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Abstract

Background: Multiple sequence alignments (MSA) are widely used in sequence analysis for a variety of tasks. Outlier
sequences can make downstream analyses unreliable or make the alignments less accurate while they are being
constructed. This paper describes a simple method for automatically detecting outliers and accompanying software
called OD-seq. It is based on finding sequences whose average distance to the rest of the sequences in a dataset, is
anomalous.

Results: The software can take a MSA, distance matrix or set of unaligned sequences as input. Outlier sequences are
found by examining the average distance of each sequence to the rest. Anomalous average distances are then found
using the interquartile range of the distribution of average distances or by bootstrapping them. The complexity of any
analysis of a distance matrix is normally at least O(N?) for N sequences. This is prohibitive for large N but is reduced
here by using the mBed algorithm from Clustal Omega. This reduces the complexity to O(Nlog(N)) which makes
even very large alignments easy to analyse on a single core. We tested the ability of OD-seq to detect outliers using
artificial test cases of sequences from Pfam families, seeded with sequences from other Pfam families. Using a MSA as
input, OD-seq is able to detect outliers with very high sensitivity and specificity.

Conclusion: OD-seq is a practical and simple method to detect outliers in MSAs. It can also detect outliers in sets of
unaligned sequences, but with reduced accuracy. For medium sized alignments, of a few thousand sequences, it can
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detect outliers in a few seconds. Software available as http://www.bioinf.ucd.ie/download/od-seq.tar.gz.

Background

Multiple sequence alignments are essential for many
sequence analysis tasks [1-4]. They are widely used for
phylogenetic analysis, discovery of conserved regions,
protein function studies and structure prediction. One
problem that can arise in these analyses is the presence of
outlier sequences. Outliers can disrupt an alignment at the
construction stage and lead to highly sub-optimal align-
ments with a knock-on effect on downstream analyses.
With small datasets, these can often be seen in the final
alignment, if a viewer such as Jalview [5] is used. With very
large alignments of say 10 s of thousands of sequences, it
can be hard to view the complete alignment and it can be
difficult to see outliers.
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Outliers can come from a variety of sources. The sim-
plest example is a sequence that is not homologous with
the rest of the dataset and which has been included by
accident. These are the easiest to detect as they will not
have any of the conserved regions which the rest of the
sequences might share. The pattern of gaps and conserved
blocks will be completely different between the outlier and
the rest. A second source of outliers will be sequences
which have been partly mistranslated due to a sequencing
error or incorrect automated translation from a genome
sequence. These will have some conserved blocks fol-
lowed by sections that are non-homologous with the rest.
The longer the mistranslated region, the easier it will be
to detect but very short outlier sections may be hard to
find. The third kind of outlier will be where a sequence
is homologous to the rest but where the similarity is
extremely low and it is very hard to align. This case is a
matter of choice and of degree. Some data sets need to
include all possible homologues, for completeness. Others
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need to restrict dataset membership to sequences which
are alignable over their full length. This case is different
to the first two because very distant sequences may be
hard to distinguish from real outliers which are simply not
homologous.

Outlier detection is a well studied field in computer sci-
ence and has been applied to many different fields such
as credit card, insurance and tax fraud detection, intru-
sion detection for cyber security, fault detection in safety
critical systems, military surveillance for enemy activities
and many other areas [6]. Previous attempts at detect-
ing sequence outliers have mainly concentrated on finding
sections of sequence or alignment which are highly diver-
gent. In Clustal X [7] there are menu items to activate a
variety of outlier detection schemes which are based on
detecting runs of amino acids with suspiciously low simi-
larity scores to the rest. These can then be highlighted in
various ways for visual detection. The GBLOCKS package
[8] finds sections of alignment that are rich in gaps and
which have low overall conservation. These blocks can be
automatically removed for automated creation of phyloge-
nies in pipelines. Penn et al. [9] used robustness to guide
tree changes as a measure of alignment confidence. The
DivA package [10] uses training sets seeded with manually
inserted problem segments to recognise outlier positions
or segments.

In this paper, we introduce the OD-Seq package which
attempts to identify outlier sequences in a multiple align-
ment. It uses a simple gap based metric which counts
the number of positions between two aligned sequences
which have a gap in one and not the other. These distances
are used to make a distance matrix which is then analysed
to find sequences with unusually high average distances
from the rest of the sequences. We can also use OD-Seq to
find outliers in sets of unaligned sequences using pairwise
BLAST [11] scores but this is less sensitive. We demon-
strate the use of OD-Seq by taking sets of sequences from
Pfam [12] and seeding these with outlier sequences from
other Pfam families. In principle our method should work
for nucleic acid sequences as well, but hasn’t been tested.

Methods

Algorithm

Overview

The original motivation for designing OD-seq was to
find outlier sequences in large multiple sequence align-
ments. This is the ideal usage for the program but it
can also be used to detect outliers in sets of unaligned
sequences. The suggested workflow would be to compute
an alignment first, followed by using OD-seq to remove
outliers and realigning the truncated set of sequences to
obtain the final alignment. The basis of the algorithm
is to analyse a matrix of gap-based distances between a
set of sequences. Then outliers are found by looking for
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sequences with unusual average distances to the remain-
der of the sequences. This methodology will not work if
excessively heavy gap penalties are imposed as only few
gaps would be present in the MSA, considerably reducing
the power of the present approach. In general, accurate
gap placement is a difficult problem [13]. The OD-seq
algorithm is divided in two main parts. First we create
or take as input the distance matrix. Then we analyse
the vector of mean distances from each sequence to the
rest to predict outliers (Fig. 1). Different pairwise distance
metrics are used for aligned and unaligned sequences.
For very large numbers of sequences the distance matrix
becomes very time and memory consuming to create.
mBed [14] allows us to calculate approximate mean dis-
tances for the sequences, without calculating a full dis-
tance matrix. For analysing the vector of distances, we
predict outliers in two ways: bootstrapping to estimate
confidence intervals or by analysing interquartile ranges.
Both of these methods are used to find sequences with
unexpectedly large average distances.

Alignment gap metric

Aligned sequences

OD-Seq can read distance matrices in Phylip [15] for-
mat, unaligned sequences in Fasta format and alignment
files in many different formats. If the sequences are in
a multiple alignment, the alignment gap metric is used
to measure how similar gap placement is between every
pair of sequences and detects sequences with missing
parts compared to the rest of the alignment. This happens
with fragments, for example. It is used to produce a dis-
tance matrix by pairwise calculation of the distances in the
alignment Xy 1, with N number of sequences and L is the
length of the alignment. Three different metrics are avail-
able for selection: linear, affine and cumulative. Before
the distance is computed the sequences are changed to a
binary representation with 0 for an amino acid character
and 1 for a gap. The linear metric is given by the formula

L

=31

=0

Xip =Xy

s 1
Xig # Xju )
with distance matrix S, length of alignment L and the
alignment as a matrix X in binary form. It does not distin-
guish between fewer, longer gaps or more, shorter gaps.
The affine version uses the formula

L |0 X=X
Sij=>13 Xi#Xy&Xi1 =X (2)
=0 |, X # X &Xp-1 # X1

which scores short gaps relatively high compared to long
ones, as it has an initial gap opening penalty. If the cumu-
lative metric is chosen gap opening produces a low score
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Fig. 1 Software flow chart. Infographic illustrating the workflow of OD-seq. At the input layer the user can provide a multiple sequence alignment,
unaligned sequences or a pre-computed distance matrix. The sequence files are used to compute a distance matrix. This data are then normalised
by bootstrap or interquartile range analysis. Outlier list, core sequences and outlier sequences are available for output

but as the gap gets longer the extension score increases,
the formula for this is

L [o Xii =Xy
Sii=> 1L Xio # Xjo 3)
=0 | 1+Cy, Xy #Xul1>0

with C; being a vector holding the distance value for each
position of the comparison. The pairwise scores of each
sequence M are then added up to an overall distance
vector D;.

M
D; = Z Sij (4)
j=0
Unaligned sequences

The similarity computation for unaligned sequences is
performed by BLASTP with default parameters. Here the
bit score for every pairwise computation is added up to an
overall score for each sequence.

mBed

Computing a full distance matrix for N sequences has
a time and memory complexity of O(N?). This becomes
prohibitive for alignments of many sequences. The mBed
algorithm, also used in Clustal Omega, reduces comput-
ing times. Here the N x N distance matrix is reduced
to Nlog(N) by randomly selecting M = log(N) seed
sequences and calculating a reduced M x N distance
matrix. When tested on multiple sequence alignment
benchmarks, it was used to make alignments without a
significant change in accuracy.

Bootstrapping

To generate robust estimates of the mean and standard
deviation of the distribution of the average distances,
bootstrapping can be used. Pseudo replicates are cre-
ated by picking N sequences randomly (with replacement)
and computing the mean and standard deviation of each
pseudo replicate. The mean of these values over all the
replicates generate the estimates for the calculation of the
outlier score. A sequence i is considered an outlier if

D;,—5
o

T <

(5)

with o being the estimated standard deviation, s the esti-
mated mean score and D; the score of sequence i.

Interquartile range analysis

For the interquartile range analysis, the distance vector
for the sequences is sorted. The values for the 1st quartile
(Q1) and 3rd quartiles (Q3) determine the interquartile
range r = Q3 — QL. For sequences with a distance mea-
sure greater than Q1 and smaller than Q3 the outlier score
is 0. A sequence i is considered an outlier if

D;<Ql & 7. @D (6)

or

D;—-Q3
D;>Q3 & T< Di= Q3 @)
r
Sequences are asigned a value of 0 and not considered an

outlier if

D;>Ql & D;<Q3 (8)
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Table 1 Pfam verification datasets overview

Different clan Same clan No outlier
Number of families 1329 889 1329
Number of sequences 5051 5051 5000
Average alignment length 906.7 8174 664.3
% identity 27.5 25.1 29.0

For datasets with a lot of identical sequences the
interquartile range might be 0 which can cause a divi-
sion by 0. Small values for the interquartile range can lead
to inflated scores for the outliers. For these cases boot-
strap analysis should be chosen as the estimators are more
robust.

Datasets

We used the Pfam database (version 27.0) of protein
domains for all examples in this paper. The ParG family
(PF09274) from Pfam is used as an example to illustrate
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the computation, it contains 92 sequences with an align-
ment length of 131. Otherwise, we take full alignments of
Pfam domains and test our ability to detect outliers when
sequences are added from other Pfam families. To intro-
duce outliers, each dataset was realigned, including the
outlier sequences, using Clustal Omega. Three different
types of datasets were analysed. The first used all fami-
lies with 5000 or more sequences. Here, 5000 sequences
were randomly selected and 51 sequences added from a
different family in the same Pfam clan. The second had 51
sequences added from randomly selected clans. The third
is a control consisting of the original alignments, with
no outliers, realigned with Clustal Omega. These contain
888, 1328 and 1328 alignments respectively (Table 1). To
avoid artifacts caused by unequal sequence lengths, the
outliers had to be within +10 % of the average alignment
length.

Computing times were determined using two variations
of the ABC transporter family in Pfam (PF00005). For
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measuring the time with various alignment lengths, 5000
sequences were chosen and truncated to various lengths.
The dependency on the number of sequences in the align-
ment was determined by keeping the length constant at
200 positions and varying the number of sequences.

Results

Example analysis

We show one example of detecting outliers in detail with
the ParG family from Pfam. This family has 92 sequences
and the distance matrix has been calculated in full dis-
tance matrix mode. The distribution of average between
sequence distances in the Pfam alignment is shown in the
top left hand panel of Fig. 2. The left hand side of the figure
shows results for aligned sequences in a multiple align-
ment calculated with the linear gap metric. The right hand
panel shows the equivalent scores using BLASTP to mea-
sure between sequence similarity in the same unaligned
sequences. In the second row of Fig. 2, the distances (on
the left) and BLASTP scores (on the right) are shown after
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5 random outlier sequences from the same Pfam clan as
ParG (Met_repress, CL0057) have been artificially added
to the datasets. In the bottom row of the figure, the dis-
tances are shown after adding 5 random outliers from
random clans. We can clearly see that the average dis-
tances (or BLASTP scores) of the outliers to the rest of
the sequences, make them reasonably distinct, especially
in the case of outliers chosen from different clans.

The question is how to choose a cut-off that will allow
us to try to automatically detect as many outliers with
as few false positive sequences as possible, in other data
sets. This is hard to do with the raw distances as these
will depend on the particular set of sequences. The dis-
tances need to be normalised and this is done in two
ways: distance standard deviations, estimated using the
bootstrap or by taking interquartile ranges. The results,
using these are shown in Fig. 3. Here, the left hand col-
umn shows bootstrapped standard deviations for the case
with no outliers (top), outliers from the same clan (mid-
dle) or different clans (bottom). The middle column is the
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Fig. 3 Example analysis normalised. Histograms of normalised distance (bootstrap and interquartile range) or similarity score (unaligned)
distributions, using the ParG family from Pfam. a, b, c: Distribution with no outliers. d, e, f: Distribution with 5 outliers included from the same Pfam
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equivalent but here the horizontal axis shows interquar-
tile ranges. The right hand column shows the BLASTP
distances, normalised using bootstrap.

Run times

The run times for the algorithm are expected to show a
minimum complexity of O(L) in sequence length. Times
for different subsets of the ABC transporters of different
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lengths are plotted in (Fig. 4a) and all variations of the
algorithm do show approximately linear behaviour. Time
complexity wrt number of sequences is expected to be
O(N?) for full distance matrix mode or O(N log(N)) for
mBed mode. Run times for different subsets of the ABC
transporters are plotted in (Fig. 4b). Data shown is the
execution time for the whole analysis including sequence
read, distance computation, normalisation and output.
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The outlier detection for the whole ABC transporter fam-
ily from Pfam with 363,409 sequences with an alignment
length of 2177 takes 39 minutes on one CPU core.

Large scale outlier tests

The overall performance of OD-seq when tested on over
1000 Pfam families, seeded with outliers from the same,
or from a different clan, are summarised in Fig. 5. Here
we use receiver operating characteristic (ROC) curves to
show the trade-off between sensitivity and specificity for
different cut-offs and different OD-seq options. When
outliers from a different clan are used, the ability of OD-
seq to detect them accurately, with low false positive rates,
can be seen with area under the curve (AUC) values of
well over 0.9. The bootstrap normalised distances (top
left panel) do slightly better than the interquartile range
ones (0.98 vs. 096) with the aligned sequences and the
unaligned sequences do slightly worse with an AUC of
0.93. The lower 3 panels of Fig. 6 show the ROC curves
when outliers are seeded from the same clan. This is a
much harder test but AUCs of 0.73—0.76 are still achieved.
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A threshold range for outliers was identified by plot-
ting the true positive (TPR) and false positive (FPR) rate
against the threshold (Fig. 5). In these plots one can
observe that if a cut-off of 2 is selected a FPR below
10% can be expected while the TPR is still far higher
and depending on the dataset true outliers can be identi-
fied confidently. The plots show that the FPR stays con-
stant even if no outliers are present. According to these
figures a threshold between 2 and 10 is recommended,
depending on the stringency the user wants to choose.
For the same clan datasets a steep decline in TPR is
observed, this is due to the fact that many of the intro-
duced outliers are so similar to the selected family that
they might not even be considered outliers due to their
similarity. For the unaligned method the area of good
performance is narrower as high outlier scores are very
rare.

The ROC curves and TPR/FPR plots show that find-
ing outliers is possible with OD-seq, but as the ratio
between outliers and core sequences is 100:1 missing an
outlier is punished strongly and misclassifying a lot of core

Precision - Recall: different clan, bootstrap

Precision - Recall: same clan, bootsirap

Precision - Recall: different clan, inter quartile range

Precision - Recall: same clan, inter quartile range

NN

Fig. 7 Precision recall curves. The precision recall curves plot precision on the y-axis against recall values on the x-axis. The first row shows the Pfam
datasets with outliers from different clans, the second row shows datasets from Pfam with outliers from the same clan. The columns show the
different methods of normalization: aligned bootstrap, interquartile range and unaligned bootstrap respectively

Precision - Recall: different clan, bootstrap, unaligned

Precision - Recall: same clan, bootstrap, unaligned
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Table 2 Detected outliers in Pfam families

Pfam families Percentage of outliers found by bootstrap cutoff
Sequences Median Type 1 2 3 4 5 6 7 8
<150 68 Linear 12.52 551 2.22 0.92 0.40 0.19 0.09 0.05
150 — 500 278 12.70 534 2.11 0.88 0.39 0.19 0.09 0.05
> 500 1652 11.74 521 2.25 1.00 0.46 0.22 0.1 0.06
<150 68 Affine 13.10 539 2.02 0.76 0.33 0.15 0.07 0.03
150 — 500 278 13.25 533 2.00 0.77 0.32 0.14 0.07 0.03
> 500 1652 11.98 518 2.21 0.96 043 0.19 0.09 0.05
< 150 68 Cumulative 10.37 5.10 2.54 1.30 0.69 040 022 0.12
150 — 500 278 9.01 425 2.15 1.20 0.72 045 0.29 0.20
> 500 1652 7.50 3.53 1.87 1.09 0.68 045 0.31 0.22
<150 68 Unaligned 14.3 8.19 1.01 0.055 0.046 0.045 0.045 0.045
150 — 500 278 16.35 12.65 0.093 0.012 0.0027 0.0009 0.0005 0.0003
> 500 1652 15.8 1.65 0.16 0.018 0.0032 0.0008 0.0002 0.0001

Fig. 8 Outlier example. Alignment of sequences of the Pfam family Paramyxo_NS_C (non-structural protein C). 3 sequences with high outlier scores
are highlighted (I0B1S0_9PARA/31-164, B8XH61_OMONO/6-148 and Q6WGM3_9PARA/5-150), the scores are 10.4, 4.7 and 3.3 respectively
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sequences as outliers do not increase the FPR by much.
To assess the differences between different modes and
metrics of OD-seq these plots do not give a lot of infor-
mation. Therefore precision recall curves, which scale the
TPR and FPR by the number of outliers, were produced.
This makes finding outliers and core sequences compa-
rable (Fig. 7). Here one can clearly see that the use of a
multiple sequence alignment enhances outlier detection.
The linear metric with bootstrap analysis performs best as
the prediction is more robust than with the interquartile
range analysis.

Pfam outliers and example

Table 2 shows the percentage of outliers predicted by OD-
seq for full Pfam families of different sizes (number of
sequences in the family) for 10 different cutoffs and 4
modes.

In this example we take the non-structural protein C
(Paramyxo_NS_C) family from Pfam with 123 sequences
and an alignment length of 230 amino acids and show
it with Jalview. In this typical example alignment three
outliers were identified (Fig. 8). One can see that the
most obvious outlier (I0B1S0_9PARA/31-164) misaligned
with almost all residues except a small core region (Out-
lier score of 10.4). the same happens for the other two
sequences with a smaller but detectable misalignment
(Outlier score 4.7 for BSXH61_O0MONO/6-148 and 3.3 for
Q6WGM3_9PARA/5-150).

Discussion
Viewing very large alignments of many thousands of
sequences is challenging, even if you use the best view-
ers available such as Jalview or Seaview [16]. One serious
issue is to detect and deal with highly aberrant sequences.
OD-seq provides a simple yet robust method to rank the
most aberrant sequences or to select all sequences above
some cut-off that is tuned to optimise a desired false posi-
tive or false negative rate. When faced with clear outliers,
such as the case with Pfam families that have been seeded
with sequences from different Pfam clans, OD-seq finds
the outliers with extremely high sensitivity and speci-
ficity. These outliers were selected to be similar in length
to the family they were added to so as to reduce length
effects. When sequences were added from the same Pfam
clan, the performance reduces but here, the difference
between an outlier and a homologous yet very dissimilar
sequence, is not so clear-cut. OD-seq can also deal with
unaligned sequences, but the performance is, again, not
as good as the full multiple alignment case. The main aim
when designing OD-seq was to catch outliers in the full
alignment.

OD-seq is fast enough to process alignments of mod-
erate to large size in seconds. The run times to do any
calculations on a full distance matrix will normally be
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proportional to the square of the number of sequences.
For alignments of many tens of thousands of sequences
this could take days to process. The O(N log(N)) mBed
method for distance matrix calculation, reduces the time
and memory to perfectly practical levels with alignments
of over 300,000 sequences of length over 2000 positions
being processed in under 40 minutes on a single core. The
combination of speed and accuracy, then makes OD-seq
a potentially useful tool for pipelines that require many
large alignments to be made or for checking very large
alignments for outliers. OD-seq will not be able to deal
with outliers in very small data sets or with sequences
that are homologous to the rest of a dataset over most
of their length but which have a short region of mis-
match. Such sequences or mismatched regions can be
found satisfactorily by existing tools.

Conclusion

OD-seq is a practical and simple method to detect outliers
in MSAs. It can also detect outliers in sets of unaligned
sequences, but with reduced accuracy. For medium sized
alignments, of a few thousand sequences, it can detect
outliers in a few seconds.
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