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Abstract

Background: RNA-seq has been widely used for genome-wide expression profiling. RNA-seq data typically consists
of tens of millions of short sequenced reads from different transcripts. However, due to sequence similarity among
genes and among isoforms, the source of a given read is often ambiguous. Existing approaches for estimating
expression levels from RNA-seq reads tend to compromise between accuracy and computational cost.

Results: We introduce a new approach for quantifying transcript abundance from RNA-seq data. EMSAR (Estimation
by Mappability-based Segmentation And Reclustering) groups reads according to the set of transcripts to which
they are mapped and finds maximum likelihood estimates using a joint Poisson model for each optimal set of
segments of transcripts. The method uses nearly all mapped reads, including those mapped to multiple genes.
With an efficient transcriptome indexing based on modified suffix arrays, EMSAR minimizes the use of CPU time
and memory while achieving accuracy comparable to the best existing methods.

Conclusions: EMSAR is a method for quantifying transcripts from RNA-seq data with high accuracy and low
computational cost. EMSAR is available at https://github.com/parklab/emsar
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Background

RNA-seq is a high-throughput sequencing-based tech-
nique for quantifying gene expression levels and for
identifying splice isoforms, novel transcripts, sequence
variation, and even fusion transcripts genome-wide.
However, methods for expression quantification using
RNA-seq are still not optimal—an important remaining
challenge is to achieve maximal accuracy without a
heavy computational load. One of the main difficulties
in accurate quantification is the large amount of uncer-
tainty inherent in the short-read data, where each se-
quenced read corresponds to a portion rather than the
full length of an mRNA. This often causes ambiguity in
the source of a sequenced RNA fragment, because a
read can map to multiple locations in the genome or to

* Correspondence: sanghyuk@ewha.ac.kr; peter_park@hms.harvard.edu
"Equal contributors

“Emerging Technology Center, DNA link, Seoul, South Korea

1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
Full list of author information is available at the end of the article

( BiolMed Central

a unique location that belongs to multiple isoforms.
Production of multiple mRNA isoforms from a single
locus is common in higher organisms: 92-94 % of hu-
man genes undergo alternative splicing [1]. Moreover,
about 16 % of human genes have either close paralogs or
pseudogenes [2], adding to the ambiguity in alignment.
This problem is even more severe in other species, e.g.,
70 % of soybean genes have a paralog due to extensive
genome duplication [3]. Errors introduced during ampli-
fication and sequencing further increase the ambiguity.
Therefore, to take full advantage of RNA-seq data, it is
important to have a computational method that deals
effectively with these problems. Current methods, how-
ever, involve a trade-off between accuracy and computa-
tional efficiency.

The expected count of the reads originating from a tran-
script is often modeled to be proportional to the abun-
dance and length of the transcript. Though some
approaches consider various additional factors for non-
linearity such as biased amplification of cDNA fragments,
the core component of quantification is this assumption
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of linearity. Some early approaches were not model-based.
In Mortazavi et al. [4], the authors collected reads that
mapped to each genomic locus, and normalized the count
by the ‘gene length, measured as the sum of exonic base
pairs. Reads mapped to multiple loci (‘multi-reads’) were
distributed among the loci according to the proportions of
uniquely mapped reads at those loci. The resulting gene
expression estimates were in the unit of RPKM (Reads Per
Kilobase per Million reads). Although this work set the
ground for RNA-seq-based expression quantification, its
expression estimates were of moderate accuracy. Since a
gene is often a composite of multiple isoforms with differ-
ent expression levels and different lengths, using a single
definition of ‘gene length’ inevitably lowers the accuracy.
Moreover, it is difficult to extend this approach to isoform
quantification.

Another early direct gene-level estimation approach,
which we (S.L., C.H.S. and S.L.) developed in NEUMA [5],
used only those reads mapping uniquely to the genic re-
gion that is common to all of its isoforms, and divided the
count by the length of the common region. The approach
showed relatively good performance for a transcriptome
model when sufficiently large regions are common across
all isoforms of a gene. For a complex transcriptome
model, however, the estimation depends on a small frac-
tion of reads, resulting in reduced accuracy and coverage.
NEUMA quantifies isoform levels by dividing the number
of reads unique to each isoform by the length of the
unique region, and uses the sum of these isoform levels as
an alternative gene-level estimate when possible. The
major problem with this approach is that not all isoforms
have sufficiently large unique regions.

Cufflinks [6] is one of the most widely used methods
and also one of the earliest methods to resolve read
ambiguity using multinomial distributions and max-
imum likelihood estimation. It estimates gene level
abundance and isoform fractions within a gene inde-
pendently. Some later methods align reads to the set of
all transcript sequences (‘transcriptome reference’) ra-
ther than the genome, which allows more flexibility in
quantification of transcripts by not having to group
them by genomic loci. These methods, including eX-
press [7] and RSEM [8], obtain a gene expression level
as the sum of estimated isoform expression levels.
However, in this strategy, the set of transcripts that
share sequences must be quantified simultaneously,
resulting in a large computational burden such as in
RSEM, unless the algorithm is optimized.

The approach of modeling reads as multinomial-
distributed variables and finding the fraction parameters
for transcripts sharing reads using maximum likelihood
estimation (MLE) is widely used for RNA-seq-based
quantification. This is usually combined with expectation-
maximization (EM) optimization, because the model
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involves a hidden variable that resolves the ambiguity of
reads. The EM algorithm iterates between probabilistically
assigning an ambiguous read to possible source positions
and finding the abundance parameters. After it converges,
the abundance parameters that best explain the overall
read mapping are obtained. Cufflinks [6], eXpress [7],
RSEM [8] IsoEM [9] and Seqem [10] are among the
methods based on this Multinomial-MLE-EM scheme.
Differences in the details of various approaches represent
specific aims and trade-offs. Cufflinks achieves moderately
fast and memory-efficient computation by not fully
utilizing multi-reads and thus sacrificing some accur-
acy. The maximum likelihood estimation for isoforms
is performed independently for individual genes to re-
duce computational cost. By default, this procedure
uses unique reads only; optionally, multi-reads may be
distributed in proportion to the estimated expression
based on unique reads to improve accuracy. RSEM
aims at achieving maximal accuracy by incorporating
multi-reads at the cost of intensive use of computa-
tional resources. Both Cufflinks and RSEM use the
batch EM algorithm that collects reads before performing
the estimation and assignment, whereas eXpress uses the
Online EM algorithm that updates the estimates as indi-
vidual reads stream in to save memory and hard disk
space [7]. However, the accuracy of eXpress is lower than
Cufflinks and RSEM according to our comparison. IsoEM
aims to optimize for speed by grouping reads that are
shared by the same set of transcripts and then processing
all the reads in that group simultaneously [9] However, we
observed that IsoEM is memory-intensive and less accur-
ate than the other methods.

Our new approach EMSAR (Estimation by Mappability-
based Segmentation And Reclustering) adopts the transcript-
first-gene-later approach based on transcriptome-mapped
reads and uses nearly all of the reads including multi-reads
(see Additional file 1 for details on exceptions). Our method
models reads with Poisson distributions on segments of tran-
scripts that share the reads, and identifies optimal sets of seg-
ments from the transcriptome to prebuild an index for fast
and light processing of data. Although the underlying
Poisson-based model is equivalent to the multinomial model
(see below), partitioning of transcripts and parameter estima-
tion from a joint Poisson model with no hidden variables is
conceptually different, and therefore provides a unique op-
portunity for optimization that is not possible for the
multinomial-based model. Since EMSAR’s Poisson model
does not involve hidden variables, parameters can be esti-
mated without the EM algorithm. We use a hill-climbing
algorithm that allows user-specified precision (see
Additional file 1). EMSAR uses multi-reads as RSEM
does, but with a computationally efficient implementa-
tion. Although EMSAR’s strategy of grouping reads by
the set of transcripts that they share is similar to the
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one adopted by IsoEM, one of the key differences is
that EMSAR partitions transcript regions into seg-
ments so that each segment can be modeled using a
single Poisson distribution with the expected read
count proportional to the sum of expression levels of
the shared transcripts times a pre-computed segment
length. IsoEM does not partition transcripts and is
based on the multinomial EM scheme.

Recent advances in expression quantification have fo-
cused on light-weight algorithms. For instance, eXpress [7]
used an online EM algorithm to achieve fast computation
with a small amount of memory. Sailfish [11] works on se-
quences directly without the need for alignment, by con-
structing a hash index of k-mers of transcriptome, at the
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expense of a large amount of memory (see below). How-
ever, elimination of the alignment step is likely to result in
loss of information, since alignment helps in filtering spuri-
ous reads and provides information about fragment length
distribution for paired-end data. EMSAR’ indexing pre-
serves alignment-related information using modified suffix
arrays [12] and a custom-designed, linked-list-based data
structure. This indexing is light enough to be run on a per-
sonal computer—it takes only a few hours to process the
human ENSEMBL annotations (one of the most complex
trancriptomes) using 4 CPUs (see below) and less than 4GB
of memory. Given an index and an alignment, EMSAR runs
faster than Sailfish for individual RNA-seq data sets, as we
will describe.
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Results and discussion

Model and implementation

As illustrated in Fig. 1a, EMSAR groups reads accord-
ing to the set of transcripts to which they map. Each
such group of reads forms a “segment.” For example, a
segment can be a set of reads that are mapped to one
position on each of three transcripts A, B and C. An-
other segment can be a set of reads that are mapped to
one position on B, C and to two positions on A, which
may happen if there is an internal repeat on A.

Borrowing the concept of ‘virtual length’ introduced
in early work by Sultan et al. [13] and used by NEUMA
[5], EMSAR first defines a ‘virtual read’ as a subse-
quence of a transcript with the size of the read length
(for paired-end data, it is a pair of such subsequences
separated by a certain distance). Then, it counts the
number of all possible distinct virtual reads in a seg-
ment and uses it as the (virtual) ‘segment length.” When
the fragment size distribution is available, such as with
paired-end data or variable read-length single-end data,
first the virtual length is computed for each fragment
size, and then the overall segment length is computed
as the average virtual length weighted by the fragment
size distribution. The virtual length definition can easily
be applied to any specific subset of reads, even when
the regions covered by the reads are not continuous.
Similarly, a ‘segment’ is virtual in that it is not necessar-
ily a block of continuous nucleotides. The use of virtual
length automatically adjusts for mappability and read
length.

The read count for each segment is modeled as a
Poisson variable whose expected value is proportional
to the sum of the expression levels of all the transcripts
defining each segment times the segment length. Then,
for each set of transcripts that are either directly or in-
directly linked by a segment (‘sequence-sharing set’), a
likelihood function is defined as the joint Poisson func-
tion of all segments associated with the set. The abun-
dance parameters of the transcripts are estimated
simultaneously by maximizing this likelihood func-
tion. The sequence-sharing set is equivalent to the
‘bundle graph’ described in Roberts et al. [7]. When
the set is larger than a certain size (e.g., 5000 tran-
scripts), EMSAR removes segments with the length
smaller than a threshold and rebuilds the sequence-
sharing set. This process is repeated with an increas-
ing segment threshold, until the maximum set size is
smaller than the specified limit. It also restricts the
number of alignments per read to 100 by default,
since a read with such a large number of alignments
contains little information.

EMSAR wuses a hill-climbing algorithm for the
maximization. All the segments in the transcriptome

and their fragment-size-specific lengths are pre-
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computed as an index to minimizes computational
time. The index is built efficiently by using a modified
suffix array and other data structures (see Methods
and Additional file 1 for details).

The algorithm produces output in units of FPKM
(Fragments per Kilobase per Million reads) and TPM
(transcripts per million). These units were introduced
by Cufflinks [6] and RSEM [8], and are more accurate
than the earlier RPKM in that they consider the gene
level expression as the sum of isoform level expression.
EMSAR also uses FPKM and TPM values to infer and
reports read counts for individual transcripts and
genes.

Handling multi-reads

One of the technical decisions to be made when design-
ing an RNA-seq-based quantification method is what to
do with reads that are shared by multiple genes (multi-
reads). Considering the significant proportion of para-
logs and pseudogenes in most genomes, making good
use of multi-reads is essential for highly accurate esti-
mation. However, using multi-reads involves simultan-
eous quantification of a large number of transcripts or
genes, which results in increased computational cost.
EMSAR utilizes multi-reads as efficiently as reads
unique to individual genes; yet, due to the unique seg-
mentation-based design, it also achieves a light-weight
implementation through optimized data structure.

In Fig. 2, we illustrate five different approaches for
handling multi-reads with a simple case of two genes
having single isoforms of length 10 and 20, respectively
(unspecified unit), and sharing a multiply-alignable re-
gion of length 3. A total of 70 and 340 reads are
uniquely mapped to each gene, respectively, and 90
reads are mapped to both. Intuitively, the 90 multi-
reads should be divided between the two genes in ac-
cordance with the read density observed in the
uniquely mappable regions. That is, there are 10 reads
per unit for the short gene (top) and 20 reads per unit
for the long gene (bottom), and so the 90 reads should
be divided with 1:2 ratio, with 30 reads to the short
gene and 60 reads to the long gene. These expression
levels are formulated as the maximum likelihood solu-
tion to three Poisson likelihood equations involving two
unknown parameters shown in Fig. 2 (lower right
corner).

An approach without an appropriate length correc-
tion and ignoring multi-reads would produce abun-
dance estimates of 7 and 17 by normalizing by the full
length of the genes. Cufflinks distributes these 90
reads equally (45 vs 45) by default, or in proportion to
the estimates computed using the total gene length
with the -u option [7]. NEUMA, with length correc-
tion using unique reads only, would divide the read
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Fig. 2 An illustration of the effect of various length correction approaches. On the left is shown a schematic of two genes that share some
sequences, along with the lengths of the unique and shared regions and the numbers of reads mapped to these regions. The right panel shows
the estimated abundance using five different length correction strategies

count by 7 and 17 instead of 10 and 20, respectively,
producing an unbiased result of 10 and 20. EMSAR
employs a proper length correction while utilizing
multi-reads. The differences between the methods
were not substantial in Fig. 2, but for genes with low
mappability (due to belonging to large gene families or
having paralogs), the impact of ignoring or inad-
equately correcting for multiply-aligned regions is
larger.

Comparison of accuracy in isoform level quantification
using simulation

It is important to assess the performance of different al-
gorithms in estimating transcript abundance at the iso-
form level. We generated RNA-seq reads using FLUX
Simulator [14], which creates a simulated transcriptome
by randomly assigning expression levels to transcripts
from a theoretical distribution of expression levels and
simulates experimental steps including RNA fragmenta-
tion, PCR, size selection and sequencing. Figure S1
shows the distribution of the read positions and frag-
ment lengths in one of our simulated datasets. We com-
pared EMSAR to Cufflinks, eXpress, RSEM, IsoEM,
Sailfish and NEUMA using 5 to 40 million unstranded
single-end and paired-end reads of length 101 bp. These
reads were generated from a randomized human tran-
scriptome based on the ENSEMBL GRCh37.72 annota-
tion with a total of 194,701 RNA species associated with
57,231 genes.

The assessment was performed with the true expres-
sion levels generated by the simulator as the gold stand-
ard, using several measures including the Pearson
correlation coefficient, root mean square error (RMSE,

not to be confused with the method RSEM), number of
false positives and false negatives. Seqem was not com-
patible with our test because of the limit on the number
of genes imposed by the software. To remove the undue
influence of large values, we compared the numbers in
the log scale: log(oM, + 1) versus log(M, +1), where M,
is the estimated TPM (FPI(Mi/ZieTFPI(Mi x 10° for
transcript i in the transcriptome T) and M is the mo-
lecular fraction of the transcript x 10°. A scaling factor ¢
is introduced in each method as an adjustable parameter
that maximizes correlation coefficient among non-zero
expressed and non-zero estimated data points. For
RMSE, linear regression was used to minimize the sum
of squared errors for each method (see Method for more
details). Since some programs do not estimate all tran-
scripts, we also had to choose which set of transcripts to
use for comparison. For this, we adopted two different
strategies. First, we used the set of transcripts that are
estimated by all of the programs (‘commonly estimated
set’). Second, we performed pairwise comparisons using
all of the transcripts estimated by both EMSAR and the
method being compared. Since EMSAR reports esti-
mates for all transcripts, this is simply the set of tran-
scripts estimated by the other method.

Figures 3 and 4 show the results for single-end data.
Based on the commonly estimated set of transcripts,
EMSAR showed the best performance when measured
with the Pearson correlation coefficient and RMSE,
followed by RSEM, Culfflinks, Sailfish, eXpress and
IsoEM (Fig. 3). This result is as expected, since RSEM
and EMSAR treat multi-reads more comprehensively
than Cufflinks and eXpress, and Sailfish and eXpress
sacrifice accuracy for lighter computation. IsoEM did
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Fig. 3 Comparison of accuracy across multiple methods for single-end RNA-seq. a A schematic showing the set of transcripts estimated by individual
methods and the common set (not drawn to scale). b-e Four different evaluation criteria are applied on the common set of transcripts indicated
in (@). IsoEM.mmO and IsoEM.mm?2 refer to IsoEM runs with up to 0 and 2 mismatches allowed, respectively. NEUMA.tT and NEUMAt50 refer
to NEUMA runs with EUMA (length) cut-off 1 bp and 50 bp, respectively. eXpress.default and eXpress.nobias refer to eXpress runs with default
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not perform as well in our analysis as in the previous
comparison by Li et al. [7]. EMSAR produced fewer
false positives but slightly more false negatives than
RSEM, though the differences in false negatives were
small across all programs except IsoEM. Sailifish shows
a low false negative rate. It should be noted that this
transcript set is mostly constrained by NEUMA and eX-
press since abundance estimates were missing for about

30,000 ~ 50,000 transcripts with NEUMA and about
60,000 transcripts with eXpress (Fig. 3f). NEUMA quan-
tifies only transcripts with at least some uniquely map-
pable sequence, and eXpress flags transcripts as solvable
when reads are assigned to them. Therefore, this com-
mon set of transcripts consists of relatively easy cases.
For pairwise comparisons shown in Fig. 4, we plotted
the difference (rather than the absolute values) in each
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Fig. 4 Pairwise comparison of accuracy between EMSAR and other methods for single-end RNA-seq. a A schematic showing the set of isoforms
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metric between EMSAR and the other program, since a
different set of transcripts is used in each case. The per-
formance of EMSAR was comparable to that of RSEM
in this setting with respect to the Pearson correlation
and mean square error. Again, EMSAR produced fewer
false positives and more false negatives compared to
RSEM. Since both RSEM and EMSAR report abun-
dance for all transcripts, this particular comparison
covers the entire transcriptome. Consistent with the re-
sult from the commonly estimated set, Cufflinks, eX-
press and IsoEM showed increasingly larger differences
compared to EMSAR and RSEM. Sailfish did better
than Cufflinks in this comparison, but it was slightly
outperformed by EMSAR.

Comparisons on paired-end data showed similar
results (Figures S2 and S3). One difference is that
Cufflinks somehow performed very poorly and showed
an extremely skewed relation to true expression level, as
indicated by a high o value (see below) and a low correl-
ation coefficient of r = 0.7 ~ 0.75. Figure S4 shows scatter
plots between true and estimated expression levels for
both single-end and paired-end. The scatter plots showed a
secondary cluster of transcripts with a different relationship
to the true expression level. This may be due to an im-
plementation issue. Li et al. [8] also pointed out that
Cufflinks had surprisingly poor accuracy on the
Ensembl set with abnormally high abundance estimates
for a subset of short transcripts. Sailfish did similar to
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or worse than eXpress and produced the largest number
of false positives. This may be because the k-mer count-
ing approach in Sailfish is suitable for single-end data
but it does not take advantage of the additional informa-
tion provided by paired-end libraries.

The consistently higher accuracy obtained by EMSAR
and RSEM is likely due to their efficient treatment of
multi-reads. Some differences between these two methods
include bias modeling in RSEM and a special alignment
adjustment strategy (described below), more precisely cal-
culated lengths of source transcript region, and data-
specific fragment size distribution in EMSAR.

EMSAR currently does not incorporate bias due to
GC% or relative position on the transcript into the model,
as RNA-seq techniques have been improving over time to
compensate for positional bias, with methods such as
dUTP [15, 16] offering a fairly uniform coverage [17].
Interestingly, we note that modeling this bias does not ne-
cessarily improve the result. For instance, the overall ac-
curacy of eXpress was better with the “—no-bias” option
for the simulated data even though these data contained
some positional bias (Figure S1). This suggests that having
a bias model does not always help and may even harm the
performance if the model does not fit the data well. How
to best model various biases of RNA-seq data remains an
interesting question.

Capturing systematic bias with the sigma parameter

The purpose of the method-specific scaling was mainly
to avoid penalizing methods that do not report estimates
for all transcripts or methods that may produce a sys-
tematic bias. Deviation of ¢ from 1 may indicate that the
method’s reported sum of all transcript expression is
underestimated due to incomplete coverage, which
would boost the TPM value, or that the method’s esti-
mation procedure generated some systematic bias result-
ing in a non-linear relationship between the estimated
and true expression levels. Cufflinks showed the largest
deviation from o =1, though it is not clear what caused
this deviation. NEUMA and eXpress with the “—no-bias”
option tend to have o lower than 1, consistent with their
underestimated XFPKM. However, eXpress with default
options (with a bias model) occasionally had high sigma
values, indicating systematic skewness in the estimated
expression levels. EMSAR and RSEM consistently had o
close to 1, which suggests that introducing the o factor
provided the least benefit for EMSAR and RSEM in our
comparisons described above. The values for o and the
maximized correlation coefficient among non-zero tran-
scripts are shown in Figure S5.

Comparison of speed and memory usage
Speed and memory usage are important considerations
in choosing an algorithm, especially if the sequenced
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library size is large. For single-end data (Fig. 5a, b),
EMSAR’s speed and memory usage was among the best;
for instance, EMSAR was slightly faster than eXpress
and Sailfish and similar to IsoEM. Given an index,
EMSAR’s memory usage was the lowest; when index
creation is included, EMSAR was the second lowest,
only behind eXpress (run with the “no-bias” option).
IsoEM was the fastest but used over 12GB of memory.
These results for IsoEM were obtained after we modi-
fied IsoEM’s java memory option to use 8GB only.
Without this modification, the program attempted to
use more memory than available and produced errone-
ous results. RSEM, which was comparable to EMSAR
in terms of accuracy, required the most CPU time. In
particular, its CPU time increased steeply with respect
to the library size, and was more than 10 times greater
than that of EMSAR for libraries with 30-40 million
reads. The results also show that EMSAR gets nearly
maximal benefit from multi-threading. The total CPU
time does not increase when 4 cores are used instead of
1, suggesting that the multi-threading overhead of
EMSAR is negligible. This is also true for paired-end
data (not shown).

For paired-end data (Fig. 5c, d), EMSAR’s indexing
uses more CPU time and therefore there is some disad-
vantage for a small library, but the efficiency increases
with library size. For RSEM, both CPU time and mem-
ory usage increased steeply with library size, as with the
single-read data, and a modification of memory require-
ment was needed to run on very large data sets. Sailfish
was similarly memory-intensive, particularly for large li-
braries, although it was faster than eXpress. EMSAR
data processing was the fastest of all the programs once
the indexing had been done. Our results on Cufflinks,
eXpress and RSEM are consistent with what has been
reported previously, except that we observed a faster
performance of Cufflinks [7]. The Cufflinks runs with
small CPU time associated with spuriously low accuracy
(see above) were repeatedly observed on our simulation
data, but not in a different data set (see below Multi-
sample performance). IsoEM needed a memory request
of larger than 10GB for libraries larger than 100 million
reads. We requested to use maximum 100GB for those
libraries, and all of the requested memory was used. In
summary, our comparison study indicates that EMSAR
is superior to RSEM in terms of efficiency in computa-
tional resources while having similar accuracy.

Multi-sample performance

We also evaluated the performance of the above pro-
grams on 16 human paired-end RNA-seq data available
from a public repository (http://www.ncbinlm.nih.gov/
geo/query/acc.cgi?acc=GSE55504, [18]). Each of the 16
samples contains 60—80 million reads. Figure 6 shows


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55504
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55504
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CPU time (Fig. 6a), run time (Fig. 6b), and maximum
memory usage (Fig. 6c), when the 16 samples were
processed serially using 4 cores (with the exception of
eXpress which was run using 1 core). Figure 6d and e
summarize the slopes of Fig. 6a and b, respectively, in
hours per 50 million reads. Consistent with the com-
parisons on simulated RNA-seq data, EMSAR shows an

outstanding speed. In particular, the CPU time of
EMSAR is similar to that of Sailfish for the 16 samples,
indexing time included. With prior alignment and
indexing, the data processing was faster with EMSAR
than Sailfish. It took more than 2 days for RSEM to fin-
ish the runs while EMSAR needed less than 4 hours
given an index. Cufflinks took longer (1.5 days), in
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contrast to our observations with simulated data. In
terms of memory, EMSAR was one of the lightest per-
formers (less than 2GB memory for data processing,
less than 4GB for indexing), whereas Sailfish, RSEM
and IsoEM used a large amount of memory (15-20GB).
Overall, EMSAR is light enough to be run on a personal
computer and the advantages of EMSAR are particularly
pronounced when working with multiple samples as well
as large libraries. A summary comparison chart based on
our results is provided in Fig. 6f, and it highlights high ac-
curacy and computational efficiency of EMSAR.

Comparison of accuracy in gene level quantification to
qPCR

We also examined the performance of EMSAR in
quantifying gene expression level from real RNA-seq
data from samples with qPCR data available. For our
main comparison, we ran EMSAR, Culfflinks, eXpress,
RSEM, IsoEM, Sailfish and NEUMA on four RNA-seq
datasets of UHRR (universal human reference RNA)

with two transcriptome models (RefSeq and ENSEMBL
(GRCh37.73)), and compared the results to qRT-PCR
(TagMan) data by two different groups (MAQC (Micro-
array quality control), 1001 genes [19]; Wang et al., 1363
genes [20]). This resulted in 6 algorithms x 4 samples x 2
models x 2 qRT-PCR sets =96 data points. Furthermore,
we performed the same analysis for two additional samples:
HBRR (human brain reference RNA) with TagMan qRT-
PCR data, and a gastric cancer cell line MKN-28 with SYBR
qRT-PCR data [5]. The details of the RNA-seq and qRT-
PCR data used are provided in Additional file 1: Tables S2
and S3. In each case, we computed the Pearson correlation
coefficient between RNA-seq estimates with qRT-PCR
measurements (details in Materials and Methods).

The result shown in Fig. 7 indicates that EMSAR, eX-
press, and RSEM are the top-performing methods over-
all, with Cufflinks slightly behind. IsoEM, Sailfish and
NEUMA consistently show lower concordance between
qRT-PCR and RNA-seq. Sailfish produced poor results
for UHRR1 and UHRR?2, with r < 0.45 (shown in Figure
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Fig. 7 Comparison of accuracy as measured by concordance to gRT-PCR on real RNA-seq data. Pearson correlation between RNA-seg-based gene
expression level estimates (log(TPM*T + 1)) and gRT-PCR-based measurements (ACt), across independently performed experiments. T was used to
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S6). Interestingly, the major determinant of the con-
cordance level is the choice of qRT-PCR dataset (~ 0.83
vs ~ 0.90 for the two qRT-PCR sets), rather than the
quantification method, the transcriptome model, or
even the type or library size of the RNA-seq datasets.
Both MAQC and Wang et al. qRT-PCR datasets are
based on TagMan, which defines a primer pair and a
junction probe as a single assay and applies multiple
assays to quantify a single multi-exon gene. On the
other hand, the qRT-PCR dataset in Wang et al. was
based on a single assay for each gene. This may ex-
plain the low concordance rate between the RNA-seq
and qRT-PCR measurements from Wang et al. For
HBRR, the results are similar to those on UHRR from
MAQC, as they were based on the same qRT-PCR
assay. The qRT-PCR for MKN-28 was based on 27 genes,
randomly selected from each of eight expression quantile
groups among the genes whose expression was confi-
dently reported by four methods, NEUMA, Cufflinks,
Tophat and ERANGE [5], and the primers were designed
to cover the exon junction that is common to all isoforms
for each gene (as opposed to integrating values from mul-
tiple exon junctions including non-common ones). The

concordance rate for this data set and the RNA-seq data
was higher than the other datasets, presumably because
the gene set is well-balanced across a wide expression
range and the gene-level qRT-PCR measurement was
straightforward.

The comparison between ENSEMBL- and Refseq-
based runs shows that Refseq-based runs exhibit better
concordance with the qRT-PCR overall. This may be
explained by the fact that all of the qRT-PCR primers
used here were designed based on RefSeq annotations.
The substantial decrease in NEUMA’s performance
with the ENSEMBL model could partly be explained by
the inherent limitation of the method, which relies on
the regions common across all isoforms of a gene. Its
performance would suffer significantly as the transcrip-
tome model becomes more complex. Similarly, the
discrepancy between its performance on the new run of
MKN-28 and the performance reported in the 2010
paper may be explained by the fact that the Refseq
transcriptome has become more complex now. The
2010 version had 18,909 protein-coding genes with
29,754 isoforms, whereas the current version has
25,497 genes with 47,308 isoforms. On the other hand,
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Cufflink’s performance shows a drastic improvement on
the same MKN-28 data set over the 2010 comparison.
This may be partly due to improvement in implementa-
tion, incorporation of bias models and incorporation of
multi-reads (note that we ran cufflinks with —u option
which uses multi-reads to improve accuracy).

A recent SEQC (RNA sequencing quality control) pro-
ject led by the MAQC consortium compared RNA-seq,
microarray and qPCR. The concordance between two dif-
ferent qPCR experiments on 843 genes was quite low
(correlation coefficient 0.85~ 0.86), implying that using
qPCR as a quantitative gold standard has significant limi-
tations [21].

Comparison of alignment strategies when allowing
mismatches

It is a common practice to allow 1~2 mismatches
when mapping RNA-seq reads to a reference genome
or transcriptome, to account for sequence variations in
the individual sample as well as sequencing error and
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to increase the number of mappable reads. It is difficult
to compute precise segment lengths in the presence of
mismatches, i.e., enumerating all possible reads with
and without mismatches with proper weighting by an
error model. However, we reasoned that if allowing
mismatches does not alter the proportion of reads
mapped to distinct segments, we can use the segment
length computed with the assumption of perfect map-
ping, for mismatch-allowed read counts.

We investigated this possibility by simulating 1000
artificial full-length RNA-seq reads from two nearly
identical sequences and one very different one (a ‘tran-
scriptome’ with three transcripts, each 56 bp in length),
with various degrees of sequencing errors. We mapped
them back to the reference allowing mismatches, and
selected uniquely mapped reads (Fig. 8a). As expected,
for the four different error rates we tried (0.1, 0.5, 1,
and 5 %), the percent of mapped reads decreased as the
error rate increased (Fig. 8b). In this simulation, there
are three segments and each of them is unique to a
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Fig. 8 Simulation of mapping with mismatches. a In this simulation, three 56-bp artificial gene sequences were created. Two sequences (blue)
were identical except at two nucleotide positions (marked as X, position not in scale). From each artificial gene, 1000 full-length reads were
generated with base substitution errors. The reads were mapped back to the reference, and only uniquely mapped reads were accepted. b
Four different error rates used for the simulation and the resulting mapping percentage, either when only perfect match is allowed (brown) or
when up to two mismatches are allowed (green). ¢ The fractions of uniquely mapped reads in the three genes illustrated in (a). The grey scale
indicates one of the three genes. The column labels A-D indicate independent simulations with the error rates indicated in (b). ‘Perfect match’
allowed only perfect matching alignment. 2 mismatches, all" accepts all alignments up to 2 mismatches. 2 mismatches, best accepts all the
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transcript and has length 1 (length 1 because the tran-
script length is identical to the read length). If only a
perfect match were allowed, reads would be aligned
only uniquely to a single transcript. However, with mis-
matches, a read may map to multiple transcripts. We
discarded such reads, since we do not have the corre-
sponding multi-transcript segments. Since we gener-
ated the same number of reads from each transcript,
alignment strategies can be evaluated by checking
whether the three reads are equally distributed across
the three transcripts.

We compared three alignment strategies: 1) retrieving
all perfectly-matched alignments exclusively (‘perfect
match’), 2) retrieving all alignments allowing up to 2
mismatches (‘2 mismatches, all’), and 3) retrieving all
alignments with the fewest mismatches for each read
("2 mismatches, best’). When we considered only per-
fect matches, the read counts for the three sequences
were nearly identical, indicating no bias (Fig. 8c). How-
ever, with increasing error rates, the percentage of noise
also increased because the number of mapped reads de-
creased. The 2 mismatches, all’ strategy produced a
highly biased result, particularly when the error rate
was low. This is because the mapping of reads originat-
ing from the two nearly identical genes became am-
biguous when mismatches were permitted, reducing the
number of uniquely mapped reads disproportionately.
When the error rate is low, reads can be mapped to the
true location even without allowing mismatches, and
therefore allowing mismatches introduces additional
ambiguity. When the error rate is high, allowing 2 mis-
matches helps find the true location and does not intro-
duce as much ambiguity because alignments with fewer
mismatches are less likely. With the 2 mismatches,
best’ approach, the ambiguity introduced by allowing
extra mismatches can be avoided, and the correct pro-
portion of uniquely mapped reads can be restored. At a
higher error rate, this method works better than the
‘perfect match’ strategy, because using more reads re-
duces noise.

These results suggest that, in general, allowing mis-
matches can distort uniquely mappable proportions
among highly similar sequences, and may affect quantifi-
cation based on read counts. Based on these observa-
tions, EMSAR internally filters alignments to retain only
the best-matching ones, with the assumption that all of
the alignments up to a certain mismatches are reported.
In other words, it takes ‘n mismatches, all’ alignments as
input and internally filters them into a set of ‘m mis-
matches, best’ to use for quantification.

Relationship between statistical models
The underlying segment-wise Poisson model used by
EMSAR is statistically equivalent to the joint Poisson
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model at individual base positions [22]. The maximum
likelihood estimator of the joint multinomial model at
the individual read level employed in Cufflinks is
equivalent to that of the joint Poisson model, owing to
the well-known equivalence of multinomial and condi-
tional Poisson distribution [23]. Thus, the joint Poisson
model used by EMSAR is, at its core, statistically
equivalent to these other models.

We have used this underlying model to produce an
efficient implementation with minimal sacrifice in ac-
curacy. We also achieved other improvements by effect-
ive use of multi-reads, balanced alignment filtration,
use of data-specific fragment-length distribution, and
optimization by a hill-climbing algorithm with user-
selected precision. Combining all these features has
made EMSAR an accurate yet computationally efficient
method.

Implementation and availability

EMSAR is available as a C program and takes an align-
ment file (SAM, BAM and default Bowtiel output for-
mat) and a transcriptome FASTA file as input. The
alignment file can be streamed. The main output file
contains FPKM and TPM values and inferred read
counts for individual transcripts. A multi-threading op-
tion is implemented as well.

Conclusions

We have developed a method that implements a novel
optimization procedure for expression estimation from
RNA-seq data. Our method avoids the EM-based prob-
abilistic transcript assignment for individual reads and
instead counts reads in each read group defined based
on transcript sharing. Our method achieves high accur-
acy, comparable to that of RSEM and better than the
rest of the methods we tested. Importantly, our method
also achieves superior speed and memory usage, by
using a pre-built transcriptome index. These results sug-
gest that EMSAR is a favorable alternative to existing
methods in many situations.

Methods
Model and algorithm
Terminology
A transcript is a sequence that corresponds to a full
length RNA species. The transcriptome refers to the set
of all transcripts defined for an organism. Note that
here, by a transcript we mean a full-length RNA species
with a distinct sequence, rather than a direct molecular
output of transcription as traditionally used in bio-
chemistry and molecular biology.

For single-end RNA-seq, a read is a sequence from
one end of a transcript fragment in the data. For paired-
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end RNA-seq, a read is a pair of sequences from both
ends of a transcript fragment in the data.

For paired-end RNA-seq, a fragment size (or frag-
ment length) is computed as the end-to-end distance
of the two mates of a read when aligned on a tran-
script. Multiple possible fragment sizes may exist for a
given read. We use only reads with a unique fragment
size (see Additional file 1 for details). For single-end
RNA-seq with variable read lengths, the read length is
treated as fragment size, since most of these cases
are fragment size shorter than the number of bases
sequenced and the variable read length is obtained by
removing the 3’adaptor sequence. For single-end data
with a fixed read length, again the read length is
treated as the fragment size since it can be considered
the minimum fragment size and the actual distribution
of fragment size is unknown.

An alignment class is a set of transcripts and the
number of positions on each transcript that a read is
mapped to (e.g., [ttytsts] can define an alignment
class where t;,t, and t3 are distinct transcripts).

A virtual read is defined as a subsequence of a tran-
script, with the size of the read length (for single-end) or
a pair of subsequences with the size of the read length,
separated by a certain distance (for paired-end).

The set of all possible distinct virtual reads mapped
to an alignment class is a segment. The length of a
segment is the number of distinct virtual reads that
form the segment. When multiple fragment sizes are
present, each fragment-size-specific segment length is
computed first and then the overall segment length is
computed as the average segment length weighted by
the probability of each fragment size.

The read count of a segment is defined as the total
number of reads in an RNA-seq data in that segment.
Identical reads may be counted multiple times if they
occur multiple times in the data. The read count is
modeled as a Poisson random variable whose expected
value is proportional to the sum of expression levels of
all the transcripts associated with the segment, (e.g.,
e, +e, +e, +e, for the segment associated with
alignment class [t;,ty,t3,t3], where e; is the abundance
of transcript i) times the segment length.

A sequence-sharing set is defined as the minimal set of
transcripts that ever share the same segment, i.e., the same
alignment class. In other words, a sequence-sharing set S is
the smallest set Sy that satisfies the following condition for
transcripts u and v in transcriptome T: if there exists a
alignment class Z such that ueZ and veZ, then ueS, and
veSy. Sequence-sharing sets are mutually exclusive and
their union is the entire transcriptome.

Likewise, an equivalence set G of segments that ever
share a transcript can be defined as the smallest set G that
satisfies the following condition: for segments u and v in
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the set of all segments Q, if there exists a transcript that
both u and v are associated with, then ueG, and veG,,.

Maximum likelihood estimation
We model the segment read counts as a Poisson random
variable that depends on the sum of the expression
levels of the transcripts sharing the segment, the seg-
ment length, and the total sequencing depth.

We define a likelihood function for read count X. for
segment C as LH(e; Xc)=Poisson (\), where 1 =

(Ziezei)LCM’ e;, is the abundance of transcript i in

the alignment class Z associated with segment C, L¢ is
the segment length, and M is a scale factor proportional
to the total number of reads in the experiment. Then,

we maximize H ceclH (e Xc)  over all segments

encompassed by the equivalence set G. Note that we
used set operations here for convenience, though an
alignment class is not a set in that the same element can
appear multiple times.

For maximization, we use an efficient hill-climbing al-
gorithm. We report the expression levels for individual
transcripts. The optimization is performed multiple
times (by default, 4 times) with different random initial
points and the mean is reported. This way, if a transcript
is unsolvable but the sum of two transcripts is solvable,
then the two transcripts will be estimated to be
expressed at about the same level.

Inference of read counts
After computing the FPKM value, the read count for
transcript i is inferred as:

Readcount; = 10°

- <§C:XC> FPRMi(Y", L)

Where C refers to a segment, with segment read count
Xc and segment length L. The term ZieCLC’ or the

sum of the lengths of all segments that include tran-
script i, is the effective transcript length for transcript i.
Theoretically, this should be identical to the actual tran-
script length, since EMSAR uses all of the reads. How-
ever, for practical reasons, we exclude reads and
segments that are shared by more than 100 locations.
For this reason, there may be a slight difference between
the effective length and the actual length. A gene level
read count can be computed as the sum of isoform read
counts. These read counts can be fed to differential ex-
pression analysis programs [24-27], or renormalized
using any count-based normalization methods [28].
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Algorithm

A modified suffix array is built on a concatenated tran-
scriptome, so that identical sequences of a specified
length are clustered on the array (Figure S7a). A suffix
array is an array of all positions in an input string (here
the concatenated transcriptome) sorted by the suffix
starting at each position. We modified the suffix array so
that the sorting considers only the first portion of each
suffix up to the read length and so that reverse comple-
mentary sequences are not separated into distinct clus-
ters for unstranded RNA-seq data. Identical substrings
are clustered in our modified suffix array, and for each
cluste, EMSAR converts the positions on the
concatenated transcriptome to the corresponding tran-
script ID using a separate index table, then either creates
a new segment element in a sorted linked list accessed
by a 2-dimensional array or increment the length of an
existing segment.

For paired-end RNA-seq, a similar modified suffix
array is created for one of the two mates. Then, for each
cluster on the first array, a secondary array is created
temporarily, representing all possible positions of the
other mate for a given range of fragment sizes. A cluster
on the second suffix array represents positions of identi-
cal second mates on the transcriptome. Since it is condi-
tioned on a cluster of identical first mates, it represents
identical paired-end reads. The subsequent steps are the
same as in the single-end case (Figure S7b).

The data structure used for the index is shown in
Figure S8a. The index contains information on the
length of each segments computed for individual frag-
ment lengths The final segment length is completed
for each RNA-seq data, using its data-specific fragment
length distribution. Once all segments are identified,
the sequence-sharing sets are computed using a recur-
sive propagation algorithm (detail in Figure S8b).
When the sequence-sharing set is larger than a thresh-
old, segments with length below a threshold are itera-
tively dropped and the sets are recalculated.

Parameters used in program runs
The FLUX simulator was run with the following set-
tings to generate two independent random transcrip-
tomes based on the human ENSEMBL annotation
GRCh37.72. From each transcriptome, we added ran-
dom differential expression to create two additional
sets. Then, unstranded paired-end RNA-seq data of
various sizes with read length 101 bp were generated
from each transcriptome. For single-end data analysis,
we used one of the two mate files. Additional parame-
ters used for FLUX simulator can be found in Table S1.
EMSAR 2.0.0 was run with the default parameters, along
with Bowtie 1.0.0 with options -v 2 -a -m 100 -f -p 4 -S.
This setting allows two mismatches.
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eXpress 1.3.1 was run with default options. An add-
itional run with option —no-bias-correct was included.
For mapping, Bowtie 1.0.0 was used with parameters
-aS —offrate 1 -X 800 -v 2 -f -p 4 as recommended on
the program web site.

For Cufflinks, version 2.1.1 was used with default options,
along with Tophat 2.0.8b with options -p 4 -N 2 —bowtiel
for single-end and with —no-novel-juncs -p 4 —bowtiel -r 30
—mate-std-dev 60 for paired-end to best accommodate ob-
served insert size distribution.

NEUMA-1.2.1 was run with options —mm =2 -f=f -d =
E -L =101 -D =600, along with Bowtie 1.0.0 with options
—minins 0 —maxins 800 -v 2 -a —suppress 5,6,7 -p 4.

RSEM 1.2.5 was run with options -p 4 —time —output-gen-
ome-bam —fragment-length-mean 150 —fragment-length-sd
35 —ci-memory 2048 —no-qualities. Mapping was done using
the code provided along with RSEM.

IsoEM 1.1.1 was run after modifying a line in the
script to ‘startMem = -Xms10g, maxMem = —Xmx10g
for 5 ~40M reads and startMem = —xms10g, maxMem
= -Xmx100g for over 100M reads’ to avoid using more
than existing memory and producing erroneous results.
The options were -m 250 -d 25 after running bowtie
1.0.0 with options -k 10 -v 2 -f -p 4. The options were
taken from the example file provided by the developers.

For sailfish, indexing was performed using the options
-k 20 -o, and quantification was performed using the op-
tions -1 "T = PE:O= > <:S=SA" -p 4. The default option
produces both bias-corrected and uncorrected result.

For performance comparison, all the programs were run
on a regular server with 2.90 GHz CPUs on a CentOS 6.3
operating system.

Real data analysis

Several independent HiSeq2000 RNA-seq data sets were
collected on the same sample (UHRR (universal human
reference RNA) and HBRR (human brain reference
RNA)), for which large-scale qPCR results are available
(see Additional file 1: Table S2, S3 for more detail).

For RNA-seq, each program was run with the human
transcriptome model of ENSEMBL GRCh37.72 or
RefSeq (refgene, downloaded from UCSC on Jul 15,
2014 and cleaned up for duplicate entries). For each
gene symbol, all transcripts associated with the gene
symbol were summed to obtain the gene-level expres-
sion estimates. NEUMA generates gene-level and
isoform-level estimate separately. The gene expression
level for NEUMA was obtained from gene-level esti-
mates when available, or sum of all isoform levels. We
excluded genes whose expression level could not be
computed by NEUMA. For IsoEM, option -a auto-
fragment-distrib was used instead of -m and -d options
for fragment length distribution.
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For qRT-PCR, MAQC consortium generated four rep-
licates of TagMan qRT-PCR on 1001 genes for UHRR
and HBRR. Gene-level measurements were provided as
pPol2 Ct-gene Ct ywhich could be directly used after log-
transformation. We used 841 and 839 genes for which the
matching gene symbol exists in the ENSEMBL and RefSeq
annotations, respectively. Wang et al. (GSE4214) gener-
ated four replicates of TagMan qRT-PCR on 1363 genes
for UHRR. For the Wang et al. data, we directly took the
27 value as the gene-level measurement and did log-
transformation. We used the 1287 and 1278 genes with
a matching symbol in the ENSEMBL annotation.

The MKN-28 data set was run with the RefSeq anno-
tations. All 27 genes had a matching symbol.

As a measure of accuracy, we used the maximum cor-
relation coefficient between RNA-seq-based gene ex-
pression level estimates (computed as log(TPM x 7+ 1),
maximized over 1) and qRT-PCR-based measurements
for each method and data set.

Additional file

[ Additional file 1: Supplementary Material. (PDF 250 kb) ]
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