing differential enrichment between two

sets of GO terms, we employ a comparative log odds ra-
tio, zk, derived from the difference of two non-zero log
odds ratios, log (δi) and log (δj), for the k-th term:

zk ¼
log δið Þ− log δj

� �
SE δij

� � ð3Þ

given the total Standard Error, SE (δik), for each term,
k, where SEi and SEj are derived as per Eq. 2:

SE δij
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
i þ SE2

j

q
ð4Þ

Scoring of Differentially Enriched Gene Ontologies (DiE-
GOs) can then be inferred from their z-scores. The greater
the absolute zk, the greater the odds a term was differentially
enriched than by chance alone. p-value’s can be inferred
using R assuming normal approximations and multiple
methods are available for correcting for multiple hypotheses.

Overlap of genes between GOs
To assess gene overlap within a GO category (enriched
in two gene lists), we utilize the Jaccard coefficient (JC)
[18] of any two gene sets (A, B) from two comparisons
contributing to term k. We include this statistic as
similar levels of GO enrichment can be achieved be-
tween experiments even though the genes contribut-
ing to a GO can be distinct. The JC is the ratio of
the intersection and the union of these sets:

JC ¼ A∩B
A∩B

ð5Þ

Example of CompGO Code
For illustration purposes, an example dataset was pro-
duced by randomly selecting 1000 BED coordinates from
published ChiP-seq data of different transcription factors
(TFs) and their co-factors profiled in cultured HL-1
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cardiomyocytes: NKX2-5, MEF2A, GATA4, p300, SRF
and TBX5 [19]. This example data is included with the
CompGO package and example code for running core
CompGO functions is provided below (Fig. 2a-f ) . For
more example code and updated functionality, see the
CompGO Reference Manual and accompanying Vignette
on the Bioconductor website.

Results and discussion
To determine the utility of the methods proposed in
CompGO we downloaded DNA targeted regions (peaks)

for a number of wild-type (WT) and mutated cardiac
TFs identified by Bouveret et al. [12] using the DamID
method, and compare the outcomes using a simple over-
lap approach. Bouveret et al. surveyed DNA binding re-
gions for the WT NKX2-5 cardiac transcription factor
twice (independent experiments with 3–4 replicates each
performed 2 years apart; data sets hereafter named
NKX2-51 and NKX2-52) and in addition surveyed three
NKX2-5 mutants - NKX2-5Y191C is a congenital heart
disease-causing mutation [20, 21], while NKX2-5ΔHD
and NKX2-5YRDY-A are synthetic mutations with a dis-
rupted homeodomain (involved in both DNA-binding
and cofactor interactions) and Tyrosine-Rich Domain
(YRD; cofactor interactions), respectively. DNA binding
regions of the muscle-enriched TF serum response fac-
tor (SRF) and the ubiquitously-expressed ETS-domain
TFs ELK1 and ELK4, were also considered [12] .
All results reported were using CompGO default

settings. Peak coordinates were annotated and GO term
counts obtained as per the process outlined in Fig. 1a.
Direct comparison of z-score-transformed GO enrich-
ments (Eq. 1) illustrated that repeated NKX2-5 expe-
riments were highly correlated (R = 0.76) and had a high
average JC (0.44) (Fig. 3a) of individual GO terms in
contrast to ELK4 (R = 0.42; JC = 0.10; Fig. 3b), ELK1

A

E F

B C D

Fig. 2 Example functionality of CompGO using published ChiP-seq data. 1000 BED coordinates were selected at random and form part of the example
dataset packages with CompGO. a Differentially enriched GO and pathway terms. b Hierarchical clustering 1. c Principle Component Analysis. d Direct
comparison of z-scores with Jaccard Coefficient overlaid (Eq. 5) onto terms. e Directed Acyclic Graph. f KEGG Pathway colored by which experiment
the Gene was mapped to. a, b, e and f utilise Eq. 3 in their rankings. d utilises Eq. 1
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(R = 0.39; JC = 0.10), SRF (R = 0.62; JC = 0.18) or NKX2-5
mutations (R = 0.47-0.67; JC = 0.15-0.40) (graphical rep-
resentations not shown). Unsupervised principle compo-
nent analysis and hierarchical clustering placed NKX2-
51 and NKX2-52 next to each other and close to SRF
and the NKX2-5YRDY-A mutation, while ELK1 and
ELK4, and the other NKX2-5 mutations, were located at
greater distance (Fig. 3c and d). The related ELK TFs
were also placed next to each other. We then computed
DiEGOs as per Eq. 3 for each comparison. Using a p-
value threshold of 0.05 we did not identify any DiEGOs
for the two repeated NKX2-5 experiments, but identified
43/44, 31/37, 18/21, 1/11, 15/10 and 0/0 DiEGOs when
comparing NKX2-51/NKX2-52 to ELK4, ELK1, NKX2-
5ΔHD, SRF, NKX2-5Y191C and NKX2-5YRDY-A,
respectively.
These results suggest that ELK TFs regulate distinct

although overlapping sets of biological processes com-
pared to NKX2-5. Furthermore, while SRF and the mu-
tation NKX2-5YRDY-A largely target genes with similar

GO terms as WT NKX2-5, the mutations NKX2-5ΔHD
and NKX2-5Y191C, predicted to be the more severe
mutations among those studied here, targeted sets of
genes representing distinct biological processes [12].
Notably the average JC, a metric representing overall
concordance of genes belonging to the same GO term,
varied, indicating that distinct sets of target genes could
belong to the same GO term. Of the DiEGOs from the
NKX2-51 versus ELK4 comparison, those unique to
ELK4 included metabolic and generic GO terms such as
GO:0006396 ~ RNA processing (z-scores: 0.13 vs. 5.41;
p-value: 0.001) and GO:0034470 ~ ncRNA processing
(z-scores: -0.09 vs. 3.60; p-value: 0.028), whereas those
for NKX2-51 included muscle related terms such as
GO:0043292 ~ contractile fiber (z-scores: 6.50 vs. 1.70;
p-value: 0.035) and GO:0048514 ~ blood vessel morpho-
genesis (z-scores: 4.00 vs. 0.26; p-value: 0.043). This is
consistent with the known roles for NKX2-5 in muscle
and vasculature development and the ubiquitous expres-
sion of ELK TFs [22].

A B

C D

Fig. 3 Application of CompGO to experimental data. Direct comparison of z-scores with Jaccard Coefficient overlaid onto terms for a NKX2-51 vs.
NKX2-52 and b NKX2-51 vs. ELK4. c Principle Component Analysis. d Hierarchical clustering
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We then compared results of 1) NKX2-51 versus
NKX2-52; and 2) NKX2-51 versus ELK4 using a simple
overlap method of thresholding each GO term (p < 0.05)
using the statistic returned by DAVID (Benjamini &
Hoschberg adjusted). This reported 38 GO terms as be-
ing specifically enriched in either group for NKX2-51
versus NKX2-52 (Fig. 4a) and 92 for NKX2-51 versus
ELK4 (Fig. 4b). However, upon closer inspection many
of the differences could be attributed to “hard threshold-
ing”. That is, many GO terms in the comparison experi-
ment had a significance value just beyond the 0.05
threshold imposed, falsely making it appear to be differ-
entially enriched due to the selection of the significance
threshold. In addition, many of the GO terms only chan-
ged their group membership by a few genes. For ex-
ample, “GO:0003824 ~ catalytic activity” would have
been reported as differentially enriched using this

overlap approach, having a p-value of 0.066 in one ex-
periment and 0.011 in the other, whilst only changing
counts by less than 1 %, from 420 to 417. However, this
effect was more pronounced in the lower count range.
For example, “GO:0044448 ~ cell cortex part” reported a
p-value of 0.420 in one experiment and 0.025 in the
other, whilst only changing counts from 10 to 14. Both
of these examples were reported as non-significant when
directly compared using the log odd ratios proposed in
Eq. 3 with p-values of 0.763 and 0.399, respectively. This
suggests that differences observed using the overlap
method are likely to be false-positives as a consequence
of specificity issues (i.e. proportion of correctly classified
negative results).
To better illustrate the differences, we compared the

overlap method to the log odds ratio method by directly
computing the differential of p-values (scored as the

A B

C D

Fig. 4 Comparison of CompGO to the overlap method. Differentially enriched GO terms using the overlap method (p≤ 0.05) for a NKX2-51 vs. NKX2-52
and b NKX2-51 vs. ELK4. c Log odds ratio of NKX2-51 vs. NKX2-52 versus differential p-values returned from DAVID, scored as the difference between
–log10 transformed vales. d Log odds ratio of NKX2-51 vs. ELK4 versus differential p-values returned from DAVID, scored as the difference between –log10
transformed vales. Red dots indicate GO terms determined significant and specific using the overlap method. Blue dots are GO terms returned as
significant from CompGO. Blue dots with red centres are GO terms returned as significant by both methods. Black dots are non-significant terms using
both approaches. For (b) and (c) the density distribution of log odds ratios returned by CompGO is on the top of each panel
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difference between –log10 transformed p-values or sim-
ply ‘Δ –log10 p-value’) returned by DAVID to the log
odds ratio returned from direct comparison using
CompGO for NKX2-51 versus NKX2-52 (Fig. 4c) and
NKX2-51 versus ELK4 (Fig. 4d). For NKX2-51 versus
NKX2-52, this illustrated that GO terms reported by the
overlap method did not approximate to the tails of the
distribution where differences would be expected to occur
if compared directly as per the log odds ratio in Eq. 3.
When comparing NKX2-51 to ELK4 some concordance
was observed, but there was still a large number of differ-
entially enriched GO terms identified using CompGO that
were 1) not detected using the overlap method; and 2) not
approximating to the tails of the log-odds distribution -
likely to be false positives (Fig. 4d). In addition to hard
thresholding, DieGOs identified by CompGO and not
detected using the overlap method arose as a result of
“under-representation”. This is because the log odds ratio
(Eq. 3) considers both tails of the distribution, in contrast
to the single-tailed modified Fishers exact test im-
plemented in DAVID which only considers over-
representation. For example, DAVID returned p-values of
0.54 and 1.00 for GO:0006811 ~ ion transport indicating
that this GO term was not significantly over-represented
in either set, however CompGO returned a p-value of
0.0003 which reflected an under-representation of this
term for ELK4 targets (z-scores: 1.57 vs. -3.23). Therefore,
the approach of hard thresholding of individual GO statis-
tical results from each comparison and performing over-
laps introduces many false positives as well as missing
potential differences. This illustrates how CompGO over-
comes the issue of hard thresholding implicit in the over-
lap method by directly computing differential enrichment
via a log odds ratio, thereby reducing the number of false
positive results.

Conclusions
CompGO enables rapid identification, comparison and
visualization of differentially enriched GO terms calcu-
lated from multiple lists of genetic loci. Through experi-
mental data we illustrate the problems associated with
comparing GO enrichment between experiments using a
simple overlap method in contrast to the proposed log
odds ratio. CompGO provides methods to address the
questions of “how significant are GO enrichment differ-
ences?” and “how similar are multiple experiments based
on GO enrichments”. Input data can be .BED files or
gene identifiers. CompGO is applicable to any species
where a reference genome assembly is available. As
CompGO is implemented in R, it is accessible to a broad
range of users and can readily be incorporated into exist-
ing pipelines. CompGO is an easy and fast comparative
package for GO enrichments from experimentally identi-
fied DNA regions or genes.
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