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Abstract

Background: During the last decade, many scientific works have concerned the possible use of miRNA levels as
diagnostic and prognostic tools for different kinds of cancer. The development of reliable classifiers requires tackling
several crucial aspects, some of which have been widely overlooked in the scientific literature: the distribution of the
measured miRNA expressions and the statistical uncertainty that affects the parameters that characterize a classifier. In
this paper, these topics are analysed in detail by discussing a model problem, i.e. the development of a Bayesian
classifier that, on the basis of the expression of miR-205, miR-21 and snRNA U6, discriminates samples into two classes
of pulmonary tumors: adenocarcinomas and squamous cell carcinomas.

Results: We proved that the variance of miRNA expression triplicates is well described by a normal distribution and
that triplicate averages also follow normal distributions. We provide a method to enhance a classifiers’ performance
by exploiting the correlations between the class-discriminating miRNA and the expression of an additional
normalized miRNA.

Conclusions: By exploiting the normal behavior of triplicate variances and averages, invalid samples (outliers) can be
identified by checking their variability via chi-square test or their displacement by the respective population mean via
Student’s t-test. Finally, the normal behavior allows to optimally set the Bayesian classifier and to determine its
performance and the related uncertainty.
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Background
MicroRNAs (miRNAs or miRs) are small non-coding
single-stranded RNAs, 19–25 nucleotides in length, acting
as negative regulators of gene expression at the post-
transcriptional level. More than 1000 miRNAs are tran-
scribed from miRNA genes in the human genome. A
single miRNA is able to modulate hundreds of down-
stream genes by recognizing complementary sequences
in the 3′ untranslated regions (UTRs) of their target
messenger RNAs. It has been estimated that in humans
about 30 % of messenger RNAs are under miRNA regula-
tion. The biological functions of miRNAs are diverse and
include several key cellular processes, such as differenti-
ation, proliferation, cellular development, cell death and
metabolism.
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In the last decade, evidences have accumulated to indi-
cate that miRNAs play a role in the onset and progres-
sion of several human cancers [1]. The transcription or
processing of some miRNAs is altered in neoplastic tis-
sues, with respect to their normal counterparts. miRNAs
whose levels increase in tumors are referred to as onco-
genic miRNAs (onco-miRs), sometimes even if there is
no evidence for their causative role in tumorigenesis. On
the other hand, miRNAs down-regulated in cancer are
considered tumor suppressors.
In parallel to these studies, the effectiveness of miR-

NAs as markers for tracing the tissue of origin of cancers
of unknown primary origin was demonstrated by several
authors, and the utility of miRNAs levels as diagnostic
and prognostic markers became clear (reviewed by [2]).
The main advantage of the use of miRNAs as markers
resides in the ease of their detection and in their extreme
specificity. miRNAs are stable molecules well preserved
in formalin fixed, paraffin embedded tissues (FFPE) as
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well as in fresh snap-frozen specimens, unlike larger RNA
molecules as messenger RNAs [3]. The finding that miR-
NAs have an exceptional stability in several tissues sug-
gested that these tiny molecules were also preserved,
detectable and quantifiable in plasma and in other bioflu-
ids, such as urine, saliva, cerebro-spinal fluid and amniotic
fluid [4]. Circulating miRNAs are attracting attention as
markers not only for cancer but also for neurodegenera-
tive diseases (reviewed by [5]) as they have some impor-
tant features: non-invasivity, specificity, early detection,
sensitivity and ease of translatability from model systems
to humans.
Methods based on next generation sequencing (NGS),

microarray and quantitative reverse-transcription poly-
merase chain reaction (qRT-PCR) are currently used for
miRNA profiling and for the identification of miRNAs
differently expressed in tumor samples and in matched,
healthy tissue. The majority of miRNA profiling studies
have been so far carried out by using microarrays. These
studies have provided signatures consisting in few to
several (5–30) distinct miRNAs [6]. However, the large
amount of data obtained by microarray and NGS profiling
needs to be transposed into clinical trials by developing
an easily performed, cost-effective and serviceable assay
that can analyze the cancer-specific miRNAs for can-
cer diagnosis and prognosis. Such an analysis has been
so far relying on qRT-PCR assays, performed by mea-
suring the levels of a restricted number of miRNAs (see
review by [7]).
The realization of classifiers based on the expression

of miRNAs is widely discussed in the scientific litera-
ture. Within the context of lung cancers (see, for example,
[4, 8–12]) the work by [13] describes a classifier that dis-
tinguishes squamous from nonsquamous non-small-cell
lung carcinomas, by using miR-205 as a specific marker
and miR-21, snRNA (small nuclear RNA) U6 as nor-
malizers. The approach followed is essentially machine
learning: the classifier relies on a sample score and a
threshold. A more elaborated support vector machine,
which uses the combination of 5 miRNAs for lung squa-
mous cell carcinoma diagnosis, is described in [14]. A
receiver operating characteristic curve analysis to evalu-
ate the possibility of diagnosing the histologic subtype of
pulmonary neuroendocrine tumors via altered expression
of miR-21, miR-155, let-7a is discussed in [15] (a similar
statistical approach is described in [16]).
These classifiers are generally declared to be efficient.

For example, [13] report a sensitivity of 96 % and a
specificity of 90 %. However, at least two aspects are
widely overlooked in the scientific literature: first, the
distribution of the measured miRNA expressions; sec-
ond, the statistical uncertainty that unavoidably affects
the parameters that characterize a classifier and its per-
formance. Both aspects are crucial in order to assess

the reproducibility, and thus the reliability, of a classifier.
The goal of the present paper is to close these gaps.
Our analysis concerns a Bayesian classifier based on the
expression of a single class-discriminating miRNA, with
additional miRNAs that are used either as normalizers or
as performance-enhancer via noise-reduction.
In the present paper the following issues are dis-

cussed: normal distribution of the triplicate variance and
identification of outliers; improvement of accuracy via
normalizers; class-discriminating measures and their dis-
tributions; identification of “bias” outliers; assessment of
a classifier’s performance; finally, improvement of a classi-
fier’s performance by exploiting correlations.
As a prototypical case we discuss throughout the paper

the development of a classifier that assigns samples either
to adenocarcinomas (ADC) or to squamous cell carcino-
mas (SQC). The two classes ADC, SQC are henceforth
referred to as the target and the versus class, respectively.
The miRNAs used are miR-205, miR-21 and snRNA U6.

Methods
Distribution of triplicates: normally-distributed variance
and outlier identification
Given a sample stemming from a patient, a set of miRNAs
is measured in triplicate by using qRT-PCR. For each
miRNA, the samplemean x of the corresponding triplicate
and the related sample standard deviation s are calcu-
lated. To provide an a priori knowledge on the samples,
each one was classified via immunohistochemical analy-
sis and gene profiling into one of different categories of
lung tumors. We use data based on lung carcinoma biop-
sies retrieved from the archives of the Unit of Surgical
Pathology of the S. Chiara Hospital in Trento, Italy. The
research project had been approved by the Ethical Com-
mittee of the Trentino Public Health System (Azienda
Provinciale per i Servizi Sanitari). Most of the data ana-
lyzed here were previously published by our research
group [17]. All datasets are available as Supplementary
material in the Additional file 1.
For each miRNA, the distribution of the variances s2

can be described by a normal chi-square distribution with
number of degrees of freedom ν equal to 2: s2/σ 2 ∼ χ2

ν=2.
To prove this behavior, we fitted the cumulative distribu-
tion F

(
χ2

ν=2; ν = 2
)
of the chi-square with ν = 2 to the

cumulative distribution of the measured variances: know-
ing that F

(
s2/σ 2; 2

) = 1 − exp
[−s2/(2σ 2)

]
, the fit was

carried out by searching the population variance σ 2 that
minimizes the Kolmogorov-Smirnov (K-S) statistic D. We
used the K-S test because it is less sensitive to outliers than
other statistical tests and does not require any assump-
tion on the distributions. On the contrary, for example,
the estimation of the population variance σ 2 out of the
set of sample variances is valid only if the sample dis-
tribution is already known to be normal. The p-values
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Table 1 Statistics of the standard deviation for the sets of triplicates of miR-205, miR-21 and snRNA U6, as well as for the snRNA U6 set
devoid of outliers

miRNA Set size σ Fit’s p-value σmax 〈s2〉1/2 [〈s4〉 − 〈s2〉2]1/4
miR-205 37 0.25 0.60 0.61 0.26 0.25

miR-21 39 0.19 0.99 0.46 0.20 0.21

snRNA U6 39 0.19 0.10 0.48 0.26 0.30

snRNA U6
35 0.17 0.13 - 0.20 0.21without outliers

The population variance σ results from the Kolmogorov-Smirnov test analysis; the related p-value is reported. The threshold σmax (bold), above which a value is deemed to
be an outlier, is set to 2.448 · σ . The two rightmost columns provide 〈s2〉1/2 and [〈s4〉 − 〈s2〉2]1/4 (see main text)

resulting from the fit (see Table 1) show that the variance
distributions are indeed compatible with chi-square
distributions.
As a result, an outlier can be identified by checking its

variability via the chi-square test: we assume a triplicate
of a given miRNA to be an outlier if its sample standard
deviation s exceeds the critical value σmax corresponding
to the significance level α = 0.05. The critical value σmax
is given by [−2 logα]1/2 σ � 2.448 σ , where σ is the pop-
ulation standard deviation assessed for that miRNA. The
σmax values are reported in Table 1. The outlier definition
used here implies that the significance level α corresponds
to the rate of statistical false alarms (type I errors), i.e.
the rate of valid triplicates that are falsely deemed to be
outliers.1
According to this procedure, the triplicate sets of both

miR-205 and miR-21 contained no outliers, whereas the
snRNA U6 contained 4 outliers. These samples were
excluded from the following analysis. Table 1 also shows
the statistics of the standard deviation for the snRNA U6
data set devoid of outliers.
We note that, for snRNA U6, the two values of σ are

very similar. This fact reflects, as mentioned above, the
robustness to outliers of the K-S approach. In addition, for
all data sets devoid of outliers, the population standard
deviation σ is approximately equal to both the root-mean-
square sample standard deviation 〈s2〉1/2 and the fourth
root of the variance of variances [ 〈s4〉 − 〈s2〉2]1/4. Because
ν = 2, this behavior provides further evidence to the null
hypothesis that samples are drawn from the same normal
distribution.
For each sample, i.e. patient, of the set devoid of outliers,

we henceforth use the following notation for the sam-
ple mean x of the available triplicates: xU6 for the snRNA
U6 triplicate, x21 for the miR-21 triplicate, and x205 for
the miR-205 triplicate. In addition, x205, x21, xU6 will be
referred to asmeasures.

Distribution of triplicates: accuracy and normalization
A main issue to cope with towards the development of a
reliable classifier is accuracy. The question is whether the
values of the sample means of the triplicates are constant

over different experimental sessions – i.e. measurements
taken at different times and/or with different set-ups –
or, rather, have to be normalized in order to remove
experimental bias.
Table 2 shows the results of a statistical analysis, in

terms of sample mean X and sample standard deviation
S, carried out for x21, xU6 and their difference x21 − xU6
on data gathered in two different experimental sessions.
For both single-miRNA values x21 and xU6, and both for
the target and the versus class, the sample means signifi-
cantly differ between the two sessions. However, this is not
the case for the sample means of x21 − xU6: the difference
of the sample mean of x21 − xU6 between session II and
session I is 0.4 ± 0.4 for the target class, and −0.2 ± 0.8
for the versus class; in both cases the difference is less than
twice the respective sample standard deviation (p > 0.05).
Remarkably, the sample standard deviations, and conse-
quently the uncertainties on the sample means, do not
significantly differ between the two sessions.
The necessity to improve accuracy by suitably nor-

malizing an oncomir has been extensively discussed in

Table 2 Statistics of the measures x21, xU6, x21 − xU6 obtained on
data stemming from two different experimental sessions

Session Measure Class Set size X S

I x21 target 21 18.4(2) 1.0(2)

versus 18 19.2(6) 2.6(5)

xU6 target 19 25.0(3) 1.4(2)

versus 16 25.8(5) 1.9(3)

x21 − xU6 target 19 –6.5(3) 1.4(2)

versus 16 –6.6(6) 2.4(4)

II x21 target 19 21.4(3) 1.1(2)

versus 17 21.9(6) 2.3(4)

xU6 target 20 27.4(3) 1.2(2)

versus 16 28.4(6) 2.6(5)

x21 − xU6 target 17 –6.1(3) 1.1(2)

versus 16 –6.8(6) 2.5(5)

For each session, measure and class, the two symbols X and S correspond to sample
mean and sample standard deviation of the x values, respectively
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the scientific literature (see for example [18]). Thus,
in accordance with many previous works, we use
snRNA U6 to normalize x21 and x205. The follow-
ing notation is henceforth used: �x205 ≡ x205 − xU6;
�x21 ≡ x21 − xU6.

MiRNA statistics
In this section, the statistics of �x205, �x21, snRNA U6 is
discussed.
As stated above, each sample was classified into one

of the two classes ADC and SQC via immunohisto-
chemical analysis and gene profiling. Figure 1 shows
the histograms of �x205, �x21, xU6 for samples belong-
ing either to the target class ADC or to the versus
class SQC.
By means of the Shapiro-Wilk test of normality, each

histogram was shown to be consistent with a normal par-
ent population. Consequently, we assume that, for each of
the two classes, the measures �x205, �x21, xU6 are nor-
mally distributed with a mean and a standard deviation

that are respectively estimated by the sample mean X
and the sample standard deviation S of the x values
(triplicates). The results are reported in Table 3. The proof
that the measures of interest are compatible with normal
distributions makes up a crucial step towards the opti-
mization of the Bayesian classifier and the determination
of its performance, inclusively of the related uncertainty
(see below).
With regard to �x205, the histograms of the target

class ADC and the versus class SQC are well-separated:
Student’s t-test provides p < 10−7 (see Table 3). Con-
versely, both for �x21 and xU6, the overlapping of the
histograms of the two classes is confirmed by Student’s t-
test, which provides p = 0.90 and p = 0.14, respectively.
Therefore, only the measure �x205 is a good candidate to
classify samples into ADC or SQC.

A Bayesian classifier
To develop a classifier, any linear combination y of the
available measures can be used. Given a linear combina-

a b

c

Fig. 1 Histograms of �x205 (top, left), �x21 (top, right), xU6 (bottom) for samples belonging to the target class ADC (blue) and to the versus class SQC
(red). Overlapping regions are in magenta. The bin width is equal to 1. Means and standard deviations of the Gaussian curves that fit the data are
reported in Table 3. Each histogram is normalized to the respective set size
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Table 3 Statistics of �x205, �x21, xU6, yDV (see Eq. (2)), yopt (see
Eq. (10))

Measure Class Set size X S TN t-test

�x205 target 18 1.7(5) 2.2(4) 0.71
2 · 10−8

versus 15 –4.6(6) 2.4(5) 0.26

�x21 target 19 –6.5(3) 1.4(2) 0.53
0.90

versus 16 –6.6(6) 2.4(4) 0.94

xU6 target 19 25.0(3) 1.4(2) 0.40
0.14

versus 16 25.8(5) 1.9(3) 0.25

yDV target 18 4.9(5) 2.0(3) 0.96
5.5 · 10−11

versus 15 –1.3(4) 1.7(3) 0.98

yopt target 18 6.9(5) 1.9(3) 0.78
2.6 · 10−11

versus 15 0.7(4) 1.6(3) 0.24

The digits in parentheses correspond to the uncertainty on the respective least
significant digits. The column marked with TN (test of normality) contains the
p-values yielded by the Shapiro-Wilk test to check whether the data contained in a
histogram are consistent with a normally distributed parent population. Finally, the
rightmost column reports the p-value of Student’s t-test to check the null
hypothesis that the target and versus sets have the same population mean; to this
purpose, the variance is estimated separately for each group and the Welch
modification to the number of degrees of freedom is used

tion y of the measures �x205, �x21, xU6, we assume the
following classification rule to hold:

classifier output class =
{
SQC(versus class) if y < χ ,
ADC(target class) if y � χ , (1)

where χ is a fixed threshold. For example, in the works by
[13, 17] the linear combination

yDV = �x205 − 0.5 · �x21 (2)

was used and a threshold χ = 2.5 was set.
The discriminator approach described in Eq. (1) re-

quires tackling three main issues: finding a suitable linear
combination y; finding a suitable value for χ ; analyzing the
performance of the classifier.
Given a linear combination y (that may also coincide

with one of the three measures), the threshold χ can
be determined by calculating the value that, according
to Eq. (1), maximizes the accuracy (or rate of correct
responses) pc:

pc = pTH + pVC . (3)

In this equation, pT and pV correspond to the prior pre-
sentation probabilities of the target class and the versus
class, respectively, whereas H and C respectively corre-
spond to the sensitivity and the specificity of the classifier,
provided that the condition positive is taken to correspond
to the target class [19]. Under the assumption that the val-

ues of y are normally distributed, sensitivity and specificity
are given by the following expressions:

H = �

(
μT − χ

σT

)
, (4a)

C = �

(
χ − μV

σV

)
, (4b)

where �(x) is the standard normal cumulative distribu-
tion. The optimal position of χ is given by one of the
roots (the most appropriate one!) of the following second-
degree equation:

ηχ2 − 2βχ + γ − 2 log
pT
pV

= 0 , (5)

where

η = 1
σ 2
T

− 1
σ 2
V
, (6a)

β = μT

σ 2
T

− μV

σ 2
V

, (6b)

γ = μ2
T

σ 2
T

− μ2
V

σ 2
V

+ 2 log
σT
σV

. (6c)

The uncertainties on the three coefficients η, β , γ , and
thus on the threshold χ , are computed by means of stan-
dard error propagation. We remind that μT , σT , μV , σV
are evaluated as sample means and sample standard devi-
ations, and are therefore uncertainty-affected: for exam-
ple, the errors on μT , σT are σT/

√
NT , σT/

√
2(NT − 1),

respectively, whereNT is the number of triplicates belong-
ing to the target class.
The threshold χ depends on the ratio pT/pV of the prior

occurrence probabilities of the two classes of tumors.
These probabilities are typically inferred from epidemi-
ological studies. If prior probabilities are balanced, the
ratio pT/pV is unitary and the related term in Eq. (5) van-
ishes. Table 4 reports the values of χ and the respective
uncertainties for each of the measures dealt with in this
paper, in the case of balanced prior probabilities. For xU6
the normal curve for the target class lays on the left of
the normal curve for the versus class (i.e., XADC < XSQC ;
see Fig. 1 and Table 3). So, in the case of this measure,

Table 4 Thresholds χ10:90, χ , χ90:10. For each measure, the
thresholds were evaluated via Eqs. (5, 7) by assuming balanced
prior probabilities

Measure χ10:90 χ χ90:10

�x205 –3.2(7) –1.3(4) 0.6(8)

�x21 –10(1) –8.2(6) –6.4(6)

−xU6 –29(1) –26.1(5) –24(1)

yDV 0.5(5) 1.7(4) 2.8(6)

yopt 2.4(5) 3.6(4) 4.6(6)

The digits in parentheses correspond to the uncertainty on the respective least
significant digits
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the application of the rule of Eq. (1) requires the linear
combination y being set to −xU6.

Estimated classifier performance
A new sample, i.e. a new value of the measure y whose
costituent triplicates were checked not to be outliers, can
now be assigned to the target or the versus class according
to the rule of Eq. (1). An estimate of the reliability of this
assignment is provided by Bayes’ theorem: the odds that
the new sample, given its y, belongs to the target class are
given by the likelihood ratio

PT
PV

= exp
[
−1
2

(
ηy2 − 2βy + γ − 2 log

pT
pV

)]
, (7)

where pT and pV are the two prior probabilities
(pT + pV = 1), and η, β , γ are given by Eq. (6). From
Eq. (5) it follows that the odds at y = χ are 50:50. By
means of Eq. (7), the thresholds χ10:90, χ90:10 for the odds
10:90 and 90:10 can be determined. The values of these
thresholds in the case of balanced prior probabilities are
reported in Table 4.

Bias outliers
In the previous sections, we have addressed the issue of
outlier identification by using the triplicate variability. The
normality of the “target” and “versus” distributions of the
measure of interest y allows for the identification of a sec-
ond kind of outliers: given a value y, one can promptly
evaluate – via Student’s t distribution – the one-tailed
probability of obtaining a more extreme value, i.e. a value
more displaced by the population mean than the value
y. If such p-value is less than a given significance level
(for example, 1 %), the value y can be deemed to be a
“bias” outlier, i.e. an outlier due to a bias in the triplicate
estimates.

Improvement of a classifier’s performance
Looking at Student’s t statistic provides two possible
strategies to improve the performance of a classifier. First,
one can enhance the difference at the numerator of Stu-
dent’s t, namely μT − μV ; this solution requires the linear
combination of the available class-discriminating mea-
sures (in the present case �x205) with new, additional
measures that also reliably discriminate between the two
classes. Such linear combination has to be optimized by
means of methods like, for example, principal compo-
nent analysis or support vector machines. The discussion
of these methods goes beyond the goals of the present
paper. The second strategy to improve the performance
of a classifier consists in reducing the denominator in
the expression of Student’s t by linearly combining avail-
able measures with new ones. These new measures are

not required to be class-discriminating. In the following
section the second strategy is analyzed in detail.

Analysis of correlation
Let ya, yb be two measures: ya is supposed to discrimi-
nate between two classes (according to Student’s t-test),
whereas yb is not. In the present paper, we can have
ya = �x205 and yb = �x21 or yb = xU6. Let y be a linear
combination of ya, yb as follows:

y = ya + cyb , (8)

where c is a coefficient to be determined. Taking the
average of the last equation provides

μ = μa + cμb .

Because measure yb does not discriminate between
the two classes, we have μb,T ≈ μb,V (the means of
the distributions of yb for the target and the ver-
sus class are not significantly different). Consequently,
μT − μV ≈ μa,T − μa,V , i.e. nothing significant can be
expected with regard to the numerator of Student’s t
statistic when μa is replaced by μ.
With regard to standard deviations, from Eq. (8) it

follows:

σ 2 � σ 2
a + c2σ 2

b + 2crσaσb ,

where r is the linear correlation coefficient between ya and
yb. If r = 0, adding the new measure yb is definitely detri-
mental for the sake of discrimination because the variance
is increased by a term c2σ 2

b . However, in the case of a
significant correlation, setting

c � −r
σa
σb

, (9)

reduces the standard deviation as follows:

σ � (
1 − r2

)1/2
σa .

Consequently, the additional measure yb can be deemed
to be a sort of noise-reducer for the class-discriminating
measure ya.
The previous argument still holds if, rather than regard-

ing the whole data set, the correlation appears only on
the data subset corresponding to one of the two classes.
Therefore, if c is set according to Eq. (9), one of the
two standard deviations σT , σV is reduced whereas the
other is enhanced. The net result can be still an increase
of the classifier’s performance. The optimal value of c
can be assessed by standard analytical and numerical
techniques.

Results
A classifier for ADC vs. SQC
For each of the three measures of interest, Fig. 2 shows
the scatter plot of the respective values as well as the three
thresholds χ10:90, χ , χ90:10. The dot color corresponds
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a b

c

Fig. 2 Scatter plots of �x205 (top, left), �x21 (top, right), −xU6 (bottom). Dots corresponding to samples of the target class ADC and the versus class
SQC are colored in blue and red, respectively. In each plot, the black, bold line represents χ , wheres the two black, dashed lines correspond to
χ ± dχ . Similarly, the three red lines and the three blue lines represent χ10,90, χ10,90 ± dχ10,90 and χ90,10, χ90,10 ± dχ90,10, respectively (see Table 4)

to the class the sample was assigned to via immunohis-
tochemical analysis and gene profiling (diagnosis). The
plots contains four different regions, bounded by the three
thresholds and corresponding to different outcomes of the
classifier: orange ⇒ versus class with odds larger than
90:10; yellow ⇒ versus class with odds between 50:50 and
90:10; light green ⇒ target class with odds between 50:50

and 90:10; green ⇒ target class with odds larger than
90:10.
The reliability of the classifiers based on each of the

three available measures can be inferred by considering
the confusion matrix reported in Table 5. The accuracy
is equal to 97 % for �x205, 60 % for �x21, and 71 %
for −xU6. Due to overfitting, the performance of the



Ricci et al. BMC Bioinformatics  (2015) 16:287 Page 8 of 12

Table 5 Confusion matrix for classifiers of ADC vs. SQC relying
on �x205, �x21, xU6 as well as on yDV (see Eq. (2)) and yopt
(see Eq. (10))

Classification

Measure Diagnosis Target Versus

ρ>9 9>ρ>1 9>ρ>1 ρ>9

�x205 target 12 5 1 0

versus 0 0 6 9

�x21 target 9 9 1 0

versus 8 5 2 1

−xU6 target 2 14 3 0

versus 3 4 8 1

yDV target 16 1 1 0

versus 0 1 1 13

yopt target 16 1 1 0

versus 1 0 0 14

The quantity ρ corresponds to the odds: ρ = 1 ⇔ 50:50; ρ = 9 ⇔ 90:10. Entries in
italic refer to false responses (false positives and negatives); the other entries refer to
correct responses (true positives and negatives); high-reliability entries, with odds at
least 90:10, are marked in bold

classifiers based on the last two measures are apparently
satisfactory, though non competitive with that of the clas-
sifier based on �x205. However, if only high-reliability
responses are considered, namely those with odds at least
90:10, the accuracies drop to 64 %, 29 %, 9 %, respectively:
while the accuracy of the classifier based on �x205 is
still satisfactory, the other two measures do not provide
reliable outcomes. This behavior is linked to the t-statistic
regarding the separation of the distributions correspond-
ing to the two classes with respect to the widths of the
distributions (see Fig. 1).
In the case of the classifier based on�x205, by relying on

Eqs. (3, 4) a maximum accuracy of 91.4 % ± 3.9 % can be
predicted.

Improved classifier for ADC vs. SQC
Table 6 reports the correlation coefficient r for the pair
(x205, xU6), i.e. directly between miR-205 and snRNA U6,
and for the pair (�x205, �x21).

Table 6 Pearson correlation coefficient r for the pairs
(�x205, �x21), (x205, xU6)

Correlation pair Set Size r p-value

overall 33 -0.02 0.92

(x205, xU6) target 18 0.13 0.60

versus 15 0.43 0.11

overall 33 0.40 0.022

(�x205, �x21) target 18 0.49 0.04

versus 15 0.75 0.0012

The p-value refers to the null hypothesis that the data from the two pair elements
are uncorrelated. Significant p-values (< 0.05) are marked in bold

We first note that no correlation between miR-205 and
snRNA U6 can be significantly inferred. Consequently,
despite being a normalizing miRNA – i.e. a bias-reducer–
for miR-205, snRNA U6 is useless as a noise-reducer
for miR-205. On the contrary, the class-discriminating
measure �x205 has a significant correlation with �x21,
which can be therefore used to improve the classification
performance of �x205. Given an overall correlation coeffi-
cient r of 0.022, Eq. (9) provides a value of c approximately
equal to –0.8 so that the optimal linear combination yopt
is:

yopt = �x205 − 0.8 · �x21 . (10)

Tables 3, 4 and 5 report the statistics of the measure
yopt , and the thresholds and confusion matrix of the clas-
sifier relying on this measure, respectively. For the sake of
comparison, the same tables also show the data of the clas-
sifier relying on the measure yDV defined in Eq. (2), which
was the topic of previous works [13, 17].
Testing the same-parent-distribution null hypothesis via

Student’s t statistic provides p = 2.6 · 10−11, half of the
value obtained by testing t on the histograms generated by
using the linear combination yDV . Figure 3 shows the his-
tograms of yopt for samples belonging either to the target
class ADC or to the versus class SQC. The Shapiro-Wilk
test of normality yielded p-values of 0.78 (target class) and
0.24 (versus class).
The reliability of the classifier based on yopt can be

inferred by considering the confusion matrix of Table 5
(see also the scatter plot in Fig. 4). The accuracy is 94 %,
similar to that provided by the classifier relying on �x205
only, and equal to that provided by the classifier rely-
ing on yDV . However, if only high-reliability responses are
considered, namely those with odds at least 90:10, the
accuracy of the classifier based on yopt is still 91 %, slightly
better than 88 % provided by yDV and definitely larger
than 64 % given by the classifier relying on�x205 only. The
improvement with regard to a classifier based on this last
measure is pointed out by the ROC curves that are also
shown in Fig. 4.
In the case of the classifier based on yopt , by relying

on Eqs. (3, 4) a maximum accuracy of 96.1 % ± 2.4 %
can be predicted. By comparison, this last parameter is
95.6 % ± 2.6 % in the case of the classifier based on yDV .

Test of the improved classifier on an independent data set
Figure 5 shows the results of the application on a set of
9 additional samples of the classifier based on yopt and
using the population mean, population standard devia-
tion, and thresholds expressed in Tables 3 and 4. With
the exception of one single case, all values of the tripli-
cate standard deviations comply with the respective σmax
requirements explained above. The single outlier is a
miR-21 triplicate whose standard deviation of 0.52 slightly
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a b

Fig. 3 Histograms (left) of yopt = �x205 − 0.8 · �x21 for samples belonging to the target class ADC (blue) and to the versus class SQC (red).
Overlapping regions are in magenta. The bin width is equal to 1. Each histogram is normalized to the respective set size. The green bold line
represents the discrimination threshold χ = 3.6, whereas the green dashed lines represent the threshold displaced by its uncertainty, i.e. χ ± dχ ,
with dχ = 0.4 (see Table 4). ROC curves (right) of the classifier based on �x205 (green line) and of the classifier based on yopt (red line) [20]. The
increase of the AUC (area under the curve) from 0.9815 to 0.9926, respectively, is another marker of the improvement of the classifier

exceeds the maximum value of 0.46 (see Table 1) given
by the significance level α = 0.05. Of the remaining 8
samples, the classification provided by the classifier of
Eq. (1) coincides with the immunohistochemical diagnosis
for 7 samples; in all these cases, the odds are at least 90:10

(the same would happen for the sample containing the
miR-21 outlier).
The miRNA classifier of Eq. (1) provides a different

diagnosis than the immunohistochemical analysis only for
a single sample. Although this sample does not contain

Fig. 4 Scatter plot of yopt = �x205 − 0.8 · �x21. See Section “A classifier for ADC vs. SQC” and the caption of Fig. 2 for the color code of dots, lines
and shaded areas. The values of the thresholds are reported in Table 4
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Fig. 5 Scatter plot of yopt = �x205 − 0.8 · �x21 applied to an independent set of data. See Section “A classifier for ADC vs. SQC” and the caption of
Fig. 2 for the color code of dots, lines and shaded areas. The values of the thresholds are reported in Table 4. The empty, red dot and the square,
blue dot refer to a standard variability outlier and a “bias” outlier, respectively (see main text)

any outlier according to the variability of its triplicates, its
value of yopt appears to be extremely low: according to the
statistics of yopt (see Fig. 3), the probability of getting a
more extreme value is p < 5 ·10−4. This hints, rather than
to a misclassification of the sample, to a case of “bias” out-
lier, i.e. to a possibly wrong assessment of the triplicates, as
discussed above. For the sake of comparison, for all other
8 samples, as well as for all 33 samples considered in the
previous sections, p > 0.02

Discussion and conclusion
We introduced a Bayesian classifier that, on the basis
of the expression of miR-205, miR-21 and snRNA
U6, discriminates samples into two different classes
of pulmonary tumors, normally classified by immuno-
histochemical approaches: adenocarcinomas and squa-
mous cell carcinomas. The advantage to use miRNAs is
due to the ease of their detection and quantification by
qRT-PCR, as well as in their extreme specificity. miR-
NAs are stable molecules well preserved in formalin fixed,
paraffin embedded tissues (FFPE) as well as in fresh
snap-frozen specimens, unlike larger RNA molecules as
messenger RNAs [3].
Our approach is based on a method that employs the

quantification of snRNA U6 as a normalizer, miR-21 as a
performance enhancer via noise reduction, and miR-205

as a class discriminator. First, we determined that the
variance of miRNA quantification triplicates follows a
normal chi-square distribution. Thereupon, we designed
a procedure to recognize invalid measures (outliers) and
remove them from the analysis. The proof that the
measures of interest are compatible with normal distri-
butions makes up a crucial step towards the optimiza-
tion of the Bayesian classifier, the determination of its
performance, inclusively of the related uncertainty, and
the identification of “bias” outliers. We then proceeded
to optimally set our Bayesian classifier and to deter-
mine its performance as well as the related uncertainty.
Results are displayed in Fig. 2: the classifier based on
miR-205 and normalized on snRNA U6 has the best
performance.
A main feature of the Bayesian approach described

here is the possibility, also in presence of a limited size
of the available data sets, of estimating the reliability of
a classifier’s performance. This possibility relies on the
verification of the normality of the different distribu-
tions of interest. Other powerful methods to set up a
classifier, such as support vector machines (SVM) and
decision trees, though quite versatile to optimize the
decisional parameters on a training set, are less suited
than a probabilistic approach to provide an immediate
quantification of the reliability in the case of application
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to new sets of data. For example, in the cases discussed
above, a SVM approach would likely result in an opti-
mized classifier that also exploits the “apparent” classifi-
cation capability of �x21 and even xU6 (see, for example,
Figs. 1 and 2). However, according to our analysis based on
Student’s t, there is no evidence of such capability, so that
such a SVM classifier would also possibly have a larger
generalization error than a Bayesian classifier of the kind
discussed in this paper.
Finally, we provided a method to enhance a classifiers’

performance by exploiting the correlation between the
tumor-discriminating miRNA miR-205 and the expres-
sion of miR-21, used as a noise reduction factor. The
method essentially consists in exploiting the nonzero
covariance of two miRNAs, where the first one acts a
classifier and the second one is used to abate the vari-
ability of the first one. Figure 4 shows the result of an
improved classifier, indicating that only 2 samples lay
within the uncertainty region, much less than the 12 sam-
ples in the case of the non-improved classifier shown in
Fig. 2. Results obtained on an independent data set are
also satisfactory.
In conclusion, the proposedmethod introduces a robust

tool for determining the cases in which miRNA quan-
tification can be applied in discriminating inter- and
intra-tumoral heterogeneity.

Endnote
1Because fα, ν,∞ = χ2

α, ν/ν, an alternative outlier
definition relying on the F-test would produce the same
result as that discussed in this section.
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