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Abstract

and precisely annotated.

replenishing functions of partially annotated proteins.

Background: High-throughput bio-techniques accumulate ever-increasing amount of genomic and proteomic
data. These data are far from being functionally characterized, despite the advances in gene (or gene’s product
proteins) functional annotations. Due to experimental techniques and to the research bias in biology, the regularly
updated functional annotation databases, i.e,, the Gene Ontology (GO), are far from being complete. Given the
importance of protein functions for biological studies and drug design, proteins should be more comprehensively

Results: We proposed downward Random Walks (dRW) to predict missing (or new) functions of partially annotated
proteins. Particularly, we apply downward random walks with restart on the GO directed acyclic graph, along with the
available functions of a protein, to estimate the probability of missing functions. To further boost the prediction
accuracy, we extend dRW to dRW-kNN. dRW-kNN computes the semantic similarity between proteins based on the
functional annotations of proteins; it then predicts functions based on the functions estimated by dRW, together with
the functions associated with the k nearest proteins. Our proposed models can predict two kinds of missing functions:
(i) the ones that are missing for a protein but associated with other proteins of interest; (i) the ones that are not
available for any protein of interest, but exist in the GO hierarchy. Experimental results on the proteins of Yeast and
Human show that dRW and dRW-kNN can replenish functions more accurately than other related approaches,
especially for sparse functions associated with no more than 10 proteins.

Conclusion: The empirical study shows that the semantic similarity between GO terms and the ontology hierarchy
play important roles in predicting protein function. The proposed dRW and dRW-kNN can serve as tools for

Keywords: Function prediction, Downward random walk, Gene ontology, Partially annotated proteins

Background

The Gene Ontology (GO) is a controlled vocabulary of
terms for describing the biological roles of genes and their
products (i.e., proteins) [1]. GO organizes the ontologi-
cal knowledge (or GO terms) in a direct acyclic graph
(DAG), and represents the knowledge in three orthogonal
sub-ontologies, namely a Biological Process (BP), a Molec-
ular Function (MF) and a Cellular Component (CC). In
the DAG, a GO term describes a more specific functional
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role than its ancestor terms. If a protein is annotated with
a specific term, then it is also annotated with the corre-
sponding ancestor terms. This rule is known as the true
path rule [1, 2]. Hereinafter, we use the word “function”
as synonymous of ‘GO term’ or ‘term, regardless of the
sub-ontology the term belongs to.

The advance in protein functional annotation far lags
behind the pace of accumulated proteomic and genomic
data. The Human Proteome Project consortium recently
claimed that we still have very little information about the
cellular functions of approximately two-thirds of human
proteins [3]. Schones et al. [4] found that the functional
annotations of high-throughput genomic and proteomic
data are biased and shallow. Therefore, automatically
annotating the functional roles of these proteins using GO
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terms can facilitate the understanding of life at the cellular
level, and lay a foundation for the development of diag-
nostic, prognostic, therapeutic, and preventive medical
applications [3, 5, 6].

Although researchers have been working on protein
function prediction for more than ten years, the functional
roles of proteins are still poorly characterized for several
reasons: (i) most functional information is yet to be dis-
covered through direct experiments in the first place [7],
and it is time consuming and costly to annotate proteins in
wet-labs; (ii) the wet-lab verified functions of proteins are
still limited by the experimental techniques and the bio-
logical research interest [4, 8—10]. These techniques often
can only provide partial annotations, which are not spe-
cific enough to be of biological interest [4] and result in
the issues of evaluation of predicted functions [11, 12]; (iii)
our current knowledge of the GO terms and structure is
incomplete. Both are updated regularly; as a result, some
GO terms are obsolete and some new ones are included
from time to time. For these reasons, developing compu-
tational models to comprehensively annotate proteins is of
great importance and necessity. More importantly, these
models should explicitly take into account the incomplete
functional annotation of proteins.

Various computational models have been proposed for
protein function prediction and their feasibility has been
shown [5, 6, 13]. Most of these methods [2, 14-18] explic-
itly (or implicitly) assume that the available functional
annotations of proteins are complete, and make use of
the annotations to predict the functions of unlabeled pro-
teins. Thus, these methods ignore the fact that proteins
are partially annotated and they cannot replenish (or pre-
dict) functions of a partially annotated protein. Given that
the current functional annotation of proteins are shallow
and far from being complete [4, 5], and given the true path
rule, it is more desirable to know the specific functions
of a protein, rather than the general ones. For example,
‘G0O:0072576’ (liver morphogenesis) is a descendant of
‘G0O:0001889’ (liver development); thus, a protein anno-
tated with ‘GO:0072576” provides more biological infor-
mation than this protein annotated with ‘GO:0001889’ In
this paper, we investigate the possibility of replenishing
missing but more informative functions of a protein from
the currently annotated functions of the same protein.

Predicting functions of proteins that already have some
functional annotations has been set as a new challenge in
the second large-scale community-based critical assess-
ment of protein function annotation (CAFA) [5, 19]. A
few approaches explicitly consider the incomplete anno-
tations of proteins, and predict missing annotations for
partially annotated proteins, or for completely unlabeled
proteins [20-23]. Yu et al. [20] used co-expression data
and an edge-based functional terms’ taxonomy similar-
ity to determine specific functions of a protein. At first,

Page20f 13

all functions associated with the k nearest neighborhood
proteins are chosen as candidate functions of a protein.
These candidate functions are weighted based on their
taxonomy similarity and their frequency. Eventually, the
resulting representative functions are assigned to the pro-
tein. Zhu et al. [21] extended the method proposed by
Yu et al. [20] via integrating gene co-expression data with
PPI networks to filter the interacting proteins of a target
protein, and to enhance the degree of function consensus
among the neighbors of a protein. Similarly, they used the
functional annotations of the filtered neighborhoods and
an edge-based taxonomy similarity to predict the func-
tions of the target protein. King et al. [24] directly used
the annotation patterns of proteins to train a decision
tree classifier and a Bayes classifier for function predic-
tion. These two classifiers need sufficient annotations for
training, and they do not work well for sparse GO terms,
which are associated with very few (< 10) proteins. Such
GO terms constitute the majority. To avoid this limitation,
Tao et al. [22] introduced an approach called information
theory semantic similarity (ITSS). ITSS first measures the
semantic similarity between pairwise GO terms based on
a taxonomy, which is similar to Lin’s similarity [25]. Based
on the semantic similarity between two GO terms, ITSS
computes the semantic similarity between two proteins by
averaging the pairwise similarities between the recipro-
cal GO terms associated with the two respective proteins.
ITSS then employs a simple kNN classifier based on the
semantic similarity between proteins to predict the func-
tions. Dong et al. [26] utilized the vector space model and
latent semantic indexing on a protein-function association
matrix for function prediction. These methods can only
assign functions that are associated with the neighbors (or
some other proteins) to a protein.

A protein often engages in several cellular processes
and thus is annotated with several GO terms. Each term
can be viewed as a functional label, and protein func-
tion prediction can be modeled as a multi-label learning
problem [27-32]. From this viewpoint, protein function
prediction using partial annotations can be modeled as a
multi-label and weak-label learning problem [23, 33]. In
multi-label weak-label learning, a multi-label instance is
partially labeled, and some of its ground-truth labels are
not available (or missing). The goal of weak-label learn-
ing is to replenish the missing labels and to predict the
labels of new instances using the partially labeled ones.
Yu et al. [23] proposed a weak-label learning method
called protein function prediction using weak-label learn-
ing (ProWL). ProWL uses the Cosine similarity to mea-
sure the correlation between two functional labels. The
available functional annotations of a protein, along with
the correlation between functions, are used to estimate
the likelihood of missing functions. In addition, ProwWL
uses a network-based classifier to exploit PPI networks
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to replenish missing functions of a partially annotated
protein, and to predict functions for an unlabeled pro-
tein. Yu et al. [34] assumed that the functional annotation
of a protein depends on its feature information, and sug-
gested a weak-label learning based method called ProDM.
ProDM maximizes the dependency between the fea-
tures and the functional annotations of proteins to make
prediction. These weak-label learning methods explicitly
consider only the flat relationships among labels. More
recently, Yu et al. [35] proposed a method called PILL
to predict protein functions using incomplete hierarchi-
cal labels. PILL takes advantage of the hierarchical and flat
relationships among functional labels, along with the PPI
network to replenish the missing annotations of partially
annotated proteins. PILL significantly outperforms the
aforementioned weak-label learning methods, and shows
the paramount importance of using hierarchical relation-
ships among functional labels. Sefer and Kingsford [18]
suggested an Metric Labeling method to optimize the
distance between functions by using the GO structure
information, and then to predict function for completely
unlabeled proteins. However, none of the aforementioned
methods can assign a GO term, which exists in the GO
hierarchy but has not yet been associated with any protein
of interest (i.e., the GO terms in the blue ellipses of Fig. 1),
to a protein.

In this paper, we propose downward Random Walks
(dRW) and its variant dRW-ANN to replenish functions
of a partially annotated protein. dRW and dRW-ANN can

Protein
( GO: 0008150 )
C G0:0008152 ) ( GO:0071840 D)

[ GO:0009058 ) ( GO:00440857 ) ( GO:00160437

( GO:0044249? )

Fig. 1 An example of a partially annotated protein. The GO terms in
the white ellipses are the currently available functions of the protein,
and the terms in the colored ellipses are the missing functions of the
protein. In particular, the terms in the grey ellipses are missing
functions of the first type: they are associated with other proteins, but
are missing for the protein being considered. The terms in the blue
ellipses belong to the second type: they exist in the GO hierarchy, but
they are not associated with any protein of interest. We observe that
any missing function of a protein should be a leaf node of the
hierarchy, and this hierarchy is defined with respect to the available
terms associated with the protein, rather than with the whole GO
hierarchy. We can replenish a non-leaf term of a protein directly using
its descendant terms, due to the true path rule of GO
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predict two kinds of missing functions: (i) Functions that
should be associated with a protein, but they are currently
missing, e.g., the GO terms in the grey ellipses in Fig. 1;
(i) Functions that exist in the GO hierarchy and should
be associated with some proteins, but they are currently
not associated with any, i.e., the GO terms in the blue
ellipses in Fig. 1. Some pioneers apply text mining tech-
niques (i.e., GOAnnotator [36]) on the biomedical texts to
predict the second kind of functions [37]. Nevertheless, it
is important to highlight that the prediction of the second
kind of functions, to the best of our knowledge, is still less
studied in computational model-based protein function
prediction.

Methods

Let N be the number of proteins and |7| the number
of GO terms. Lets assume the i-th protein is annotated
with the terms in 7; (7; € T). Furthermore, there exist
terms in 7 that are not associated with any proteins. Our
goal is to determine whether protein i should be anno-
tated with a term ¢ € T, where ¢ ¢ 7;. To achieve this
goal, we introduce dRW on the GO DAG to pre-estimate
the likelihood that the protein should be annotated with
t. A random walk on a graph is often described by a
transitional probability matrix. We define the transitional
probability between nodes (each node corresponds to a
GO term) in the DAG based on their semantic similar-
ity. Various semantic similarity measures have been pro-
posed to compute the similarity between two GO terms
[8, 9, 11, 25, 38—41]. These similarity measures focus on
different characteristics of the GO structure and compute
the similarity between two terms or two groups of terms.
A comprehensive coverage of these semantic similarities
is out of scope in this paper. For more information on
semantic similarities, the reader can refer to [8, 9, 39—41]
and references therein.

Here we first introduce a structure-based semantic sim-
ilarity to measure the similarity between two GO terms.
Second, we introduce dRW on the GO DAG to esti-
mate the likelihood that a term is missing for a pro-
tein. Next, we measure the semantic similarity between
two proteins based on their GO annotations and the
structure-based similarity. Then, dRW-ANN is introduced
to replenish functions of a protein based on the functions
pre-estimated by dRW and the functions associated with
its neighborhood proteins.

Structure based semantic similarity

We take advantage of a structure-based semantic similar-
ity, which is a variant of Lin’s similarity [25] to measure
the similarity between two GO terms. Lin’s similarity is
defined as follows:

ety — 22 ICE) .
sim (t1,82) = 7= (t1) + IC (t2)
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where t* is the most informative common ancestor term
of t; and £y, t* subsumes both #; and £, if £; is the ancestor
of ty, then t* is t;. IC(t*) is the structure-based informa-
tion content (IC) of term t*. There are alternative ways
to define the similarity between t; and t;, we choose
Lin’s similarity for its wide application and empirical good
performance in the previous study [15, 18, 35].

To reduce the bias of incomplete annotations and to
produce consistent information content of the terms
across different species, similarly to Tao et al. [22] and
Teng et al. [40], we compute IC(¢) of a GO term ¢ using
the number of its descendants in the GO hierarchy, rather
than the frequency of this term. IC(¢) is inversely propor-
tional to the number of descendants of £, because the more
descendants ¢ has, the less specific it is. IC(¢) is defined as:

log (1 + |desc())/IT1)
log(1/|T1)
log(1 + |desc(t)|)
o loglTl

where desc(t) is the set of descendant GO terms of ¢ and
|desc(t)| is the cardinality of desc(t). If Eq. (2) use the fre-
quency of term ¢ to define IC(t), then for a GO term that
is not associated with any of the N proteins, its Lin’s simi-
larity with respect to other GO terms is set to 0. However,
the similarity between ¢ and other terms should not be set
as 0.

Hereinafter, Lin’s similarity with IC(¢) defined by Eq. (2)
is called as Lin’s structure similarity, and Lin’s similar-
ity with IC(¢) defined by the frequency of ¢ is named as
Lin’s corpus similarity. Our choice of Lin’s structure sim-
ilarity is driven by the fact that functional annotations
of proteins are incomplete and biased to the biologist
research interest [4, 8, 12], the frequency of a term is
often coarsely estimated. Although Eq. (2) equally treats
all the GO terms, we observe that dRW based on Lin’s
structure similarity achieves better performance than Lin’s
corpus similarity, and it also gets better results than dRW
based on a recently proposed semantic similarity that
takes advantage of disjointness between terms to define
the similarity between GO terms [41].

IC(t) =

= 2)

Estimatingmissing functions using downward random 274
walks (dRW)

We introduce downward random walks with restart [42]
on the GO DAG to estimate missing functions of proteins.
There are several rationalities to apply downward random
walks on the DAG. (i) From the true path rule of GO
annotations [1, 2], if a protein is annotated with a specific
GO term, then it is also annotated with the corresponding
ancestor terms, and may or may not be annotated with the
descendant terms. (ii) The missing functions of a protein
are the descendants of the terms associated with the pro-
tein. For example, ALG6 was annotated with 43 BP GO
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terms by 2010-01-20 and it was annotated with 47 terms
by 2014-06-09. The 4 missing functions of ALG6 are the
descendants of GO:0006464 and GO:0006487, which were
associated with ALG6 by 2010-01-20. CLDN16 was asso-
ciated with 24 BP GO terms by 2010-01-20 and it was
annotated with 34 terms by 2014-06-09. The 10 missing
functions of CLDN16 are the descendants of GO: 0008150
and GO: 0044699, which were associated with CLDN16
by 2010-01-20. The functional annotations of these two
proteins are illustrated in Fig. S1 of Additional file 1. (iii)
Schones et al. [4] observed that the functional annota-
tions of proteins from high-throughput experiments are
often shallow, and these proteins should be annotated
with more specific functions. Given that, a downward ran-
dom walker that starts from the available terms associated
with a protein has the potential of identifying additional
functions of the same protein.

Let A € RI7IXITI be the association matrix of the
DAG graph. If ¢, is a child of ¢;, A(¢1,t2) = 1, other-
wise A(t1,t) = 0. To stimulate the random walk on the
DAG, we need to filter out transitions between pairs of
GO terms that do not have a parent-child relationship. We
use fsim (t1,t2) = sim (t1,t2) X A (t1,t2) to represent the
filtered semantic similarity between ¢; and ;. Obviously,
if A(t1, ) = 0, i.e., t1 is not the parent of £, then there is
no transition between the two.

This filter process is based on the observation that the
conditional probability that a protein is annotated with ¢,
given that the protein is already annotated with ¢’s par-
ent terms, is much larger than the conditional probability
that the protein is annotated with ¢, given that it is anno-
tated with #’s other ancestor terms [35]. Based on fsim,
we can define the normalized initial transition probability
between two GO terms as

Ssim (t1,t2)
Yo fsim (t,ty)

Suppose a random walker starts from a GO term t. The
walker iteratively reaches its descendant v (if any) accord-
ing to the corresponding transition probabilities. At the
same time, the walker also has some probability to stay at
t. Let Ry(¢,v) be the probability the walker starts at £ and
then stays at v during the time step s. Then Ro(¢,£) = 1
and Ry(¢, v) = 0 for each ¢ # v. Ry11 (¢, v) is computed as:

W (t1,t2) = (3)

Ripn@&v=n Y

ue(tUdesc(t))

Rs(t,u) W(u,v) + (1 — n)e;

(4)

where e; is a | 7| x 1 start vector with the ¢-th element set
to 1, and all others set to 0; n €[0, 1] is the restart proba-
bility, and 1 — 7 is the probability for the walker to stay at ¢.
The walker performs direct random walks with restart on
the GO DAG with limited number of direct edges, since
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the maximum depth of GO terms in the whole GO hier-
archy (as of July 2014) is 15, ¢ will reach a steady state
after several iterations. In our empirical study, we set the
number of iterations to 10.

A walker starting from a GO node ¢ can move to its
descendant GO nodes (if any) and can also stay at ¢. As
the walker walks along the GO DAG, since the transition
probability between two terms is filtered by the GO struc-
ture and the probability for a walker stays at the starting
GO node is not zero, the probability the walker starts from
t to its direct child GO nodes (if any) is larger than that
to t’s other descendant nodes (if any). Similarly, the walker
will not end in one leaf of the ontology, and the probabil-
ity a walker moves to a leaf node is smaller than that to the
leaf node’s ancestors. If the probability for a walker stays
at the starting point is 0 (namely n = 0 in Eq. (4)), then
the random walker will end at one leaf node. For simplicity
and avoiding bias, we just set 7 = 0.5, which means a ran-
dom walker having equal probability to stay at the starting
GO node and move to the descendant GO nodes of the
starting node.

To this end, we make use of the steady transition prob-
ability R and available functions of a protein to predict
potential missing functions of a protein. Let 7; be the cur-
rently available (maybe incomplete) GO terms associated
with the i-th protein, for a term v & T, R(¢,v) is the stable
transition probability from ¢ to v, and it can be viewed as
the estimated likelihood that the i-th protein is annotated
with v also. Taking into account all the available terms in
T;, the overall likelihood is:

ﬁ@ﬂ:iﬁmw s.t.R(t,v) > 0 (5)
teT;

where 6 is an adaptive threshold parameter and is equal to
the mean value of all nonzero elements in R(¢,-)(¢ € T7).
0 is adopted to filter out estimations that are too small,
since the number of candidate GO terms is rather large
and only a few are associated with a given protein. In
other words, 6 can help removing some false positive esti-
mations, since the missing GO terms of a protein are
often located at deeper levels of the GO hierarchy, and
the closest ancestors (i.e., parent GO terms) can pro-
vide more accurate estimations than the farthest ancestors
[35]. L(i,v) in Eq. (5) gives the dRW estimated likelihood
of a new function v for the i-th protein.

Suppose GO term v currently is not associated with any
of the N proteins and it should be associated with the i-
th protein, if its ancestor terms (i.e., t) are associated with
the i-th protein, since R(t,v) > 0, then £(i,v) > 0. In this
way, dRW can predict the second kind of missing func-
tions, namely the functions that are not associated with
any protein of interest. Lin’s structure similarity in Eq. (2)
equally treats each GO term, and thus each subbranch
of GO maybe equally well refined. However, the available
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GO annotations of a protein and the GO hierarchy can
force the replenished functions not evenly distributed in
the subbranch.

Predicting missing functions using dRW-kNN

The semantic similarity between proteins derived from
functional annotations of proteins is correlated with
the similarity derived from different types of proteomic
data and genomic data [8, 9, 40, 43], for example, gene
sequences, co-expressions and PPIs. Some approaches
directly utilize the pattern of GO annotations of pro-
teins to predict protein functions [24], and some methods
assume that the semantic similarity between proteins can
be used to predict additional functions of a partially anno-
tated protein [22, 26].

We use the GO annotations of proteins and Lin’s struc-
ture similarity to compute the semantic similarity between
two proteins. We then use this semantic similarity to
determine the neighborhood relationship among proteins
and to predict missing functional annotations of partially
annotated proteins. Similarly to Tao et al. [22], the seman-
tic similarity between two proteins i and j is defined as
follows:

2 X Y 4y 10yep Sim (t1, 12)
VAR

psim(i,j) = (6)

where P represents the set of reciprocal pairs of GO terms
between proteins i and j. Each pair in P consists of a term
from 7; and a term from 7; that are mutually most similar
to one another. As such, if 7; and 7; are not empty, P will
also be not empty.

We apply a kNN style classifier to predict functions for
a partially annotated protein. In particular, we make use
of the missing functions pre-estimated by dRW and the
functions of the nearest neighbors. The probability that a
protein i is annotated with term v (v & 7T;) is:

Y e P5imj) x LG, v)

L@, v) = ;

(7)

where N (i) consists of the k nearest proteins to protein i,
and the neighborhood relationship is determined by psim
in Eq. (6). Note, Ny (i) always contains the i-th protein
itself. From Eq. (7), if the i-th protein is missing a term,
and its neighbors are annotated with such term, then the
term can be assigned to the i-th protein. Furthermore, if
a term ¢ is not associated with any of the N proteins, but
it is available in the GO hierarchy and semantically close
to other terms that are associated with some proteins,
then ¢ can still be replenished. We call the downward ran-
dom walks approach combined with the kNN classifier in
Eq. (7) as dRW-AKNN. Obviously, dRW can be viewed as a
special case of dRW-ANN when k = 1.
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The proposed dRW and dRW-kNN solely depend on the
available functional annotations of proteins, they do not
take other protein-specific information (i.e., amino acid
sequences and protein-protein interactions) as input. If
two entirely different proteins with the same initial func-
tional annotations, they will be predicted with the same
functions by dRW and dRW-ANN. In fact, the proposed
dRW-ANN can incorporate other kinds of proteomic data
(i.e., amino acid sequences and protein-protein inter-
actions) to determine the neighborhood proteins of a
protein. In this way, two entirely different proteins with
the same initial functional annotations can have differ-
ent neighborhood proteins and be predicted with different
functions. To focus on the main idea of random walks
on the GO hierarchy and to keep consistency with other
related methods, we do not include other kinds of pro-
teomic data in the experiments. It is an interesting future
work to integrate the protein-specific information with
dRW-ANN and to study the difference between using
semantic similarity and protein-specific information.

The Naive method suggested by Clark and Radivojac
[30] is a baseline approach in CAFA, it also directly uses
the available GO annotations of proteins to predict pro-
tein function, and it is quite different from the proposed
dRW and dRW-ANN. Naive is solely based on the fre-
quency of a function, and it can not replenish the second
kind of missing functions. In contrast, dRW and dRW-
kNN depend on the functional annotations of proteins
and the GO hierarchy, and they can predict the second
kind of missing functions, and they are not so depen-
dent on the frequency of function as Naive. In addition,
dRW-ANN utilizes the semantic similarity between pro-
teins to determine the functional annotations of proteins,
and the semantic similarity is correlated with different
types of proteomic data, thus dRW-kNN has the potential
to incorporate other proteomic data, whereas Naive does
not. Our following experiments will show that dRW and
dRW-ANN produce quite different results from Naive in
the same experiments.

Results and discussion

Datasets and experimental setup

We downloaded the GO file! that contains hierarchi-
cal relationships between GO terms organized in three
orthogonal axes of biological concepts. The Gene Ontol-
ogy Annotation (GOA) files of Yeast and Human were
obtained from the European Bioinformatics Institute?.
Each GOA file contains annotations relating the genes to
the three sub-ontologies, namely BP, MF, and CC. We pro-
cessed the GO file to exclude the GO terms annotated as
‘obsolete’ We processed the GOA file to exclude the anno-
tations with evidence code ‘IEA’ (Inferred from Electronic
Annotation), ‘NR" (Not Recorded), ‘ND’ (No biological
Data available), or ‘IC’ (Inferred by Curator).
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The missing functions of a protein are often located at
deep levels of the GO hierarchy. These functions are typ-
ically associated with no more than 10 proteins and thus
are viewed as sparse functions (or GO terms). Many meth-
ods are shown to work well for the terms associated with
10 (or more) proteins [2, 15, 23]. Tao et al. [22] reported
that no prediction method is able to achieve highly accu-
rate results for sparse terms, and proposed ITSS to predict
missing gene functions using sparse terms. We follow a
similar preprocess step as ITSS to conduct experiments
on sparse terms associated with at least 3 proteins. The
GOA file provides the most detailed level GO terms in
the ontology that correctly describes the biology of the
gene and its products®. We apply the true path rule to
append all the ancestor GO terms of the detailed terms
for a protein. The summary of processed GO annota-
tions of proteins are listed in Table 1. From the Table, we
can observe that the sparse terms occupy the largest por-
tion of 7, and few terms are associated with more than
30 proteins. An interesting observation is that the aver-
age number of terms associated with a protein is close to
the standard deviation; this is because some proteins in
the GOA are not annotated with any term (excluding the
annotations with evidence code ‘IEA, ‘NR; ‘ND; and ‘IC’).
For example, 1191 proteins in Yeast and 7094 proteins in
Human are not annotated with any BP terms. Another
reason is that some proteins are annotated with detailed
terms and some others are not. These observations drive
us to determine the potential missing functions of these
proteins.

There are no off-the-shelf datasets that can be directly
used to check the performance of missing functions pre-
diction, since the GO and GOA files are updated regularly.

Table 1 Statistics of GO annotations. The data in parentheses
along with Yeast (or Human) is the number of proteins in that
dataset. First column: | 77| is the total number of distinct GO
terms used for empirical study, and the data in parentheses is the
number of GO annotations of all the proteins. [3,10) characterizes
the number of terms associated with at least 3 and less than 10
proteins; [10,30) represents the number of terms associated with
atleast 10 and less than 30 proteins; and > 30 includes the terms
associated with at least 30 proteins, Avg=+Std is the average
number of annotations of a protein and its standard deviation.
The root GO term in each sub-ontology (BP, CC and MF) are not
included

|'T] [3,0) [10,30) > 30 Avg=+Std

BP 2979(210949) 1350 761 868 3567 %+ 34.62

Yeast(5914)  CC 731(79378) 359 170 202 134241201
MF 978(35033) 546 236 196 5924647

BP 7294 (694455) 3237 1877 2180 36.53 £53.25

Human(19009) CC 978 (230826) 414 224 340 121441266
MF 1772(106410) 943 420 409 5594 7.99
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Similarly to the experimental protocol in Yu et al. [35],
we assume that the currently available GO annotations
of a protein are complete. We iteratively and randomly
mask some leaf GO terms of a protein. These masked
terms are considered as the missing (or new) functions
of the protein, and used to investigate the performance
of the proposed models. In the masking process, a non-
leaf GO term of a protein can turn to be a leaf term
once all its child terms are masked. Some sparse terms
may be completely masked in the experiments, thus they
end up not being associated with any of the N proteins,
though they exist in the GO hierarchy. These completely
masked terms are viewed as the second kind of missing
functions.

In the experiments we use m to denote the number
of missing functions of a protein, N, to represent the
number of masked functions, and I'T,BI to represent the
number of the second kind of missing functions of the N
proteins for a given setting of m. For example, m = 3
means three functions are masked for a protein, N3 =
1000 means 1000 functions are masked for the N pro-
teins, and |T30| = 50 means 50 functions in 7 are not
associated with any of the N proteins. For the protein that
is annotated with no more than m functions, we do not
mask all the functions, and ensure it has one GO term (if
any). A portion of the proteins has no function annota-
tions, and we do not apply the mask operation on these
proteins.

Methods and evaluation metrics

We compare our proposed dRW and dRW-ANN against
PILL [35], ITSS [22] and Naive [5]. PILL and ITSS were
introduced in the section of Background. They can pre-
dict the first kind of missing functions of a protein, but
they can not make predictions for the second kind (which
do not have any associated proteins). Naive is a baseline
approach in CAFA, it predicts functions of a protein based
on the frequency of functions: the larger the frequency of
a function is, the larger the likelihood is for a protein to be
annotated with such function. Naive outperforms many
competitive function prediction methods [5]. The param-
eter setting for these methods are provided in Additional
file 1.

The accuracy of protein function prediction can be
assessed by different evaluation criteria or metrics, and
different prediction models are affected by different met-
rics. To do a fair and comprehensive comparison, we use
six evaluation metrics, namely MacroF1, AvgROC, Rank-
ingLoss, RAccuracy, Fmax, and Coverage. These evaluation
metrics measure the accuracy of protein function predic-
tion according to different aspects, and they have been
applied to evaluate the results of multi-label learning and
protein function prediction [5, 31, 35]. The formal defi-
nition of these metrics are provided in Additional file 1.
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To keep consistency with other evaluation metrics, we
use I-RankLoss instead of RankingLoss. In this way, the
higher the value of all the evaluation metrics (excluding
Coverage), the better the performance is. Since the various
metrics capture different aspects of the methods, it is dif-
ficult for a single approach to consistently outperform the
others across all the evaluation metrics.

Missing function prediction

In this section, we conduct experiments to investigate the
performance of dRW and dRW-ANN on predicting miss-
ing functions of partially annotated proteins. For each
setting value of m, we randomly mask m functions of
a ‘completely’ annotated protein. The masked functions
are considered as missing functions of the protein. We
then apply the competing methods to predict the missing
functions and evaluate the performance by using the eval-
uation metrics introduced above. For each setting of m, we
repeat the mask and evaluation operation in each round
for 10 times. In Table 2, we report the average experi-
mental results (with m = 1,3,5) on proteins of Yeast
annotated with BP functions. Other results on Yeast and
Human are provided in Tables S1-S5 of Additional file 1.
In these tables, the results in bold font are the best (or
comparable best) statistically significant results, according
to a pairwise ¢-test at 95 % significance level.

From these tables, we can observe that dRW-ANN and
dRW achieve the best results in most cases, and dRW-
kNN often gets better results than dRW. In summary, out
of 108 configurations (2 datasets x 3 GO sub-ontology x
3 settings of m x 6 evaluation metrics), dRW-kNN out-
performs dRW in 65.74 % of the cases, outperforms ITSS
in 94.44 % of the cases, and outperforms PILL in 83.33 %
of the cases; ties with them in 7.41 %, 4.63 %, and 5.56 % of
the cases; and loses to them in 26.85 %, 0.93 %, and 11.11 %
of the cases, respectively. dRW-ANN also outperforms the
baseline approach Naive in almost all the cases. For exam-
ple, on RAccuracy which evaluates how many missing
functions of N proteins correctly replenished, dRW-ANN
achieves 12.23 %, 44.11 %, 35.69 % and 105.37 % improve-
ments over dRW, ITSS, PILL and Naive, respectively. The
superior results achieved by dRW-ANN confirm its effec-
tiveness in predicting missing functions of partially anno-
tated proteins, and also further support the integration
of downward random walks with the semantic similarity
between proteins for missing function prediction.

dRW directly predicts functions of a protein by per-
forming random walks on the GO DAG, and sometimes
achieves comparable results with dRW-ANN. From the
tables, we can observe that both dRW and dRW-kNN sta-
tistical significantly outperform ITSS in most cases, the
reason is that the former two methods can pre-estimate
the likelihood of both kinds of missing functions: the ones
that exist in the neighborhood of a protein, and the ones
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Table 2 Results of predicting the missing BP functions of partially annotated Yeast proteins (N = 5914, |T| = 2979)

Metric m dRW-KkNN dRW ITSS PILL Naive

1 93.14+0.13 93.61 + 0.05 91.66 + 0.09 91.52+0.15 1.99 + 0.00
MacroF1 3 8272+ 025 83.29 £ 0.13 80.14 £ 0.14 79.77 £0.16 201 £0.00

5 7467 £0.22 75.92 + 0.17 7116 £0.33 70.96 £0.22 2.03 £0.00

1 99.88 £ 0.01 99.93 + 0.00 98.24 £ 0.02 98.77 £0.03 45.88 £ 0.00
AvgROC 3 99.55 + 0.02 99.59 &+ 0.02 94.44 1+ 0.08 96.36 £ 0.15 45.88 £ 0.00

5 99.01 + 0.02 98.89 &+ 0.03 9048 £0.17 93.83 £0.06 45.88 £0.00

1 99.96 + 0.00 99.97 + 0.00 98.99 £+ 0.02 99.81 £ 0.01 91.13 £ 0.00
1-RankLoss 3 99.47 + 0.03 99.17 £ 0.03 96.89 + 0.05 99.23+£0.03 91.04 £ 0.00

5 98.20 + 0.02 9763 +0.03 93.99+0.10 9842 + 0.05 90.95 £+ 0.01

1 97.97 £ 0.00 98.08 £ 0.00 97.90 &+ 0.00 97.91 £ 0.00 36.96 £+ 0.00
Fmax 3 93.99 £+ 0.02 93.92 £ 0.01 93.66 £ 0.02 93.61 £ 0.00 36.86 £ 0.00

5 90.25 + 0.03 89.88 & 0.00 89.66 & 0.02 89.41 £ 0.00 36.84 £0.03

1 38.75+0.66 44.68 £ 0.21 1241 +£048 21654037 3751 4£094
RAccuracy 3 39.75+0.13 36.08 £0.24 23.02 +£0.06 2227 +£037 3784 %075

5 40.13 £ 0.43 3358 +0.24 27.394+029 23924008 3769 +£037

1 78.24 £ 0.95 66.34 + 1.10 405.01 £9.56 232524458 1585.06 + 0.99
Coverage | 3 191.34 +4.88 23461 +£492 943.54 +10.84 5245041233 1605.22 £ 0.95

5 340.09 £ 4.55 469.13 £9.17 1412.81 £9.85 806.23 +18.18 162535 £3.17

The numbers in boldface denote the best (or comparable best) statistically significant performance (according to a t-test at 95 % significance level). | means the lower the
value, the better the performance. m is the number of missing functions for a protein, Ny, is the total number of missing functions, and | 7;| is the number of the second kind
of missing functions of N proteins for a givenm.m =1, \’7'10\ = 25Ny =4705m =3, \7'30\ =106, N3 = 14079;m = 5, |’7'5°| = 209, Ns = 23299

that are not associated with any proteins but are seman-
tically similar to some of the existing ones. In contrast,
ITSS can only predict the first kind of missing functions.
PILL utilizes Lin’s corpus similarity, which computes the
information content of a term based on the term’s fre-
quency in the corpus. For a GO term that does not exist
in the corpus, its similarity with respect to other GO
terms is set to 0. Therefore, PILL can only predict the first
kind of missing functions and it loses to dRW in most
configurations.

The Naive method predicts functions based on the
frequency of the GO terms of the N proteins. It often
achieves the lowest performance, and sometimes sta-
ble results with respect to some evaluation metrics (i.e.,
MacroF1, AvgROC). This fact shows the need of design-
ing tools to effectively predict protein functions. Naive
sometimes achieves higher 1-RankLoss than other meth-
ods; this is because 1-RankLoss favors the predictor that
produces correctly ranked pairs of functions, and it is in
tune with the Naive method, which ranks the functions
based on their frequencies.

The main difference between dRW-ANN and ITSS is
that dRW-ANN takes advantage of dRW to pre-estimate
the missing functions, whereas ITSS does not. The per-
formance margin between dRW-ANN and ITSS is much
larger than the margin between dRW-AkNN and dRW. This
fact shows the downward random walks contribute much

more than ITSS (or kKNN) on predicting missing functions.
This observation also demonstrates that downward ran-
dom walks are of paramount importance to enhance the
performance of missing function prediction.

To further study the difference between dRW-ANN and
ITSS, we measure the Area Under the ROC Curve (AUC)
of each GO term, and use AAUC to represent the AUC
difference between dRW-ARW and ITSS. To investigate
the performance of dRW-kANN and ITSS for different lev-
els of sparsity, terms are divided into three groups: (i)
terms associated with at least 3 but less than 10 proteins
([3,10)), (ii) terms associated with at least 10 but less than
30 proteins ([ 10, 30)), (iii) and terms associated with at
least 30 proteins (> 30). The AAUC on Yeast annotated
with BP terms for each group are reported in Fig. 2. Other
results are provided in Fig. S2-S6 of Additional file 1.

From these figures, we can observe that dRW-iANN
achieves a larger AUC than ITSS with respect to most
GO terms. The terms in the group [3, 10) have the largest
AAUC, followed by the group [10,30) and then by the
group > 30. This observation shows the proposed dRW-
kNN can achieve better results than ITSS on the sparse
terms. There are two reasons: (i) dRW-ANN applies dARW
to pre-estimate the likelihoods of missing functions of
a protein, and then makes the prediction based on the
pre-estimated likelihoods and on the available functions
associated with the neighborhood proteins, while ITSS
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Yeast BP terms

Yeast BP terms

" AUC

" AUC

[10,30)

530

Fig. 2 AUC difference between dRW-kNN and ITSS. The AUC (Area Under the ROC Curve) difference between dRW-kNN and ITSS on proteins of
Yeast annotated with BP terms of different sizes. [3,10) includes 1350 terms, [10,30) includes 761 terms, and > 30 includes 868 terms

makes predictions only based on the functions associated
with the neighborhood proteins; (ii) dRW-ANN can pre-
dict the second kind of missing functions, while ITSS can
not. For the terms associated with at least 30 proteins,
dRW-kNN still outperforms ITSS in some cases. These
results also support the effectiveness of dRW in estimating
missing functions of a partially annotated protein.

The influence of semantic similarity

We conduct additional experiments to study the influence
of dRW based on different semantic similarities between
GO terms. Here, we introduce three variants of dRW:
dRW-Corpus, dRW-Disjoint and dRW-E. dRW-Corpus
performs dRW on the GO hierarchy based on Lin’s corpus
similarity, which computes IC(£) by the frequency of term
¢ in the corpus. dRW-Disjoint does dRW on the GO hier-
archy based on a recently proposed disjointness axioms
similarity [41]. dRW-E assumes the downward transition
probabilities from a term to its children terms are all
equal, and applies the same downward random walks with
restart procedure as dRW. The other settings of these
methods are kept the same as in the previous experiments.
The results on Yeast annotated with BP terms are reported
in Table 3. Other results are provided in Tables S6-S10 of
Additional file 1. In these tables, the results in bold font
are the best statistically significant results, according to a
pairwise t-test at 95 % significance level.

From these tables we can see that dRW achieves bet-
ter results than the three variants in most cases. Our
proposed dRW almost always significantly outperforms
dRW-Corpus. The reason is that the GO annotations of

Table 3 Results of dRW, dRW-Corpus, dRW-Disjoint, dRW-E in
predicting the missing BP functions of Yeast proteins,
|T| = 2979 with m = 3

Metric dRW dRW-Corpus ~ dRW-Disjoint  dRW-E

MacroF1  83.29+£0.13 7977009  83.194+0.09 83.17+0.07
AvgROC  9959£002 9361+£007 9957001 99.57 £0.00
1-RankLoss 99.17 £0.03 9387 £0.05  99.11 £ 0.02 98.87 £ 0.01
Fmax 9392 £001 9367 +£0.00 93.90 £ 0.01 93.89 £ 0.01
RAccuracy 36.08 +£0.24 1558 031 33.65+027 3267 £050

Coverage| 234.61 £+ 4.92 1843.95 £ 18.70 242.53 £ 1.44 255.14 £ 549

proteins are far from complete, dRW-Corpus makes twice
use of the annotations, whereas our proposed dRW makes
one use of the annotations. Therefore, the latter one is
less suffered from the incomplete annotations. There is
no explicit disjoint relationship between terms in the
GO hierarchy. For the experiments, two terms never co-
associated with the same protein are viewed as disjoint
terms. For this reason, there are some false disjoint terms.
Thus, dRW often performs better than dRW-Disjoint.

dRW performs better than dRW-E in most cases. This
fact suggests that the transitional probabilities from a term
to its children terms should not be simply treated all equal.
The performance margin between dRW and dRW-E are
not so obvious as the margin between dRW and dRW-
Corpus. A possible reason is that a term may have one
child term, and in this case the transitional probability
is more determined by 7 than by W (see Eq. (4)). In
fact, Lin’s structure similarity is also inclined to set equal
transitional probabilities. We observe that more than
hundreds (or thousands) of terms were used in the experi-
ments, and a small performance margin still means signif-
icant improvement. How to achieve improved transitional
probability estimation is an important future direction to
pursue.

Historical rollback experiments

To further study dRW, dRW-ANN and other comparing
methods in situations that reflect real life scenarios, we
predict missing BP functions of partially annotated pro-
teins using an older version GOA file (date: 2010-01-20)
of Yeast and Human, and then validate the predicted miss-
ing functions using a recent GOA file (date: 2014-06-09).
The parameters settings of these comparing methods are
kept the same as in the previous experiments. We pro-
cess the older GOA file in the same way as the recent
GOA file used in the previous experiments. We keep the
root BP GO term (‘GO:0008150’) in the historical rollback
experiments, since some new annotations of proteins cor-
respond to the direct child nodes of the root node. After
preprocessing, there are 4,338 terms associated with at
least one protein in the recent Yeast GOA file. Among
these 4,338 terms, 3,581 terms are associated with at least
one protein in the older Yeast GOA file. Thus, 757 terms
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are not associated with any proteins in the older Yeast
GOA file. As to Human proteins, there are 11,212 GO
terms associated with at least one protein in the recent
GOA file. Among these 11,212 terms, only 6,823 terms are
associated with at least one protein in the older Human
GOA file. Therefore, 4,389 terms are not associated with
any protein in the older Human GOA file. Obviously, the
historical rollback experiment is more challenging than
our previous experiments. ITSS, PILL and Naive can not
predict the GO terms that are not associated with any
proteins in the older GOA files.

We choose the top 100 largest likelihoods predicted by
each of the comparing methods and report the number of
true positive predictions in Table 4. The detailed informa-
tion of these positive predictions and the ones augmented
by the true path rule on these 100 predictions are listed
in four excel sheet files (see Additional files 2—5). To save
space, we just list the true positive predictions made by
dRW on Yeast and Human in Table 5. From the results in
Tables 4, 5 and positive predictions in excel files, we have
some interesting observations.

The true positive predictions made by dRW are different
from those of other comparing methods. Both dRW and
dRW-kNN take advantage of downward random walks,
but they do not share any true positive predictions. The
reason is that dRW directly uses the available annota-
tions of a partially annotated protein and GO hierarchy
to replenish the missing functions, and dRW-kANN replen-
ishes the missing functions of a protein based on the GO
annotations associated with its neighbors. dRW and PILL
make different true positive predictions. The cause is that
PILL utilizes Lin’s corpus similarity and it does not utilize
the GO structure in replenishing the missing functions.
Both dRW-ANN and ITSS predict the missing functions
of a protein by the GO annotations associated with its
neighbors, they share 2 true positive predictions on Yeast
and 14 true positive predictions on Human. For example,
they correctly predict that SAC7 (a protein of Yeast) is
annotated with GO:0006259 and GO:0044260.

The false positive predictions made by dRW and those
of other comparing methods are also quite different.
For example, dRW wrongly predicts that Yeast protein
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ENO?2 is annotated with GO:0034462, whereas dRW-
KNN wrongly predicts that ENO2 is annotated with
G0:0000027 and GO:0042273. That is because dRW gives
high priority to a GO term that has large semantic simi-
larity with the terms associated with a protein, and dRW-
kNN prefers terms associated with the neighbors of the
protein. dRW and PILL do not share any false positive pre-
dictions. For example, dRW assigns GO: 0071507 to Yeast
proteins ATP6 and CHOZ2, and PILL assigns GO:0071507
to Yeast protein MDL1. They also wrongly assign different
GO terms to the same protein. dARW assigns GO:0043001
to Yeast protein CPA1, whereas PILL assigns GO:0030476
and GO:0070591 to CPA1. dRW-ANN and ITSS share 30
false positive predictions on Human and they share 10
false positive predictions on Yeast proteins PTP1, SIP18,
SNU13 and YSF13, but they assign different terms to pro-
tein PTP1. These facts can be attributed to that dRW-ANN
replenishes the functions by the functions associated with
the neighbors of a protein, and the ones pre-estimated
by dRW, whereas ITSS only uses the functions associated
with the neighbors of the protein.

Regardless of the application of the true path rule, the
positive predictions produced by dRW-kNN, ITSS and
Naive remain the same. By applying the true path rule,
the number of positive predictions produced by dRW
and PILL increases sharply, and dRW achieves the largest
number of true positive predictions. dRW can predict
the first and second kind of missing functions, and thus
for dRW-ANN. In contrast, the other comparing meth-
ods can only predict the first kind of missing functions.
The missing functions predicted by dRW are not only
sparse (associated with no more than 10 proteins), but also
locating at relatively deeper levels (> 4) in the GO hierar-
chy. These results indicate that dRW can more accurately
predict functions that locate in deep levels of the GO
hierarchy than others, and also support our motivation
to apply dRW along with the GO hierarchy for missing
function prediction.

As to the true positive predictions made by Naive,
they are always associated with the same GO term
(‘GO:0009987" for Yeast proteins and ‘GO:0044699" for
Human proteins). In the older GOA files, these two terms,

Table 4 Numbers of true positive predictions made by dRW, dRW-kNN, ITSS, PILL and Naive from an older GOA file (date: 2010-01-20)

to a recent GOA file (date: 2014-06-09) of Yeast and Human. The data

in the parentheses are the corresponding true positive rate for

each of the methods. TPR means the true path rule is applied to append the ancestor functions of the positive predictions, and NoTPR

means the true path rule is not applied

dRwW dRW-KNN ITSS PILL Naive
Yeast NoTPR 6(6.00 %) 17(17.00 %) 6(6.00 %) 0(0.00 %) 31(31.00 %)
TPR 34(6.58 %) 17(17.00 %) 6(6.00 %) 11(1.83 %) 31(31.00 %)
Human NoTPR 10(10.00 %) 27(27.00 %) 20(20.00 %) 19(19.00 %) 48(48.00 %)
TPR 120(17.36 %) 27(27.00 %) 20(20.00 %) 80(21.45 %) 48(48.00 %)
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Table 5 Examples of correctly predicted missing BP functions by dRW from an older GOA file (date: 2010-01-20) to a recent GOA file
(date: 2014-06-09) of Yeast and Human. hCount gives the number of proteins annotated with the term in the older GOA file. Depth

represents the term'’s depth in the GO hierarchy

Yeast Human
Protein GO terms hCount Depth Protein GO terms hCount Depth
HIS5 GO:0001193 0 8 EZR G0:0002143 0 9
PET494 GO:0019379 0 5 TMEM200C GO:0007094 8 8
cyc1 GO:0019430 0 4 C9orf96 GO:0016056 3 7
FEST GO:0044718 0 5 DRGX GO:0035511 0 5
MET17 GO:0090334 0 6 HDAC7 GO:0035511 0 5
TSTA3 GO:2000679 2 7 QPRT GO:0045040 0 5
CSHL1 GO:0045040 0 5
RGS3 GO:0060397 2 7
PRDM7_V2 GO:0071300 0 6
TMEMS82 GO:0090050 2 7

locating at the 2nd level of the GO hierarchy, are associ-
ated with 3768 Yeast proteins and 5517 Human proteins,
respectively. Thus, we can say that the functions predicted
by Naive produces are rather shallow.

By applying the true path rule, the number of true pos-
itive predictions made by PILL increases from 0 to 11 (on
Yeast) and from 19 to 80 (on Human). PILL directly uses
the available functions of a protein and the semantic simi-
larity between GO terms to predict the missing functions
of proteins, but it only uses the GO hierarchy to compute
the semantic similarity between terms, and does not use
the hierarchy in the process of missing function predic-
tion. In addition, the semantic similarity between terms
is calculated based on Lin’s corpus similarity. Therefore,
PILL loses to dRW and it can not predict the second kind
of missing functions.

dRW-ANN gets a larger number of true positive pre-
dictions than ITSS, although they both utilize the same
semantic similarity between proteins and a kNN style
classifier to predict missing functions of proteins. The
cause is that dRW-ANN takes advantage of dRW to pre-
estimate the missing functions. The difference between
dRW-kNN and ITSS supports the benefit of using dRW
for missing functions prediction. However, after applying
the true path rule on the top 100 positive predictions,
these two methods do not produce any new true posi-
tive predictions, whereas dRW makes more true positive
predictions. That is because (i) dRW-ANN and ITSS pre-
dict missing functions of a protein based on the functions
associated to its neighborhood proteins, and the larger
the frequency of a function is, the more likely it is con-
sidered as missing for the protein; (ii) the probability of
functions associated with neighbors is set to 1, and the
probability of missing functions of a protein pre-estimated
by dRW is smaller than 1. Since we only choose the top

100 predictions, the functions associated with neighbors
are favored against the pre-estimated ones. From these
examples, we can see that dRW is inclined to predicting
the second kind of missing functions and dRW-kNN is
biased towards the prediction of the first kind of missing
functions.

Even if applied the true path rule, the true positive rates
achieved by dRW on Yeast and Human, and that made by
dRW-kNN are lower than that produced by Naive. How-
ever, we should not simply conclude that Naive performs
better than the former two methods. From the list of true
positive predictions in the four additional excel files, the
missing functions of proteins predicted by Naive are shal-
low and bring little biological knowledge, these functions
are associated with a large number of proteins and locates
at the 2nd level of GO hierarchy. In contrast, the missing
functions of proteins predicted by dRW and dRW-ANN
are not only locating at deeper levels than the ones made
by Naive, but also associated with much fewer proteins in
the older GOA files.

dRW and dRW-ANN achieve lower accuracy in the
rollback experiments than in the masked GO terms exper-
iments. The reasons are three fold: (i) both the GO struc-
ture and the terms are updated from 2010 to 2014. For
example, the number of direct GO annotations (without
appending the ancestor terms via true path rule) pro-
vided in the Human GOA file increases from 29,407 to
74,109 by 2014-06-09, the number of terms in GO also
increases from 34,427 to 41,239. (ii) The number of con-
sidered GO terms in the historical rollback are 4,338 for
Yeast and 11,212 for Human, whereas the number of con-
sidered terms in the previous experiments are 2,979 and
7,294, respectively. In addition, the number of second kind
of missing functions in the masked GO terms experi-
ments are about 209 for Yeast and 135 for Human, and the
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number of second kind of missing functions in the roll-
back experiments are 757 for Yeast and 4,389 for Human.
(iii) The masked GO terms experiments randomly mask
some leaf terms and treat these masked terms as missing
functions of proteins, but the appended missing functions
of a protein do not always follow the same random pattern.
In fact, in the recent GOA file, we found that the appended
missing functions of a protein are the descendants of one
or several terms associated with the protein, instead of
all the terms associated with the protein. For example,
the appended annotations of Human protein ALG6 are
the descendants of GO:0006464, and the appended anno-
tations of Human protein CLDN16 are descendants of
G0:0008150.

In the end, we have to keep in mind that the number of
true positive predictions is conservative, since a positive
prediction without a corresponding validated annotation
might simply indicate a lack of study of the protein, rather
than an incorrect prediction. The proteins in the recent
GOA file are still partially annotated. Over time, more
true positive predictions will be validated and also some
false negative predictions may be resulted in. We also
have to notice that dRW, dRW-ANN and the comparing
methods can bring over-annotated functions of proteins,
and they are not the best approach for every protein.
These over-annotated functions of a protein are descen-
dants of the available functions of the protein, they are
often corresponding to specific ones. In addition, these
over-annotated functions do not have biological evidence
support. The reason is that dRW and dRW-ANN only use
the GO structure and available annotations of proteins to
predict the missing functions. How to address these lim-
itations is an open problem and interesting to pursue in
future work. One possible way is to filter out the over-
annotated functions by referring to other data sources
(i.e., biomedical text and the text description of ontolog-
ical terms) and softwares (i.e., GOAnnotator [36]). We
still believe our work can drive more research on pre-
dicting missing functions of partially annotated proteins.
These missing functions often bring much more biologi-
cal information and are more interested to biologist than
the available annotations of proteins. Over all, these his-
torical rollback experiments verify the ability of dRW and
dRW-ANN in predicting missing functions of partially
annotated proteins.

Conclusions and future work

In this paper we study the problem of predicting new func-
tions for partially annotated proteins. We propose two
methods, dRW and dRW-ANN, that perform downward
random walks with restart on the Gene Ontology directed
acyclic graph, and the available functions of proteins to
predict missing ones. The proposed models are able to
predict two kinds of missing functions: the functions that

Page 12 0of 13

are associated with some proteins but are missing for oth-
ers; and the ones missed for all the proteins of interest
but that exist in the GO hierarchy. Our empirical study on
the proteins of Yeast and Human shows that the proposed
models outperform several competitive related methods.
This paper will drive more research on missing func-
tion prediction of partially annotated proteins. As part of
our future work, we are interested in investigating other
semantic similarities between GO terms and incorpo-
rating protein specific information to accurately predict
missing functions.

Endnotes
http://geneontology.org/page/download-ontology.
(accessed: 2014, July 1st)
2ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/. (accessed:
2014, June 9th)
Shttp://geneontology.org/page/go-annotation-
conventions. (accessed: 2014, July 1st)
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