Blagus and Lusa BMC Bioinformatics (2015) 16:300

DOI 10.1186/512859-015-0723-9
BMC

Bioinformatics

RESEARCH ARTICLE Open Access
@ CrossMark

Boosting for high-dimensional two-class
prediction

Rok Blagus™ and Lara Lusa

Abstract

Background: In clinical research prediction models are used to accurately predict the outcome of the patients based
on some of their characteristics. For high-dimensional prediction models (the number of variables greatly exceeds the
number of samples) the choice of an appropriate classifier is crucial as it was observed that no single classification
algorithm performs optimally for all types of data. Boosting was proposed as a method that combines the
classification results obtained using base classifiers, where the sample weights are sequentially adjusted based on the
performance in previous iterations. Generally boosting outperforms any individual classifier, but studies with
high-dimensional data showed that the most standard boosting algorithm, AdaBoost.M1, cannot significantly
improve the performance of its base classier. Recently other boosting algorithms were proposed (Gradient boosting,
Stochastic Gradient boosting, LogitBoost); they were shown to perform better than AdaBoost.M1 but their
performance was not evaluated for high-dimensional data.

Results: In this paper we use simulation studies and real gene-expression data sets to evaluate the performance of
boosting algorithms when data are high-dimensional. Our results confirm that AdaBoost.M1 can perform poorly in this
setting, often failing to improve the performance of its base classifier. We provide the explanation for this and propose
a modification, AdaBoost.M1.ICV, which uses cross-validated estimates of the prediction errors and outperforms the
original algorithm when data are high-dimensional. The use of AdaBoost. M1.ICV is advisable when the base classifier
overfits the training data: the number of variables is large, the number of samples is small, and/or the difference
between the classes is large. To a lesser extent also Gradient boosting suffers from similar problems. Contrary to the
findings for the low-dimensional data, shrinkage does not improve the performance of Gradient boosting when data
are high-dimensional, however it is beneficial for Stochastic Gradient boosting, which outperformed the other
boosting algorithms in our analyses. LogitBoost suffers from overfitting and generally performs poorly.

Conclusions: The results show that boosting can substantially improve the performance of its base classifier also
when data are high-dimensional. However, not all boosting algorithms perform equally well. LogitBoost, AdaBoost.M1
and Gradient boosting seem less useful for this type of data. Overall, Stochastic Gradient boosting with shrinkage and
AdaBoost.M1.ICV seem to be the preferable choices for high-dimensional class-prediction.

Keywords: Class-prediction, Boosting, AdaBoost.M1, Gradient boosting, Stochastic Gradient boosting, LogitBoost

Background

The goal of class prediction (classification) is to develop
a rule (classifier) based on the values of the variables
measured on a group of samples with known class mem-
bership (training set). This rule can be used to predict the
class membership for samples with unknown class mem-
bership but for which the values of the variables used

*Correspondence: rok blagus@mf.uni-lj.si
Institute for Biostatistics and Medical Informatics, University of Ljubljana,
Vrazov trg 2, Ljubljana, Slovenia

() BiolMled Central

by the rule are known [1]. In clinical research predic-
tion models are used to develop rules that can be used
to accurately predict the outcome of the patients based
on some of their characteristics and are extensively used
in medicine and bioinformatics [2—4]. They represent a
valuable tool in the decision making process of clinicians
and health policy makers, as they enable them to esti-
mate the probability that patients have or will develop a
disease, will respond to a treatment, or that their disease
will recur. For example, the use of mass spectrometry to

© 2015 Blagus and Lusa. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0723-9-x&domain=pdf
mailto: rok.blagus@mf.uni-lj.si
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Blagus and Lusa BMC Bioinformatics (2015) 16:300

develop profiles of patient serum proteins, could lead to
early detection of ovarian cancer, which has the potential
to reduce mortality [5, 6].

The new technological advances allow the biomedi-
cal researchers to measure the expression of ten thou-
sands of genes, or over one million single nucleotide
polymorphisms (SNPs), in a single assay. These tech-
nologies are increasingly often used with the aim to
develop personalized treatments or individualized drug
selection [7, 8]. For this reason class prediction studies in
biomedicine are increasingly often high-dimensional: the
number of variables (features) greatly exceeds the num-
ber of samples (see for example [9-13]), posing important
methodological challenges. For high-dimensional predic-
tive models the choice of an appropriate classifier, and
its correct analytical validation, is crucial. For example,
when several research groups were invited to build pre-
dictive models for breast cancer diagnosis based on pro-
teomic mass spectrometry data, it was shown that no
single classification algorithm performs optimally for all
types of data [14]. In the current practice the genetic-
based predictive modeling of common diseases is still
disappointing [15].

Ensemble classifiers are combinations of many differ-
ent classifiers whose outputs are combined into a single
vote by majority voting or weighted majority voting. They
can be useful because combining a set of classifiers can
result in more accurate predictions [16]. Recently, ensem-
ble of genetic models based on genome-wide association
studies were shown to have an increased sensitivity com-
pared to individual models, while their lower specificity
appeared to affect minimally their predictive accuracy
[17]. Bagging (Bootstrap Aggregating) [18] and boosting
[19] are two of the most popular approaches for generat-
ing ensemble classifiers [20]. The classifiers used to con-
struct the ensemble (base classifiers) are usually selected
among classifiers that perform a little bit better than a
random guess (weak classifiers). In this paper we focus
on boosting, which sequentially applies the base classi-
fier to repeatedly modified versions of the data, producing
a sequence of classifiers whose final class assignment is
determined by weighted majority voting. Boosting was
shown to improve the accuracy of the base classifier and
reduce its variance when applied to low-dimensional data
[21].

Boosting was applied to high-dimensional data, using
mostly gene expression data, by Ben-Dor et al. [22] and
Dudoit et al. [23], concluding that the most standard
boosting algorithm, AdaBoost.M1 [19, 24], does not per-
form well for high-dimensional data. In a more recent
study, Stollhoff et al. [25], compared AdaBoost.M1 and
logistic regression and concluded that while boosting of
simple base classifiers can give classification rules with
improved predictive ability, the logistic regression model

Page 2 of 17

remains a method of choice in the medical applications,
since the performance of boosting classifiers was not
generally superior to the performance of logistic regres-
sion. Regardless of the findings presented by [22] and
[23], boosting is very popular in bioinformatics and it
is often used also for high-dimensional class prediction.
For example, boosting was used to predict protein dis-
orders [26], for classifying the output from an in sil-
ico vaccine discovery pipeline for eukaryotic pathogens
[27] or MeSH indexing based on automatically generated
summaries [28].

Dettling and Bithlmann [29] proposed a boosting
approach that combined a dimensionality reduction step
with LogitBoost [30] and compared it to AdaBoost.M1,
nearest neighbor classifier and classification and regres-
sion trees (CART) [31] in the context of tumor clas-
sification with gene expression data. The authors used
LogitBoost as it was shown that for low-dimensional
data it can perform slightly better than AdaBoost.M1
when the signal-to-noise ratio is small [29, 30], which
is often the case with gene expression data. They used
real high-dimensional data to show that their approach
can outperform the other classifiers in some datasets.
The presented studies however did not provide an expla-
nation for the poor performance of AdaBoost.M1 with
high-dimensional data nor did they consider other state-
of-the-art boosting algorithms.

AdaBoost.M1 was shown to be equivalent to forward
stagewise additive modeling using the exponential loss
function [30]. Based on this finding Gradient boost-
ing (GrBoost [32]) and Stochastic Gradient boosting
(St-GrBoost, [33]) were proposed. Both techniques were
demonstrated to perform well with low-dimensional data
and were applied also to high-dimensional data in the
context of generalized linear models [34] and generalized
additive models for location, scale and shape [35]. These
studies showed that gradient boosting algorithms can per-
form well also with high-dimensional data, however they
were not systematically evaluated specifically within the
class prediction framework.

In this paper we investigate how boosting algorithms
are affected by high-dimensionality, limiting our inter-
est to two-class prediction problems and class-balanced
data, i.e. a situation where the number of samples from
both classes is approximately the same. We first show
that when it is easy to overfit the training data with the
base classifier, AdaBoost.M1 and GrBoost algorithms per-
form exactly as their base classifiers, which can explain
the poor performance of AdaBoost.M1 presented in [22,
23, 29]. We show that the proneness to overfitting data
is related to the number of variables, the number of
samples and the magnitude of the between class differ-
ence. Based on this finding we propose a modification
of the AdaBoost.M1 algorithm and demonstrate that it

Blagus and Lusa BMC Bioinformatics (2015) 16:300

outperforms the original approach when data are prone to
overfitting, and performs similarly otherwise. The perfor-
mance of boosting algorithms is evaluated using simulated
data where we investigate the effect of the size of the
training set, the magnitude of the between class differ-
ence and the number of boosting iterations. The results
from our simulations are validated by using gene expres-
sion microarray datasets. Throughout the analysis we
use classification and regression trees (CART) as base
classifiers.

Methods

Classifiers

We evaluated the performance of AdaBoost.M1, gradient
boosting (GrBoost), LogitBoost and of AdaBoost. M1.ICV,
an algorithm that we propose in this paper, on high-
dimensional data. The base classifiers were classification
trees where maximum depth was set to 5 (CART(5))
or 1 (decision stump, CART(1)). The acronyms used to
indicate the specific boosting algorithms are reported in
Table 1, where some additional details are given. Full
details about the algorithms are given in Additional file 1,
here we outline only the aspects of the algorithms that are
relevant for the understanding of the results.

Briefly, in AdaBoost.M1 at each boosting iteration the
weights applied to the training observations depend on
the training (re-substitution) error [20]; samples that are
misclassified get larger weights and therefore the classi-
fier focuses more on these samples in the next boost-
ing iteration. We propose to estimate the error rate
achieved by the base classifier at each boosting itera-
tion with internal cross-validation (CV), and then use
the cross-validated error rate to update the weights; the
rest of the algorithm is the same as for AdaBoost.M1.

Table 1 Short description of the classifiers used in the paper

Page 3 0of 17

A schematic presentation of the new approach, which is
denoted as AdaBoost. M1.ICV, is presented in Fig. 1 and
the algorithm is presented in the Additional file 1. In
our analyses the internal cross-validation was performed
using 5 folds.

Exponential loss was used for gradient boosting and we
investigated the performance of two regularization strate-
gies: shrinkage and sub-sampling. With sub-sampling at
each boosting iteration a fraction 5 of the training data is
sampled without replacement and the tree is grown using
only that subsample: this approach is known as Stochas-
tic Gradient boosting (St-GrBoost). In our simulations 1
was set to 0.5 [20]. With shrinkage the contribution of
each base classifier is scaled by a factor (0 < v < 1,
v = 1 is no shrinkage, in our analyses the shrinkage
factor was set to v = 0.001, 0.01, 0.1 and 1). In the low-
dimensional setting it was suggested that v should be set
to a very small number and than one should choose the
number of iterations (M) by early stopping [20]. However,
smaller values of v (more shrinkage) lead to larger number
of boosting iterations for the same training error, so there
is a trade-off between them, which can be an issue in the
high-dimensional setting because of larger computational
burden.

Simulations

The simulations were performed to evaluate the per-
formance of different boosting algorithms on high-
dimensional data.

The class membership of the samples depended on
some of the variables. The variables were simulated
from a multivariate normal distribution, MVN(ug,),
with u; = (0,...,0)T for class 1 samples and uy =

(U2, ... 12,0, ...,0)T for class 2 samples; there were 100

Name Base classifier Boosting method Number of boosting iterations®
CART(1) Stump - -

CART(5) CART-5 - -

AdaBoostM1(1) Stump AdaBoost.M1 10, 100, 200, 300
AdaBoost.M1(5) CART-5 AdaBoost.M1 10, 100, 200, 300
AdaBoost. M1.ICV(5) CART-5 AdaBoost.M1P 10,100, 200, 300
GrBoost(1) Stump Gradient Boosting 10, 100, 200, 300
GrBoost(5) CART-5 Gradient Boosting 10, 100, 200, 300
ST-GrBoost(1) Stump Gradient Boosting® 100, 300, 500, optimald
ST-GrBoost(5) CART-5 Gradient Boosting® 100, 300, 500, optimald
LogitBoost(1) Stump LogitBoost 10, 100, 200, 300

@This is the number of boosting iterations considered when evaluating the effect of the sample size and between class difference and in the reanalysis of real data. In the

other simulation settings up to 1000 iterations were considered for each classifier
bCross-validated error rate was used to update the weights

€In each boosting iteration 50 % of training set samples are randomly selected and used to fit the model

d0ptimal number of boosting iterations based on out-of-bag estimate

Blagus and Lusa BMC Bioinformatics (2015) 16:300 Page 4 of 17

L L L
wi=1 R i i ay_1€h_q
1= w; = wie Wi = Wy_q€e
cv cv . cv .
cL—o €] o 276> ay > €y~ ay
o, = f(€q) a; = f(€2) ay = f(ey)
Y104 Y20 Ymam

Fig. 1 Schematic presentation of the AdaBoost.M1.ICV. With L we denote the training set, n is the size of the training set, m denotes the boosting
iteration (m = 1,..., M). For the m-th boosting iteration: wy,, are the case-specific weights for sample j, ¢y is a base classifier, €;,, is the cross-validated
error for sample i, €, is the cross-validated error, a,, denotes the classifier-specific weight and y,, is predicted class for a new sample at iteration m

differentially expressed variables and the variance of all
variables was set to 1. The variables were grouped in
blocks of size 10: the variables within the same block were
correlated (p = 0.8), while those from different blocks
were independent (similarly as in [36, 37]). The number of
simulated variables is denoted as p, while the number of
samples in the training set is denoted as n4y4,. In all set-
tings the number of class 1 and class 2 samples was the
same.

The performance of the classifiers in all simulation
settings was evaluated on independent test sets containing
500 samples from each class and the results were reported
as averages from 100 iterations. Next, we give the exact
simulation settings for each subsection appearing in the
“Results” section.

Performance of AdaBoost.M1 in the high-dimensional setting
The number of variables was set to p = 1000, the number
of training set samples was #4,4i; = 50 and the difference
between the classes was py = 0.7. We considered up to
M = 1000 boosting iterations.

We performed also a set of simulations used to illus-
trate the effect of high-dimensionality on the overfitting of
CART(5) and CART(1). We simulated independent stan-
dard normal variables (o = 0), the number of variables
ranged from 10 to 10000 and the size of the training set
ranged from 50 to 1000. There was no difference between

the classes, oy = 0. We evaluated the resubstitution error
rate of CART(5) and CART(1).

Effect of shrinkage on Gradient boosting and Stochastic
Gradient boosting

The number of variables was set to p = 100, 1000 and
10000. The number of training set samples was nyy,;, =
50, 100 and 500 for each p and the difference between the
classes was uo = 0.7. We considered up to M = 1000
boosting iterations. The smallest test set error obtained
over 1000 boosting iterations was averaged over 100 sim-
ulation runs; the test set error as a function of the number
of boosting iterations averaged over 100 simulation runs
is provided as Additional information.

Boosting in the high-dimensional setting with small samples:
test set error as a function of the number of boosting
iterations

The number of variables was set to p = 100, 1000 and
10000, the number of training set samples to 74,4, = 50
and the difference between the classes to uy = 0.7. We
considered up to M = 1000 boosting iterations.

We performed also a set of simulations where we
adjusted the differences between the classes so as to
achieve approximately the same test set errors using
CART(5) for all values of p: this was achieved increasing
the mean difference between classes when the number of

Blagus and Lusa BMC Bioinformatics (2015) 16:300

variables was larger (uy = 0.7 for p = 100, o = 0.8 for
p = 1000 and py = 1 for p = 10000). These results are
reported as Additional information.

Effect of the sample size, number of variables and between
class difference

The number of samples in the training set was set to
Herain = 50, 100, 200, 500 and 1000. For each of these
settings the number of variables was set to p = 1000
and 2500, while for each nyy, and p combination the
difference between the classes was set to upy = 0.5
orl.

To reduce the computing time, the number of boost-
ing iterations in each ensemble was set to 10, 100, 200
or 300; additionally we considered also 500 iterations
as well as the optimal number of boosting iterations
based on the out-of-bag estimate for Stochastic Gradient
boosting.

Simulation setup with a complex separation between the
classes

In this setting the mean for all variables for both
classes was equal, while the variability of some vari-
ables was different in the two classes. This enabled
us to simulate a data structure were samples from
one class were nested within the samples from the
other class. We simulated 980 or 9980 variables from
MVN((50,...,50)7, diag(12.5, . ..,12.5)), while the 20
differentially expressed variables were simulated from
MVN((50, .. .,50)7, diag(12.5, . ..,12.5)) for 50 class 1
samples and MVN((50, ...,50)7, diag(3.125,...,3.125))
for 50 class 2 samples. Up to M = 500 boosting iterations
were considered.

Determining the number of boosting iterations with
cross-validation

The number of variables was set to p = 1000, the number
of training set samples was ny,,;, = 50 and the difference
between the classes was uy = 0.7.

We used 5-fold cross-validation to determine the cross-
validated number of iterations, i.e. the training set was
split into 5 folds, 4 folds were used to train the classifiers
using M = 1000 boosting iterations, while the left-out fold
was used to estimate the classification error for each of
the M = 1,...,1000 iterations. The 5-fold cross-validated
number of iterations was defined as the number of itera-
tions where the cross-validated error rate (evaluated using
the left out samples) was the smallest. In case of ties
we selected the smallest number of iterations. Similarly,
we determined the leave-one-out cross-validated num-
ber of iterations, where exactly one sample was included
in each of the left out folds. Additionally, we report also
the optimal number of iterations, which is defined as the
number of iterations where the minimum test set error

Page 5 of 17

rate (optimal error rate) is achieved over the 1000 boosting
iterations.

Real data

We reanalyzed the breast cancer microarray gene expres-
sion data of Sotirou et al. [38], Wang et al. [39] and Ivshina
et al. [40] considering the prediction of Estrogen recep-
tor status (ER; all datasets), grade of the tumor (Grade;
Ivshina and Sotiriou datasets) and relapse of the tumor
(Wang dataset), see also Table 2. The data were prepro-
cessed as described in the original publications. Missing
data were present in the cDNA two-channel dataset [38]:
the genes with more than 10 % of missing values were
removed from the analysis, the remaining missing values
were replaced with zeros. The 1000 variables exhibit-
ing the largest variance were pre-filtered and used for
further analysis. 5-fold CV was used to estimate the accu-
racy measures. The settings for CART and the ensemble
classifiers were the same as in the simulation study. In
order to account for the variability arising from random
inclusion of samples in different folds the analysis was
repeated 50 times and average results and standard devi-
ations are reported. Since some dataset and/or prediction
tasks exhibit high level of class-imbalance we adjusted
for the possible class-imbalance bias [41] by down-
sizing the majority class, i.e. in each cross-validation run,
min(Ayin, Nmax) samples from the majority class were
selected and included in the training set. This strat-
egy was shown to perform well with high-dimensional
data [42].

Evaluation of the performance of the classifiers

Five measures of classifier’s performance were consid-
ered: (i) overall predictive accuracy (PA, the number of
correctly classified samples from the test set divided by
the total number of samples in the test set), (ii) predic-
tive accuracy of class 1 (PAj, ie.,, PA evaluated using
only samples from class 1), (iii) predictive accuracy of
class 2 (PAj), (iv) Area Under the Receiver-Characteristic-
Operating Curve (AUC) [43] and (v) g-means (defined as
geometric average of class-specific predictive accuracies,

i.e. g-means = /PAj - PAy).

Table 2 Gene expression breast cancer data sets

Dataset #genes Classification task Nmin~ Nmax Kmin
(minority vs. majority class)

lvshina 22,283 ER- or ER+ 34 21 0.14
Grade 3 or 1-2 55 234 019

Wang 22,283 ER- or ER+ 77 209 0.27
Relapse or no-relapse 107 179 037

Sotiriou 7,650 ER- or ER+ 34 65 0.34
Grade 3 or 1-2 45 54 045

Blagus and Lusa BMC Bioinformatics (2015) 16:300

We used Wilcoxon signed-rank test to test if there
was a statistically significant difference between g-means
obtained with AdaBoost.M1.ICV(5) and the other clas-
sifiers across various different simulation settings (24 in
total). For each classifier, the number of boosting iter-
ations that achieved the best classification performance
in terms of g-means was considered. Because of a large
number of comparisons the p-values were adjusted with
the Holm’s method to control the type I error [44]. An
adjusted p-value of less than 0.05 was considered as sta-
tistically significant. We did not perform any statistical
tests for the results obtained with the analysis of the
real datasets, as there were only 6 data points for each
classifier.

Computational aspects

All the analyses were performed with R language for sta-
tistical computing, version 3.0.0 [45]. The function Logit-
Boost in package caTools was used to perform LogitBoost,
functions gbm.fit and gbm.perf from gbm package to per-
form GrBoost and St-GrBoost, while the other ensemble
classifiers were programmed in R by the authors; the
R-code is available upon request.

Results

In this section we present the results based on our sim-
ulation studies and the reanalysis of microarray gene
expression data. The complete simulation settings appear
in the “Methods” section (see sections with matching
titles).

Performance of AdaBoost.M1 in the high-dimensional
setting

Here we report a selected series of simulation results used
to illustrate the performance of AdaBoost.M1 when the
data are high-dimensional (Table 3).

Table 3 Test-set error for different classifiers and number of
boosting iterations. The table displays the test set error averaged
over 100 simulation runs for different classifiers and the number
of boosting iterations (M; the situation with M=1 is the
performance of the base classifier) for the setting with 1000
variables and 50 samples. The difference between the classes
was moderate, the correlation structure was exchangeable and
there were 10 variables per block, see the "Methods” section for
more details

M AdaBoost.M1(5) AdaBoostM1(1) AdaBoost. M1.ICV(5)
1 0.38 0.38 0.38
100 0.38 0.27 0.31
500 0.38 0.26 027
1000 038 0.26 0.26

Page 6 of 17

AdaBoost.M1 with CART(5) (AdaBoost.M1(5)) per-
formed the same as its base classifier; increasing the num-
ber of boosting iterations did not decrease the error on the
independent test set. On the contrary, AdaBoost.M1 with
stumps (AdaBoost.M1(1)) improved the performance of
its base classifier and the test error substantially decreased
when combining more classifiers (increasing the number
of boosting iterations).

We identified the reason for the inability of
AdaBoost.M1(5) to improve the performance of its
base classifier in the mechanism used to obtain modi-
fied versions of the data to which the base classifier is
applied. Recall that the weights applied to the training
observations depend on the re-substitution error (see the
“Methods” section and Additional file 1 for more details).
The resubstitution error of the base classifier drops to
zero when the data proneness to overfitting is large [20];
in this case the weights in AdaBoost.M1 are not updated
and all subsequent base classifiers produce the same
prediction results. In this simulation setting the average
test set error of CART(5) was large (around 0.37) but its
resubstitution error rate was zero.

We illustrate how the overfitting of CART depends on
the high-dimensionality in a setting when there is no dif-
ference between the classes (test set error should be 0.5).
The resubstitution error rate of CART(5) dropped to zero
when the number of variables increased; zero resubstitu-
tion error rate was achieved faster when the sample size
was smaller (Fig. 2; exact numerical results are reported in
Additional file 2). We experimentally observed that larger
trees (depth larger than 5) achieved a zero resubstitu-
tion error rate at an even smaller p to n ratio (data not
shown). The error rate of stumps was non-zero even when
the number of variables was large, however it was sub-
stantially smaller than the true error rate for this setting
(0.5).

These results indicate that AdaBoost.M1(5) could per-
form better than its base classifier when the sample size is
larger, as the achieved resubstitution error rate is less fre-
quently zero. More results about the effect of the sample
size appear later in the paper.

To avoid the problem arising from zero resubstitution
error we propose to estimate the error rate achieved
by the base classifier at each boosting iteration with
cross-validation (AdaBoost.M1.ICV). This modification
of the weights in the AdaBoost.M1 algorithm substan-
tially improved its performance when using CART(5) as
a base classifier (Table 3), while it performed similarly
as AdaBoost.M1(1). Note that in this simulation setting
the test set error of CART(5) and stumps was very sim-
ilar (see the results for M=1 for AdaBoost.M1(1) and
AdaBoost.M1(5), respectively, Table 3). Examples were
AdaBoost. M1.ICV clearly outperforms AdaBoost.M1(1)
appear later in the paper.

Blagus and Lusa BMC Bioinformatics (2015) 16:300 Page 7 of 17
CART-5 CART-1
0 0
o 7] o 7]
< <t k“—“\‘\d__ﬂ\
o 7] o 7]
= . A— —a
o o
lCTJ o | 5 ™ |] -
s ° s °
= 5
= = ~e—|
- £~ [—®
& o] S o
2 o 2 o
Q Q
o x
® Niain =50
; . g — ntrain=100
S A A Nyain =200
Nirain = 900
o o o | Tm—] o Nirain = 1000
S ° ° — s 1™
I I I I I I I I I I I I I T T I
0 20 40 60 80 100 500 1000 0 20 40 60 80 100 500 1000
Number of variables Number of variables
Fig. 2 Resubstitution error rate of CART(5) (left panels) and stumps (CART(1), right panels). The figure reports mean resubstitution error rate of
CART(5) and CART(1) for different number of variables and size of the training set (nyqin). The true error rate in this setting is 0.5. The results are based
on 1000 simulations

Effect of shrinkage on Gradient boosting and stochastic
Gradient boosting

Gradient boosting (GrBoost) has the potential of per-
forming better than AdaBoost.M1 in our settings, since it
produces classifiers that are not identical to its base classi-
fiers, even when the training error of the base classifier is
zero (see Additional file 1 for more details). In this section
we present the results of the simulations performed with
the aim to determine how much the classification results
are affected by shrinkage, considering different values of
the shrinkage parameter.

Similarly to AdaBoost.M1, when we used CART(5)
with small samples (ny4, = 50; Table 4). Gradi-
ent boosting performed similarly to its base classifier,
regardless of the amount of shrinkage (Additional file
3). In the other situations (#44i; > 50) Gradient
boosting generally performed substantially better without
shrinkage (v = 1).

Shrinkage seemed more useful with Stochastic Gradient
boosting, especially when the sample size was large. In
most settings the best results were obtained with v = 0.01.
However, the results obtained with different values of the

Table 4 Test-set error for Gradient boosting and Stochastic Gradient boosting with different shrinkage parameter. In the table we
report the averaged smallest test set error obtained over 1000 boosting iterations for different shrinkage parameter (v), size of the
training set (Ngqin) and number of variables (p); see text for more details

Gradient boosting

Stochastic Gradient boosting

CART(5) CART(1) CART(5) CART(1)
v v

Nirgin =~ P 0.001 001 01 1 0.001 001 0.1 1 0.001 0.01 0.1 1 0.001 0.01 0.1 1

50 100 0.31 031 030 0.28 030 023 021 0.20 020 0.19 020 0.17 022 0.18 0.17 0.17
50 1000 0.36 036 037 036 032 029 029 0.27 024 0.23 027 0.22 026 0.24 024 0.24
50 10000 040 041 040 041 0.38 037 037 036 030 0.30 034 026 033 033 033 034
100 100 0.26 021 019 0.17 029 020 0.8 0.17 0.17 0.16 016 0.15 0.21 0.16 0.15 0.6
100 1000 0.31 024 023 0.21 0.9 022 022 0.21 021 0.19 021 0.9 0.23 0.19 0.9 0.20
100 10000 036 031 028 0.26 0.30 027 027 0.25 024 0.23 027 025 0.25 0.23 024 0.27
500 100 0.20 014 0.14 0.14 024 015 0.14 0.5 0.15 0.13 013 014 0.19 0.13 0.13 0.5
500 1000 0.20 0.15 015 0.14 025 015 0.15 0.6 0.15 0.13 014 015 0.20 0.14 0.4 0.16
500 10000 0.21 016 0.15 0.15 025 015 0.15 0.16 0.16 0.14 014 015 0.20 0.14 0.15 0.17

The smallest test-set error of the classifier achieved with different amount of shrinkage is denoted in bold

Blagus and Lusa BMC Bioinformatics (2015) 16:300

shrinkage parameter were very similar, especially when
the number of boosting iterations was large (Additional
file 3). When we did not use shrinkage, we observed some
overfitting, i.e. after a certain number of boosting itera-
tions the test set error tended to increase, but this was
limited to situations with a large number of variables and
small training sets.

Based on these results we decided that in all the sub-
sequent simulations we would not use shrinkage with
Gradient boosting and use v = 0.01 for Stochastic Gra-
dient boosting. Note however, that it might be possible,
that some other values of v could lead to better perfor-
mance in some simulation settings, suggesting that the
shrinkage parameter should be estimated from the data
by cross-validation, which does, however, substantially
increase computation time.

Boosting in the high-dimensional setting with small
samples: test set error as a function of the number of
boosting iterations

Here we report a selected series of simulation results used
to illustrate the performance of various boosting algo-
rithms when increasing the dimensionality of the feature
space (Fig. 3). Figure 3 presents the test set error as a
function of the number of boosting iterations. The panels
refer to different number of variables and different lines
represent the boosting techniques.

Boosting algorithms generally improved the perfor-
mance of their base classifier; in line with the results
presented in Section “Performance of AdaBoost.M1 in the
high-dimensional setting’, AdaBoost.M1(5) performed as
it base classified, while AdaBoost.M1(1) achieved smaller
test set errors.

LogitBoost was very prone to overfitting: its test set
error initially decreased with the number of boosting iter-
ations, but around 100 iteration it increased rapidly before
stabilizing again at around 200-300 iterations. Some over-
fitting occurred also for GrBoost(5), which was more obvi-
ous with less variables; with many variables GrBoost(5)
behaved similarly to AdaBoost.M1(5).

For the other algorithms, combining more classifiers
(increasing the number of boosting iterations) resulted in
smaller test set errors, but increasing the number of boost-
ing iterations beyond 200 or 300 had only a marginal effect
on the test set error. The most prominent exception was
AdaBoost. M1.ICV, where more iterations were needed to
achieve the smallest test set error when compared with the
other classifiers.

Overall, in these settings the best performance was
obtained with St-GrBoost(1) (small number of variables)
and St-GrBoost(5) (large number of variables).

The test set error as a function of the number of
boosting iterations decreased more when there were less
variables. When we adjusted the differences between the

Page 8 of 17

classes so as to achieve approximately the same test
set errors using CART(5), regardless of the number of
variables, we observed that the gain from boosting was
approximately the same in all the settings (Additional
file 4). Therefore, the differences could be attributed to the
different power for correctly identifying the variables that
were differentially expressed between the classes.

Effect of the sample size, number of variables and between
class difference

In this section we investigate how the algorithms per-
form when the size of the training set is increased. We
also varied the difference between the classes (1) and the
number of variables. The results are shown in Fig. 4 (left
panels: 1000 variables, right panels: 2500 variables, upper
panels: up = 0.5, lower panels: uy = 1); exact numeri-
cal results as well as the results for the other performance
measures are shown in Additional file 5. Different symbols
denote the number of boosting iterations where the best
classification result in terms of the accuracy measure was
obtained.

All the algorithms performed better with bigger train-
ing sets, when the difference between classes was larger
and when there were less variables that were not dif-
ferentially expressed between the classes (null variables).
The ability of AdaBoost.M1(5) to perform better than
its base classifier depended on the sample size (generally
AdaBoost.M1(5) performed the same as its base classifier
with sample size smaller than 200 or 300), the num-
ber of variables (when more variables were considered,
more samples were needed to see some improvement over
CART(5)) and the difference between the classes (when
the difference was larger more samples were needed to see
substantial improvement). AdaBoost.M1.ICV(5) outper-
formed AdaBoost.M1(5) in the settings where the former
did not perform better than its base classifier. It also
performed well when there were more variables.

Similarly as AdaBoost.M1(5), GrBoost(5) was unable
to improve the performance of its base classifier when
the sample size was small (50 samples), but its perfor-
mance improved with larger sample sizes. The perfor-
mance of Gradient boosting with stumps was better than
with CART(5) when there were less than 100 samples,
while the results were similar for larger sample sizes.
Stochastic Gradient boosting performed much better than
Gradient boosting in all the settings. The performance of
St-GrBoost with CART(5) and stumps was very similar
(Additional file 5), the observed differences could be
ascribed to simulation variability. LogitBoost in these set-
tings performed poorly in comparison with the other
classifiers.

Increasing the number of boosting iterations beyond
100 was beneficial for AdaBoost.M1.ICV(5), St-GrBoost
and AdaBoost.M1(5) (limited to situations with a

Blagus and Lusa BMC Bioinformatics (2015) 16:300

Page 9 of 17

p=100
3
o
2
S
<
S
L 8
s o
E AdaBoost.M1(5)
§ 3 GrBoost(5)
S | \ LogitBoost(1)
St-GrBoost(1)
&g St-GrBoost(5)
< GrBoost(1)
- —— AdaBoost.M1.ICV(5)
8 B — — —— AdaBoostM1(1)
o
24
T T T T T T
0 200 400 600 800 1000
p=1000
3
=
g
o
<
s] |
L 8
S o
[} AdaBoost.M1(5)
g o GrBoost(5)
S 2 N '\\.__\ LogitBoost(1)
St-GrBoost(1)
g St-GrBoost(5)
< GrBoost(1)
o —— AdaBoost.M1.ICV(5)
S —— AdaBoost.M1(1)
©
24
T T T T T T
0 200 400 600 800 1000
p =10000
3
=
g
o o
D
gl AT~
S N
™ - ' S
5 84
8 AdaBoost.M1(5)
8 g | GrBoost(5)
S LogitBoost(1)
© St-GrBoost(1)
S St-GrBoost(5)
GrBoost(1)
< —— AdaBoost.M1.ICV(5)
° —— AdaBoost.M1(1)
©
2 4

Number of boosting iterations

the correlation structure was exchangeable and there were 10 variables per
section for more details

0 200 400 600 800 1000

Fig. 3 Test-set error for different classifiers, number of variables and boosting iterations. The figure reports the average test set error as a function of
the number of boosting iterations for different number of variables (p = 100, 1000 and 10000). The difference between the classes was moderate,

block and 100 differentially expressed variables, see the “Methods”

sufficiently large sample size, i.e. situations where
AdaBoost.M1(5) was able to improve the performance
of its base classifier), it only marginally improved the
performance of AdaBoost.M1(1) and GrBoost(5), while
it did not yield any improvement for GrBoost(1) and

LogitBoost (especially when there were many variables
and the size of the training sets was large). Generally,
the optimal number of boosting iterations was smaller
when there were more null variables; see also Additional
file 4. Selecting the optimal number of boosting iterations

Blagus and Lusa BMC Bioinformatics (2015) 16:300

Page 10 of 17

CART-5 AdaBoost.M1(5) === AdaBoost.M1.ICV(5) LogitBoost(1)
=== AdaBoost.M1(1) St-GrBoost(1) GrBoost(1) St-GrBoost(5) GrBoost(5)
+ 10 iterations X 100 iterations A 200 iterations o 300 iterations % 500 iterations e optimal (St-GrBoost)
u>=0.5 p=1000 p =2500
o | e
@] @
o o
[ee] [ee]
w S o 7
§ =
g A—
5 N — — 5 0 N
S 0 e S S
Q/ s e, o
/10 P s
8 L= '
o | o | D
o o L
@7
&
[te} 0
o 7] o 7
T T
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
po=1
o | e
o | §Zo—5 - e
o /. o
4 :
© o _| (== "
o o
£
(]
£
5
~o ~
o o
©] ©
o o
[te} w0
o 7] o 7
T T
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Ntrain Ntrain
Fig. 4 Effect of the difference between the classes, the size of the training set and the number of variables on boosting algorithms. The figure
shows g-means for different size of the training set (nyqin), difference between the classes (upper panels: u; = 0.5, lower panels: u; = 1 for 100
differentially expressed variables) and the number of variables (left panels: 1000 variables, right panels: 2500 variables) for the (minimum) number of
boosting iterations that produced the best classification results in terms of g-means. The training set was balanced and contained 1000 variables.
Different symbols denote different number of boosting iterations, while different colors denote different ensembles

based on the out-of-bag estimate for Stochastic Gradient
boosting worked well for both stumps and CART(5) with
only few exceptions.

The classifiers were also ranked by their respec-
tive geometric mean of class-specific PAs (g-means,

Table 5) and the performance of AdaBoost.M1.ICV(5)
was statistically compared with the performance of
other classifiers. The best overall performance was
obtained with St-GrBoost(5) and St-GrBoost(1); the
performance of these two classifiers was significantly

Blagus and Lusa BMC Bioinformatics (2015) 16:300

Page 11 of 17

Table 5 Ranking of the classifiers for different simulation settings. Ranking of the classifiers for different simulation settings; the highest
g-means obtained with different number boosting iterations was considered when ranking the classifiers

p %5 n 1 2 3
1000 05 50 85 85 e
1000 05 100 8 9 7
1000 05 200 9 8
1000 05 300 9 8
1000 05 500 9 7
1000 05 1000 9 7
1000 1 50 9 8
1000 1 100 85 85 -
1000 1 200 9 8
1000 1 300 9 8
1000 1 500 9 8
1000 1 1000 9 8
2500 05 50 7 9
2500 05 100 8 9
2500 05 200 9
2500 05 300 9
2500 05 500 9
2500 05 1000 8
2500 1 50 7 9
2500 1 100 8 9
2500 1 200 9 8
2500 1 300 9
2500 1 500 9
2500 1 1000 9

Median rank 9

4

The statistical comparison between AdaBoost.M1.ICV(5) and the other classifiers was performed with the Wilcoxon signed-rank test comparing their g-means; Holm’s
method was used to adjust the p-values for multiple comparisons. Darker shading denotes better classifier's performance in terms of g-means

Adjusted p-value < 0.05

1 = CART(5), 2 = AdaBoostM1(5), 3 = AdaBoostM1.ICV(5), 4 = LogitBoost(1), 5 = AdaBoost.M1(1), 6 = St-GrBoost(1), 7 = GrBoost(1), 8 = St-GrBoost(5), 9 = GrBoost(5)

better than the performance of AdaBoost.M1.ICV(5).
AdaBoost. M1.ICV(5) performed significantly better than
CART(5) and LogitBoost, while the overall performance
of AdaBoost.M1.ICV(5) was not significantly different
than the performance of other classifiers.

Simulation setup with a complex separation between the
classes
The simulation design used so far favored AdaBoost.M1
with stumps as base classifiers, as there were no interac-
tion effects between the differentially expressed variables
and the classes were linearly separated. We performed a
limited set of simulations where the separation between
the classes was more complex.

In these settings AdaBoost. M1.ICV achieved much
smaller test set error than AdaBoost.M1(1) and in general
boosting algorithms using CART(5) outperformed the

algorithms using stumps (Fig. 5). The exception was Gra-
dient boosting where much better classification results
were obtained with stumps. The main reason for this
was that the sample size was in this setting small, hence
GrBoost(5) performed similarly as its base classifier (this
is consistent with the results presented so far). With
larger sample sizes (Myqin > 200), GrBoost(5) outper-
formed GrBoost(1) (data not shown). LogitBoost per-
formed poorly in this setting and achieved substantially
higher test set error than the other classifiers.

Determining the number of boosting iterations with
cross-validation

In this section we present the results where we used
cross-validation to determine the number of boosting iter-
ations using the same settings as in Table 3. Results are
summarized in Table 6.

Blagus and Lusa BMC Bioinformatics (2015) 16:300

Page 12 of 17

p=1000
<
o
5 3+ AdaBoost.M1(5)
5 GrBoost(5)
E’ o LogitBoost(1)
- o St-GrBoost(1)
1]
2 St-GrBoost(5)
= | OT=< - GrBoost(1)
c —— —— AdaBoost.M1.ICV(5)
— AdaBoost.M1(1)
e
S T T | | |
0 100 200 300 400 500
Boosting iteration
p=10000
< |
e |
5 2 ! AdaBoost.M1(5)
5 °© GrBoost
B LogitBoost
2] N
- o St-GraBoost(1)
@ ——
Q R St-GrBoost(5)
-~ | e . GrBoost(1)
e —— AdaBoost.M1.ICV(5)
AdaBoost.M1(1)
e]
e T T \ T T T
0 100 200 300 400 500
Boosting iteration
Fig. 5 Test-set error for different classifiers and number of variables in the simulation setting with complex separation between the classes. The
figure reports the average test set error for the simulation setup with the complex separation between the classes for different number of boosting
iterations (from 1 to 500); upper panels: 1000 variables, lower panels: 10000 variables. See text for more details

With the exception of GrBoost(5) (which in this set-
ting was unable to improve the performance of its base
classifier), and LogitBoost (that suffered from overfit-
ting), it was better to use 1000 boosting iterations instead
of selecting its number by cross-validation; the former

approach yielded smaller test set errors, which were only
slightly larger than the optimal test set errors.

The cross-validated number of iterations was generally
much smaller than the optimal number of iterations; con-
sequently, the test set errors were larger than the optimal

Table 6 Test set error obtained with optimal number of boosting iterations (optimal), after performing 1000 boosting iterations
(M = 1000), the number of boosting iterations determined with 5-fold cross-validation (CV), leave-one-out cross-validation (LOOCV)
and the number of boosting iteration determined by using out-of-bag samples (OOB)

Optimal M = 1000 5-fold CV LOOCV 00B

GrBoost(1) 0.26 (336) 0.27 0.30(108) 0.32(86)

GrBoost(5) 033(6) 037 0.37(10) 0.36 (16)

St-GrBoost(1) 0.23 (594) 0.24 0.27 (224) 0.25 (425) 0.26 (286)
St-GrBoost(5) 0.22 (477) 0.24 0.26 (189) 0.24(323) 0.24 (502)
LogitBoost 0.26 (85) 0.33 0.30 (48) 0.31(38)

AdaBoost.M1(1) 0.24 (343) 0.26 0.30 (155) 0.35(75)

AdaBoost.M1.ICV(5) 0.25(729) 0.26 0.30(337) 0.31(333)

The numbers in the brackets are the number of boosting iterations averaged over 100 simulation runs

Blagus and Lusa BMC Bioinformatics (2015) 16:300

(about 0.05 larger for 5-fold CV). Overall, LOOCYV and 5-
fold CV performed similarly. The best performance was
obtained with LOOCYV for Stochastic Gradient Boosting
and with 5-fold CV for the other algorithms; however, the
differences were large (> 0.05) only for AdaBoost.M1(1).

Summary of the main results

e AdaBoost.M1(5) performed similarly as its base
classifier when the number of samples was small
(Mgrain < 200, depending on the number of variables
and the magnitude of the between class difference). A
similar behavior was observed also for GrBoost(5),
but this was limited to situations with a very small
sample size (Mggiy = 50).

e AdaBoost.M1.ICV(5) outperformed AdaBoost.M1(5)
in the setting with small sample size and performed
similarly otherwise. The method performed similarly
as AdaBoost.M1(1). We showed that
AdaBoost. M1.ICV(5) can outperform
AdaBoost.M1(1) using an example where the
separation between the classes was complex.

e Shrinkage did not improve the performance of
Gradient boosting, the only exception was the setting
with a large sample size (500 samples) when using
stumps as base classifiers. Shrinkage improved the
performance of Stochastic Gradient boosting, which
could in some settings (large number of variables and
small sample size) overfit when shrinkage was not
used. However, the performance of Stochastic
Gradient boosting was good and in general it was
better than the performance of the other boosting
algorithms.

e LogitBoost was likely to overfit when performing a
large number of boosting iterations. However, even
when using a small number of boosting iteration the
performance of LogitBoost was poor when compared
with the other methods, especially when the number
of variables and the training sample size were large.

e Using cross-validation to determine the number of
boosting iterations underestimated the optimal
number of iterations needed to obtain the smallest
test set error and the classification results were
therefore suboptimal. With the exception of
LogitBoost and GrBoost(5) it was better to use a fixed
large number of boosting iterations instead of
cross-validation.

Analysis of real datasets
The boosting algorithms were used to reanalyze three
breast cancer microarray gene expression data.

We ranked the classifiers by their g-means, consider-
ing the highest g-means obtained with different number
of boosting iterations (Table 7). Overall, the best per-
formance was obtained with St-GrBoost(5) (median rank

Page 13 of 17

1), closely followed by St-GrBoost(1) (median rank 2).
The overall performance of the other classifiers was sim-
ilar, with the exception of CART(5) and AdaBoost.M1(5)
that performed poorly when compared with the other
classifiers.

AdaBoost.M1(5) achieved better classification results
than its base classifier only for the Wang dataset (for
the prediction of Relapse), which was expected as
this was the largest dataset and the prediction task
was hard (Additional file 6, Table 7). For the other
tasks it performed worse than AdaBoost.M1.ICV and
AdaBoost.M1(1). GrBoost(5) also performed as its base
classifier for the Sotiriou dataset (prediction of ER but
not Grade), which is in line with our simulation results
where we showed that GrBoost(5) does not perform bet-
ter than its base classifier when the sample size is small
and/or when the difference between the classes is larger
(note that the ER prediction is a much easier prediction
task than the prediction of Grade). The best results were
obtained with Stochastic Gradient boosting. This is in line
with our simulation results where we observed that the
algorithm performs well when learning from few data. In
general, the performance of Stochastic Gradient boosting
obtained when using CART(5) and stumps as base classi-
fiers was very similar and did not differ by more than 0.01
for all datasets/classification tasks.

Discussion

In this paper we evaluated the performance of various
boosting algorithms for two-class prediction problems
with high-dimensional data, presenting a series of simula-
tion studies and re-analyses of real high-dimensional data
sets. We proposed a novel version of the AdaBoost.M1
algorithm, which can be useful for high-dimensional data.

AdaBoost.M1 was previously reported to perform
poorly with high-dimensional data [22, 23]; our results
show that when the number of variables is much larger
than the number of samples the poor performance of
AdaBoost.M1 can be often explained by the fact that
even apparently weak base classifiers can overfit the data
and achieve a perfect prediction of the training set sam-
ples (i.e., a zero resubstitution error). Often the samples
from a small training set can be accurately separated by a
weak classifier, which is based on the combination of few
variables selected among the thousands being measured;
while this is seldom the case for low-dimensional data,
for high-dimensional data this happens often even when
the true differences between the classes are small or non
existent.

The practical consequence of this is that there is no
advantage in using boosting instead of its base classi-
fier: the weights in AdaBoost.M1 are not updated and
all the subsequent base classifiers produce the same pre-
diction results. The use of weaker base classifiers can

Blagus and Lusa BMC Bioinformatics (2015) 16:300

Page 14 of 17

Table 7 Ranking of the classifiers for real breast cancer microarray datasets. The table reports the ranking of the classifiers when
considering the highest g-means obtained with different number boosting iterations for different datasets/classification tasks

Data set Task n g-means 1 2 3 4 5 6 7 8 9
Ivshina ER 68 0.74 - 6 5 7
Ivshina Grade 110 0.72 7 6 5
Wang ER 154 0.79 7 5 6
Wang Relapse 214 0.54 7 8 6 -
Sotiriou ER 68 0.72 6 5 7
Sotiriou Grade 90 0.59 - 7 6 5
Median rank 6 55 -

With n we denote the number of samples used in the analysis after randomly down-sizing the majority class; g-means is the averaged cross-validated g-means of CART(5).

Darker shading denotes better classifier's performance in terms of its g-means

1 =CART(5), 2 = AdaBoostM1(5), 3 = AdaBoost.M1.ICV(5), 4 = AdaBoost.M1(1), 5 = LogitBoost(1), 6 = St-GrBoost(1), 7 = GrBoost(1), 8 = St-GrBoost(5), 9 = GrBoost(5)

diminish this problem. For example, on real microarray
data, comprising about a hundred samples and thousands
of variables, we observed that generally AdaBoost.M1
performs better if the base classifier is a classifica-
tion tree with with only one split (stump) rather than
a larger tree (CART(5) in our analyses). Our simula-
tion results with thousand variables indicate that base
classifiers stronger than stumps can be beneficial, not
overfitting the training data, only if more than hundred
samples from each class are included in the training set
as in this case the overfitting of the base classifier is
smaller.

To overcome these problems we propose AdaBoost
MI1ICV, a modification of the AdaBoost.M1 algorithm
that uses the cross-validated error rate for the update
of the weights in the boosting algorithm. We show
that in the high-dimensional setting with small samples
AdaBoost. M1.ICV can outperform AdaBoost.M1 with
larger trees as base classifiers. With AdaBoost.M1.ICV
it is feasible to use base classifiers that would otherwise
overfit the high-dimensional training data and impair the
performance of boosting. This can be beneficial for the
prediction problems that cannot be accurately addressed
using very weak classifiers, as it was illustrated using data
where the separation between classes was more complex.

Gradient boosting suffers from problems that are
similar to those outlined for AdaBoost.M1: they are less
severe as they arise for smaller sample sizes, larger num-
ber of variables, bigger between classes differences. The
reason why Gradient boosting performs poorly with small
samples is that the class probabilities are in the high-
dimensional setting severely overfitted, similarly as the
resubstitution error used by AdaBoost.M1. As a con-
sequence the decrease of the loss function is marginal
and the updates to the final score are negligible. Simi-
larly as observed for AdaBoost.M1, this problem can be
diminished by using weaker base classifiers (stumps) as
in this case the overfitting of the class probabilities for

the training data is less severe. The prediction results of
gradient boosting depend on the choice of the value of
the shrinking parameter. In the low-dimensional setting
shrinkage improves the performance of Gradient boosting
[32] and it is suggested that the best strategy for low-
dimensional data is to set the shrinkage parameter to a
very small value and then choose the number of boost-
ing iterations by early stopping [20]. Our results show that
Gradient boosting with high-dimensional data generally
performs better without shrinkage.

Stochastic Gradient boosting performed better than
Gradient boosting and overall, it achieved the best per-
formance among the algorithms that were considered.
The reason for its better performance can be explained
by the mechanism used to update the score in the gra-
dient boosting algorithm: only a fraction of samples is
used to train the base classifier, but the score update is
based on all the samples. Therefore, the update depends
partly on the data used to train the classifier and partly
on the left out samples. In a way this strategy is similar
to the AdaBoost.M1.ICV, where cross-validated estimates
were used for the updates. It was observed that Stochastic
Gradient boosting performs poorly without shrinkage on
low-dimensional data [20]. We observed a similar problem
also for high-dimensional data, where shrinkage prevents
overfitting of Stochastic Gradient boosting; the classifier
overfits if the amount of shrinkage is too small, espe-
cially when there are many variables, however using too
much shrinkage generally worsens the performance of the
classifier. Our experimental results show that Stochastic
Gradient boosting with v = 0.01 works well in most
settings.

For low-dimensional data boosting was shown to be
very robust to overfitting [46]. Our results with high-
dimensional data show that LogitBoost overfits when
the number of boosting iterations is large; generally the
minimum test set error rate is achieved using less than 100
boosting iterations, performing more iterations leads to a

Blagus and Lusa BMC Bioinformatics (2015) 16:300

substantial increase of the test set error. A similar behavior
was observed also in the low-dimensional setting [47].

The other algorithms do not suffer from overfitting even
after performing 1000 iterations; importantly, performing
more than few hundreds boosting iterations generally only
marginally affects the test set error. AdaBoost.M1.ICV
achieves the minimum test set error more slowly than the
other algorithms, however after many boosting iterations
the ICV approach performs similarly to best performing
algorithms.

The number of boosting iterations needed to achieve
the best predictive performance varies substantially across
different simulation settings, which suggests that the
optimal number of boosting iterations should be esti-
mated from the data for all the boosting algorithms. We
addressed this issue by using cross-validation to deter-
mine the optimal number of boosting iterations. Our
results indicate that this approach underestimates the
optimal number of boosting iterations when the size of the
dataset is small and, as a consequence, the classification
performance of the algorithms is suboptimal.

The reason why this happens with small size of the
training set is that the same cross-validated error rate
is obtained for many different number of boosting iter-
ations. In other words, the relatively continuous test set
error function is estimated by the the cross-validated
error, which is a step function (with minimal steps of
1/ngain). We selected the smallest number of iterations
in case of ties and therefore, the optimization based on
a step function underestimated the optimum. In prac-
tice the problem is less important for larger sample sizes
(data not shown) as in this case the function of the
cross-validated error becomes more continuous. Other
approaches for the determination of the optimal num-
ber of boosting iterations depend mostly on some likeli-
hood based information criteria (for example, AIC or BIC
[48, 49]). In our opinion, this approach is problematic
for high-dimensional data as the class probabilities, and
therefore also the likelihood, suffer from severe over-
fitting, even in the low-dimensional setting [50]. This
suggests that the approaches based on likelihood criteria
will tend to severely underestimate the optimal number of
boosting iterations.

Mease and Wyner [51] showed that, for low-dimensional
data, boosting with larger trees outperforms boosting with
smaller trees. They argue that the reason why boosting
is more efficient with larger trees is that they are less
prone to overfitting than boosting with smaller trees, and
provide some simulation results to support their argu-
ment. Our results for Stochastic Gradient boosting to
some extent disagree with the explanation of Mease and
Wyner as we observed that, using the same small amount
of shrinkage, St-GrBoost(5) can overfit in some settings
while St-GrBoost(1) does not.

Page 15 of 17

Others argued that larger trees can capture higher-
level interaction effects among the variables, while stumps
can only capture the main effects but perform best with
boosting methods when the generative model is additive
[20].

Our limited exploration of the effect of the size of the
trees on boosting performance showed that the overfitting
of the base classifier hinders the performance of boosting
and should be avoided or controlled (as discussed pre-
viously). Smaller trees are less prone to overfitting and
are therefore preferable for AdaBoost.M1 and Gradient
Boosting, unless the data are generated by a very complex
model that cannot be accurately captured by combining
simple base classifiers. For Stochastic Gradient boosting,
which embeds some control for the overfitting of the
base classifier, stumps and larger trees performed sim-
ilarly when a large number of boosting iterations was
performed: larger trees performed better with fewer iter-
ations. This can easily be explained by noting that in our
simulation study the differences between the classes were
additive, i.e. we only considered main effects in our simu-
lation study. Because of this, the differences between the
classes could have been equally well explained by com-
bining many classifiers where each considered only one
variable or combining fewer classifiers where each con-
sidered more variables. However, we showed that also
Stochastic Boosting can benefit from larger trees when the
data generating process is complex.

We did not systematically evaluate the effect of the
actual tree size, as we only looked at stumps and CART
with settings resulting in relatively small trees. However,
we can reasonably expect that AdaBoost.M1 with large
trees as base classifiers will not be effective in the high-
dimensional setting, unless the sample size is very large,
which is uncommon in the practical applications. We con-
strained the trees to be of a fixed size, as proposed by
[20], rather than using pruning. The reason was two-fold:
trees grown without pruning are computationally more
efficient, and as it was shown for the low-dimensional data
that the trees obtained by pruning tend to be much too
large [20]. In light of the results on the resubstitution error
of CART(5) we expect that for high-dimensional data the
trees obtained by pruning will tend to be even larger than
for the low-dimensional data.

In the simulation study we did not perform any type
of variable selection, as it is embedded in the classifica-
tion trees with a predefined size. For example, stumps
use only one variable that gives the best split of the
training set samples in two nodes, while in our implemen-
tation CART(5) used at most 31 variables (in practice the
actual number of used variables was even smaller, due to
the other stopping criteria). The results for the two-class
prediction tasks presented in [29] show that the reduc-
tion of the variable space does not significantly affect the

Blagus and Lusa BMC Bioinformatics (2015) 16:300

results when data are class-balanced. In our reanalysis of
breast cancer datasets we performed class-independent
pre-filtering (1000 variables exhibiting the largest variance
were considered) which was used manly for the purpose
of reducing the computing time.

Conclusions

AdaBoost.M1 with large trees does not perform better
than its base classifier when data are high-dimensional.
We showed that large trees achieve perfect prediction of
the training set samples even when there is no true dif-
ference between the classes, therefore the weights used
in AdaBoost.M1 are not updated and the boosted classi-
fier yields exactly the same prediction result as its base
classifier. A similar issue is observed also for Gradient
boosting when used with few training data. One way to
diminish this problem is by using weaker base classi-
fiers, i.e. smaller trees where the extent of overfitting is
smaller. If the differences between the classes cannot be
accurately captured by weak base classifiers, i.e. in set-
tings with higher level interaction effects between the
variables or complex boundaries, this problem has to be
accounted for in the boosting algorithm. We propose a
modification of AdaBoost.M1 algorithm where we use
cross-validated error rate when updating the weights. This
approach performs well in our simulation study and is
robust to overfitting even when the number of boosting
iterations is very large. Stochastic Gradient boosting can
also avoid the problems arising from overfitting of its base
classifier: only a fraction of the samples is used to train the
base classifier, while the score updates are based on all the
samples. Overall, Stochastic Gradient boosting with the
shrinkage parameter set to a small value achieved the best
classification performance in our simulation study as well
as using real high-dimensional microarray data.

Additional files

Additional file 1: Detailed description of the classifiers. In the
Additional file we provide a description of each classifier used in the paper.
(PDF 201 kb)

Additional file 2: Resubstitution error rate of CART and decision
stumps (1 table). In the Additional file we report the mean and maximum
resubstitution error rate for different number of variables (p) and number
of samples (nyqin) in the setting where there is no difference between the
classes (the true error rate in this setting is 0.5). (PDF 38 kb)

Additional file 3: Test set error as a function of the number of
boosting iterations for different gradient boosting algorithms

(4 figures). In the Additional file we present the average test set error
obtained with different gradient boosting algorithms where we varied the
size of the training set (N¢qin, rows), number of variables (p, columns) and
the shrinkage parameter (v). (PDF 2386 kb)

Additional file 4: Over-fitting in the high-dimensional setting
(1 figure). The figure in the Additional file reports the average test set error
for the example presented in the main text for different number of variables

Page 16 of 17

(p = 100, 1000 and 10000) and boosting iterations (from 1 to 1000), where
the difference between the differentially expressed variables increased with
increasing number of variables, assuring that a single CART had roughly
the same predictive power in all settings (u, = 0.7,0.8, 1, for p = 100,
1000 and 10000, respectively). See text for more details. (PDF 384 kb)

Additional file 5: Simulation results obtained on simulated data

(4 tables). In the Additional file we report the accuracy measures
(predictive accuracy - PA, predictive accuracy for class 1 - PA;, predictive
accuracy for class 2 - PAy, g-means and AUC) obtained by training various
boosting algorithms on class-balanced data (k; = 0.5) when changing the
size of the training set (nyqin). Results are reported for the situation where
the difference was small (u, = 0.5) or moderate (u, = 1); there were 1000
or 2500 variables (p) for each sample in the training set containing Nerain
samples. (PDF 142 kb)

Additional file 6: Results obtained by reanalyzing real microarray
datasets (1 table). The table in the Additional file reports the performance
measures (predictive accuracy - PA, predictive accuracy for class 1-PA;,
predictive accuracy for class 2 - PA, g-means and AUC) for different
ensemble classifiers and datasets/prediction tasks; darker shading denotes
better performance in terms of the relevant accuracy measure. (PDF 111 kb)

Abbreviations

ICV: Internal cross-validation; CART: Classification and regression trees; PA:
Predictive accuracy; AUC: Area under the ROC curve; CV: Cross validation;
GrBoost: Gradient boosting; St-GrBoost: Stochastic Gradient boosting.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

RB designed research, performed the computations and wrote the
manuscript; LL wrote the R code for the ensemble classifiers, performed the
computations and co-authored the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements

The high-performance computation facilities were kindly provided by
Bioinformatics and Genomics unit at Department of Molecular Biotechnology
and Health Sciences, University of Torino, Italy.

Received: 20 March 2015 Accepted: 26 August 2015
Published online: 21 September 2015

References

1. Bishop CM. Pattern recognition and machine learning (Information
science and statistics). New York: Springer; 2007.

2. Datta S. Classification of breast cancer versus normal samples from mass
spectrometry profiles using linear discriminant analysis of important
features selected by random forest. Stat Appl Genet Mol Biol. 2008;7.

3. Aaroel, Lindahl T, Dumeaux V, Sabo S, Tobin D, Hagen N, et al. Gene
expression profiling of peripheral blood cells for early detection of breast
cancer. Breast Cancer Res. 2010;12:R7.

4. Collins G, Mallett S, Omar O, Yu LM. Developing risk prediction models
for type 2 diabetes: a systematic review of methodology and reporting.
BMC Med. 2011;9:103.

5. Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer
serum proteomic profiling. BMC Bioinforma. 2003;4:24.

6. LeungF, Musrap N, Diamandis EP, Kulasingam V. Advances in mass
spectrometry-based technologies to direct personalized medicine in
ovarian cancer. Adv Integr Med. 2013;1:74-86.

7. MajewskilJ, Bernards R. Taming the dragon: genomic biomarkers to
individualize the treatment of cancer. Nat Med. 2011,304-12.

8. Simon R, Roychowdhury S.Implementing personalized cancer genomics
in clinical trials. Nat Rev Drug Discov. 2013;12(5):358-69.

9. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of
metastasis in primary solid tumors. Nat Genet. 2003;33:49-54.

10. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al.
Diffuse large B-cell lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nat Med. 2002;8:68.

http://www.biomedcentral.com/content/supplementary/s12859-015-0723-9-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0723-9-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0723-9-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0723-9-s4.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0723-9-s5.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0723-9-s6.pdf

Blagus and Lusa BMC Bioinformatics (2015) 16:300

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

lizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, et al.
Oligonucleotide microarray for prediction of early intrahepatic recurrence
of hepatocellular carcinoma after curative resection. The Lancet.
2003;361(9361):923-9.

Gottesman O, KuivaniemiH, Tromp G, Faucett WA, Li R, Manolio TA,

et al. The electronic medical records and genomics (eMERGE) network:
past, present, and future. Genet Med. 2013;15(10):761-71.
Ibrahim-Verbaas CA, Fornage M, Bis JC, Choi SH, Psaty BM, Meigs JB,

et al. Predicting stroke through genetic risk functions The CHARGE risk
score project. Stroke. 2014;45(2):403-12.

JHD. Breast cancer diagnosis from proteomic mass spectrometry data: a
comparative evaluation. Stat Appl Genet Mol Biol. 2008;7(2):1-23.
Schrodi SJ, Mukherjee S, Shan'Y, Tromp G, Sninsky JJ, Callear AP, et al.
Genetic-based prediction of disease traits: prediction is very difficult,
especially about the future. Front Genet.2014;5.

Datta S, PihurV, Datta S. An adaptive optimal ensemble classifier via
bagging and rank aggregation with applications to high dimensional
data. BMC Bioinforma. 2010;11:427.

Milton JN, Steinberg MH, Sebastiani P. Evaluation of an ensemble of
genetic models for prediction of a quantitative trait. Front Genet. 2014;5.
Breiman L. Bagging predictors. Mach Learn. 1996;24:123-40.

Freund Y, Schapire RE. Experiments with a new boosting algorithm.

In: Proceedings of the thirteenth international conference on machine
learning. Burlington, Massachusetts: Morgan Kaufmann; 1996. p. 148-156.
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning
data mining, inference, and prediction. New York: Springer; 2003.

Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on
ensembles for the class imbalance problem: bagging-, boosting-, and
hybrid-based approaches. Systems, Man, and Cybernetics, Part C Appl
Rev IEEE Trans. 2012;42(4):463-84.

Ben-Dor A, Bruhn L, Laboratories A, Friedman N, Schummer M,
Nachman |, et al. Tissue classification with gene expression profiles.

J Comput Biol. 2000;7:559-84.

Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods
for the classification of tumors using gene expression data. J Am Stat
Assoc. 2002,97(457):77 - 87.

Schapire R. The boosting approach to machine learning: An overview.

In: MSRI workshop on nonlinear estimation and classification. CA: Berkley;
2001.

Stollhoff R, Sauerbrei W, Schumacher M. An experimental evaluation of
boosting methods for classification. Methods Inform Med. 2010;49(3):
219-29.

Eickholt J, Cheng J. DNdisorder: predicting protein disorder using
boosting and deep networks. BMC Bioinforma. 2013;14:88.

Goodswen S, Kennedy P, Ellis J. A novel strategy for classifying the output
from an in silico vaccine discovery pipeline for eukaryotic pathogens
using machine learning algorithms. BMC Bioinforma. 2013;14:315.
Jimeno-Yepes A, Plaza L, Mork J, Aronson A, Diaz A. MeSH indexing
based on automatically generated summaries. BMC Bioinforma. 2013;14:
208.

Dettling M, Buhlmann P. Boosting for tumor classification with gene
expression data. Bioinformatics. 2003;19(9):1061-9.

Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical
view of boosting. Ann Stat. 2000;38(2):337-407.

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and
regression trees. Pacific Grove, California: Wadsworth and Brooks; 1984.
Friedman JH. Greedy function approximation: a gradient boosting
machine. Ann Stat. 2000;29:1189-232.

Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal.
1999;38:367-78.

Tutz G, Binder H. Boosting ridge regression. Comput Stat Data Anal.
2007,51(12):6044-59.

Mayr A, Fenske N, Hofner B, Kneib T, Schmid M. Generalized additive
models for location, scale and shape for high dimensional data-a flexible
approach based on boosting. J R Stat Soc Series C (Appl Stat). 2012;61(3):
403-27.

Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and
its application in microarrays. Biostatistics. 2007;8:86-100.

Pang H, Tong T, Zhao H. Shrinkage-based diagonal discriminant analysis
and its applications in high-dimensional data. Biometrics. 2009;65(4):
1021-9.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Page 17 of 17

Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al.
Breast cancer classification and prognosis based on gene expression
profiles from a population-based study. Proc Nat Acad Sci USA.
2003;100(18):10393-8.

Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-
expression profiles to predict distant metastasis of lymph-node-negative
primary breast cancer. The Lancet. 2005;365(9460):671-9.

Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, et al. Genetic
reclassification of histologic grade delineates new clinical subtypes of
breast cancer. Cancer Res. 2006;66(21):10292-301.

He H, Garcia EA. Learning from imbalanced data. IEEE Trans Know! Data
Eng. 2009,21(9):1263-84.

Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced
data. BMC Bioinforma. 2010;11:523.

Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett.
2006;27(8):861-74.

Holm S. A simple sequentially rejective multiple test procedure. Scand J
Stat. 1979,6:65-70.

R Development Core Team. R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
[http://www.R-project.org]. [ISBN 3-900051-07-0].

Breiman L. Population theory for boosting ensembles. Ann Stat. 2004;32:
1-11.

Mease D, Wyner AJ, Buja A. Boosted classification trees and class
probability/quantile estimation. J Mach Learn Res. 2007;8:409-39.

Chang YCl, Huang Y, Huang YP. Early stopping in Boosting. Comput Stat
Data Anal. 2010;54(10):2203-13.

Mayr A, Hofner B, Schmid M. The importance of knowing when to stop.
A sequential stopping rule for component-wise gradient boosting.
Methods Inform Med. 2012,51(2):178-86.

Buja A, Mease D, Wyner AJ. Comment: Boosting algorithms
Regularization, prediction and model fitting. Statist Sci. 2007;22(4):506-12.
Mease D, Wyner A. Evidence contrary to the statistical view of boosting.
J Mach Learn Res. 2008;9:131-56.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolMed Central

http://www.R-project.org

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Classifiers
	Simulations
	Performance of AdaBoost.M1 in the high-dimensional setting
	Effect of shrinkage on Gradient boosting and Stochastic Gradient boosting
	Boosting in the high-dimensional setting with small samples: test set error as a function of the number of boosting iterations
	Effect of the sample size, number of variables and between class difference
	Simulation setup with a complex separation between the classes
	Determining the number of boosting iterations with cross-validation

	Real data
	Evaluation of the performance of the classifiers
	Computational aspects

	Results
	Performance of AdaBoost.M1 in the high-dimensional setting
	Effect of shrinkage on Gradient boosting and stochastic Gradient boosting
	Boosting in the high-dimensional setting with small samples: test set error as a function of the number of boosting iterations
	Effect of the sample size, number of variables and between class difference
	Simulation setup with a complex separation between the classes
	Determining the number of boosting iterations with cross-validation
	Summary of the main results
	Analysis of real datasets

	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

