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Abstract

Background: T cell epitope prediction tools and associated vaccine design algorithms have accelerated the
development of vaccines for humans. Predictive tools for swine and other food animals are not as well developed,
primarily because the data required to develop the tools are lacking. Here, we overcome a lack of T cell epitope
data to construct swine epitope predictors by systematically leveraging available human information. Applying the
“pocket profile method”, we use sequence and structural similarities in the binding pockets of human and swine
major histocompatibility complex proteins to infer Swine Leukocyte Antigen (SLA) peptide binding preferences.
We developed epitope-prediction matrices (PigMatrices), for three SLA class | alleles (SLA-1*0401, 2¥0401 and
3*0401) and one class Il allele (SLA-DRB1*0201), based on the binding preferences of the best-matched Human
Leukocyte Antigen (HLA) pocket for each SLA pocket. The contact residues involved in the binding pockets were
defined for class | based on crystal structures of either SLA (SLA-specific contacts, Ssc) or HLA supertype alleles (HLA
contacts, Ho); for class Il, only Hc was possible. Different substitution matrices were evaluated (PAM and BLOSUM)
for scoring pocket similarity and identifying the best human match. The accuracy of the PigMatrices was compared
to available online swine epitope prediction tools such as PickPocket and NetMHCpan.

Results: PigMatrices that used Ssc to define the pocket sequences and PAM30 to score pocket similarity demonstrated
the best predictive performance and were able to accurately separate binders from random peptides. For SLA-1*0401 and
2*0401, PigMatrix achieved area under the receiver operating characteristic curves (AUC) of 0.78 and 0.73, respectively,
which were equivalent or better than PickPocket (0.76 and 0.54) and NetMHCpan version 24 (041 and 0.51) and
version 2.8 (0.72 and 0.71). In addition, we developed the first predictive SLA class Il matrix, obtaining an AUC of 0.73
for existing SLA-DRB1*0201 epitopes. Notably, PigMatrix achieved this level of predictive power without training on
SLA binding data.

Conclusion: Overall, the pocket profile method combined with binding preferences from HLA binding data shows
significant promise for developing T cell epitope prediction tools for pigs. When combined with existing vaccine
design algorithms, PigMatrix will be useful for developing genome-derived vaccines for a range of pig pathogens for
which no effective vaccines currently exist (e.g. porcine reproductive and respiratory syndrome, influenza and porcine
epidemic diarrhea).
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Background

The interaction of Major Histocompatibility Complex
(MHC) proteins with peptides derived from protein anti-
gens plays a key role in the adaptive immune response
mediated by T cells. The MHC:peptide complex pre-
sented on the surface of a cell is recognized by the T cell
receptor (TCR), which activates the T cell and drives the
immune response. There are two classes of MHC mole-
cules: MHC class I presents peptides of intracellular ori-
gin to CD8" T cells (cytotoxic T cells, or CTL) and
MHC class II presents peptides of extracellular origin to
CD4" T cells (T-helper cells, or Th). Both classes of mol-
ecules have similar tertiary structure. Class I molecules
have a transmembrane (a) chain noncovalently associ-
ated with p,-microglobulin where the a; and a, domains
form the peptide-binding groove; class II molecules have
two transmembrane chains (a and ) where the a; and
B; domains form the peptide-binding groove. The MHC
class I binding groove is closed, which restricts the
length of bound peptides to 8-10 residues; the MHC
class II binding groove on the other hand, is open, and
peptides can extend beyond the ends of the groove,
allowing binding of longer and more flexible peptides of
variable lengths (typically 13-25 amino acids) [1].

The tertiary structure of MHC molecules is relatively
conserved, even across species. For example, crystallo-
graphic studies have shown similarity between Human
Leukocyte Antigen (HLA; human MHC) and Swine
Leukocyte Antigen (SLA; swine MHC) molecules [2].
The SLA-1*0401 class I allele has been crystallized in
complex with peptides derived from 2009-pandemic
HIN1 (pH1N1) swine-origin influenza A virus (S-OIV)
and Ebola virus. A structural comparison revealed that
the SLA class I molecule, SLA-1*0401 contains six
pockets in its binding groove, similar to HLA class I
molecules. The root-mean-squared deviation (RMSD)
for all of the Ca atoms in SLA-1*0401 and HLA-
A*1101, which has the highest identity with SLA-1*0401
(78 %), was <0.7 A indicating a similar arrangement of
their backbones. Furthermore, three out of 23 influenza
SLA-1*0401 binders were identical to previously defined
peptides presented by HLA-A*0101 [2]. For SLA class II,
no crystal structures are available, but amino acid SLA-
DR sequences are highly similar to their human counter-
parts. For example, the amino acid sequences of SLA-
DRB1*0201 and HLA-DRB1*0101 are 79 % identical.

Due to the importance of peptide binding to MHC mol-
ecules in the immune response, human T cell epitope pre-
diction tools have been developed based on a range of
approaches and are widely used in vaccine development
and experimental immunology [3]. The availability of a
large and expanding database of validated MHC ligands
has contributed to the development of more accurate al-
gorithms. Epitope predictions using these tools reduce the
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time and effort required to identify T cell epitopes [4]. The
number of epitope prediction tools is more limited for
pigs due to the paucity of experimental data available. To
overcome the lack of quantitative measurements of MHC
interaction for a large number of HLA alleles, ‘pan-spe-
cific’ methods have been implemented for prediction of T
cell epitopes that bind to MHC for which experimental
data are limited or not available. Pan-specific methods use
experimental binding data and amino acid sequences of
multiple MHC alleles to infer binding preferences to
uncharacterized MHC molecules. These methods have
been used for development of prediction tools for MHC
class I [5-7] and II alleles [8—11], but only NetMHCpan
has been used for prediction of SLA class I-restricted pep-
tides [12-16]. This method is based on artificial neural
networks (ANN) trained using as input a pseudo-
sequence composed of the polymorphic residues in the
binding groove of a given MHC, a peptide sequence and
the experimental affinity data. To our knowledge, there
are no i silico tools that are available for SLA class IL
Sturniolo et al. first described a method for using
existing data to develop new epitope predictors, the
pocket profile method, in 1999 [17]. It has been used
to develop pan-specific methods for predicting bind-
ing of peptides to HLA class I and II alleles [9, 18].
The approach depends on the identification of certain
polymorphic regions within HLA molecules that are
known to be the areas of contact between peptides
and the binding groove of HLA [19-21]. Contact resi-
dues from the HLA molecule that bind the R group
(side chain) of a specific amino acid within a linear
peptide can be considered to form a pocket for that
R group. Thus, each ‘pocket’ can also be described in
terms of its amino acid binding preferences (‘pocket
profile’). The pocket profiles are nearly independent
of the remaining binding groove. So this method as-
sumes that two MHC alleles with identical pocket
residues will have the same pocket profile. Therefore,
given sufficient information about the contact resi-
dues of the set of pockets in the binding groove of
an MHC and experimentally determined pocket pro-
files, it is possible to compose predictive matrices in
silico. The method was originally applied to develop
TEPITOPE, an algorithm for prediction of peptide li-
gands to 51 HLA class II alleles with known pocket
residues [17] and then extended to any HLA-DR mol-
ecules with similar pockets (TEPITOPEpan) [9]. A
similar method has also been used in the PickPocket algo-
rithm for MHC class I prediction [18]. Whereas TEPITO-
PEpan uses pocket profiles from TEPITOPE, PickPocket
generates binding preferences using position-specific scor-
ing matrices (PSSMs) from binding data directly. Al-
though no publications exist using these algorithms for
SLA binding predictions, SLA alleles are available for use
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in the PickPocket server (www.cbs.dtu.dk/services/Pick-
Pocket/).

EpiMatrix is a matrix-based algorithm that uses the
pocket profile method to predict potential HLA class I
and II T cell epitopes. The first version of this algorithm
was developed in 1996, and newer versions have been
extensively validated in vitro in HLA binding assay and
human T cell assays and in animal studies using HLA
transgenic mouse models [22-26]. For common class II
alleles, EpiMatrix appears to predict more accurately
than many available epitope-mapping algorithms [27].
Comparative performance for EpiMatrix class I predic-
tions has not been published; however, the tools have
been successfully applied to identify class I-restricted T
cell epitopes in human pathogens [28-30]. The pocket
profile method was used to develop a matrix for a bo-
vine MHC class I allele [31] and in the early 2000s, this
method was also used to derive SLA class II prediction
matrices from EpiMatrix, but this work was not
published.

This paper describes the development and retrospect-
ive validation of predictive matrices to map T cell epi-
topes for SLA class I (SLA-1*0401, 2*0401, 3*0401)
alleles and a class II (SLA-DRB1*0201) allele. “PigMa-
trix” matrices are built based on the pocket profile
method using EpiMatrix pocket profiles for HLA epitope
prediction. While these alleles represent a small subset
of commonly expressed alleles in pigs [32-36], they
were selected for their available peptide binding data
[13-16, 37-39]. As before, we assumed that predictive
matrices developed for HLA alleles should function as
reasonable proxies for the prediction of ligands to
SLA molecules with similar pocket profiles. Thus, we
developed ‘composite matrices’ by selecting the most
similar HLA pocket (best human match) for each
SLA pocket, and built matrices composed of the cor-
responding HLA binding preferences (Fig. 1).

Two methods were used to define the pocket contact
residues considering different scenarios of availability of
SLA crystal structures. In the first scenario, SLA crystal
structures were available, so pockets were defined from
these structures. In the second, no SLA crystal struc-
tures were available; therefore, contact residues were se-
lected based on crystal structures of HLA. We also
tested different substitution matrices (PAM and BLO-
SUM) to score pocket similarity to define the best human
match. PigMatrix was benchmarked against existing SLA
prediction tools for class I alleles. Benchmarking against
other SLA class II predictors was not possible as no other
prediction algorithms are available. The results demon-
strate the potential of this approach to develop matrices
to make accurate predictions for both SLA class I and II
alleles for which experimental binding data are limited or
even non-existent.
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Fig. 1 lllustration of PigMatrix development using the pocket profile
method. Three pockets (A, B, and C) from human (HLA) and swine
(SLA) MHC molecules are represented as different shapes and colors.
The contours of the pockets are shown in bold black lines. HLA
pockets from two HLA alleles (HLA-A*0101 and B*4403) are shown
in the first two rows. For each pocket in a target SLA, in the third
row, we identified the most similar HLA pocket (best human match)
and combined their pocket profiles (binding preferences expressed

as coefficients) to build composite predictive matrices (PigMatrix)

Methods

Datasets

Unique 9-mer peptides with reported binding measure-
ment to a specific SLA allele were compiled from the lit-
erature into two datasets: one comprising binders and
the other, non-binders, for each of three class I (SLA-
1*0401, 2*0401, 3*0401) alleles [2, 13-16]. The SLA-
1*0401 dataset included 133 binders and 46 non-
binders; 2*0401 included 24 binders and 46 non-binders;
and 3*0401, 27 binders and 46 non-binders. Twenty-five
(14 %) of the SLA-1*0401 peptides were reported by
Zhang et al. [2]; the remaining peptides for 1*0401,
2*0401 and 3*0401 were published by Pedersen et al. in
different publications [13-16]. For class II, a dataset was
created with peptides specific to SLA-DRB1*0201 from
the literature [37-39]. This dataset has 33 binders
and 171 non-binders. Peptides with contradictory
(both positive and negative) results were discarded
(Additional file 1). Additionally, we generated a set of
100,000 unique 9-mer peptides from random sequence
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proteins with the average amino acid frequencies of
the proteins in the Swiss-Prot database for use as a
control data set, as previously described [31]. The
random proteins were generated using the RandSeq
tool from ExPASy [40].

MHC sequences

Complete amino acid sequences from SLA protein se-
quences, along with HLA class I (HLA-A*0101, A*0201,
A*0301, A*1101, A*2402, A*6801, B*0702, B*0801,
B*2705, B*3501, B*4403, B*5101) and class II alleles
(HLA-DRB1*0101, 0301, 0401, 0701, 0801, 1101, 1301,
1501), were obtained from the IPD-MHC Database
(www.ebi.ac.uk/ipd/). It is important to clarify that the
HLA alleles for which binding preferences are available
in EpiMatrix are families of alleles that share pocket
preferences, rather than individual alleles. The alleles
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represent 12 class I supertypes [41] and eight class II
supertypes [42].

Binding pocket residues

Six pockets (A-F) and five pockets (A-E) were consid-
ered for class I and II, respectively. Pockets for peptide
positions 4, 5 and 8 for class I and 2, 3, 5, and 8 for class
I were not considered due to their minimal effect on
binding [17, 19, 43]. For each pocket, contact residues
(pocket sequences) were defined as either (1) SLA-
specific contacts (Ssc) derived from SLA crystal struc-
tures or (2) HLA-based contacts (Hc) derived from HLA
crystal structures (Fig. 2a). The Ssc approach was ap-
plied only to SLA class I alleles using crystallographic
data available for SLA-1*0401 (PDB:3QQ3 and 3QQ4)
[2]. For Hc, representative crystal structures from HLA
class I and II supertype alleles [41, 42] with bound 9-

A Define pocket contact residues

HLA supertype alleles

SLA-1*0401

POCKET A
5,7,33,58,59,62,63,66,99,159,163,167,170,171
HLA contacts (Hc)

B Extract HLA residues and compile a pocket library

Positions POCKET A
5,7,569,63,159,163,167,170,171
SLA-specific contacts (Ssc)

C Extract contact residues for an target SLA allele

By alignment to a reference sequence

Pocket A (Hc)

HLA | ]
I I 1111 I 1

D Find the best human match for each SLA pocket

Similarity scored using PAM30, PAM180, BLOSUM90, BLOSUM62

HLALA0101 ‘ Pocket| SLA pockets || Best human match |Similarity
POCKET A 1*0401 Sequence Allele | PAM30
* Ssc I 11 (Al A LYFEYRENYYLSRY MYFEYREIYYLSRY — B*4403 0.84
f He Il I i I il B | YYAMRENVTYYL YYAMRNNVQYYT A*6801 0.65
. c ETTYSYRDWERR AHTDIYRDWAQR A*0101 0.23
HLA-B-*5101 [ He D | YYRNTSYRERRYL YYRINTYNEQLYL ~ B*5101 0.37
E TGSRDKWAERR TNIRDKWVAQR A*0301 0.44
Pocket HLA pocket library F | TYGTLYLSRDYITKW | | TONTLYIIRDYITKW B*2705| 0.62
A*0101 A*0201 ===  B*5101
A MYYEYRGRY % MYYEYTWRY MYYNYLWRH
B | veMENuvYR YEMEKVYYT YYTNIFYYL E Extract HLA binding coefficients for PigMatrix
SSC C TDRWAR THHWVL TYNWEL
D | YFNHYRY :;;:z;Y 11;2:: Pocket|Best human Binding preferences
E | TKwvAQ
F TDNTLYIIRDYITKW  THDTLYVRHYYITKW TYNIAYWTNYYITKW A BT:Z:(;I?’ ACDEFGHIICLVNEQRS TYWY
A MYFEYQENYYRGRY % MYFEYGEKYYTWRY MYFEYRNIYYLWRH B A*6801
B YFAMQENMHYYR YFAMGEKVHYYT YYATRNIFNYYL C A*0101
HC C AHTDIYRDWAQR AHTHRYHYWVQL TNTYTYNYWEQL HC D B*5101
D YFQNHIYRAQRYR YFGKHRYHVQLYT YYRINTYNEQLYL E A*0301
E TNIRDKWVAQR TDRHYKWAVQL TNTNYKWAEQL E B*2705
F TDNTLYIIRDYITKW  THDTLYVRHYYITKW TYNIAYWTNYYITKW

Fig. 2 PigMatrix algorithm. a Residues in contact with the peptide are determined with respect to a crystal structure of either an SLA allele (Ssc)
or an HLA supertype allele (Hc). Class | supertype alleles are represented by three HLA molecules. b Contact residues defined by either Ssc or Hc
are extracted from HLA sequences and compiled into a library of HLA pockets (HLA pocket library). Pocket A positions and the extracted pocket
sequences for Ssc and Hc are marked with *. ¢ For a target SLA allele, contact residues (defined by Ssc or Hc) are identified by aligning the SLA
sequence to a reference HLA sequence. d SLA pocket sequences are compared to those in the HLA pocket library to identify the best human

match. e Binding coefficients of the best human match for each SLA pocket sequence are compiled to build a PigMatrix. Coefficients are represented

in red to blue scale (high to low binding likelihood)
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mer (for class I) or longer peptides (for class II) and the
highest resolution were analyzed to define the contact
residues (Additional file 2). Four class II supertype alleles
(HLA-DRB1*0101, 0301, 0401, and 1501) had crystal
structures available.

We considered binding pocket contact residues to be
amino acids with atoms within 5.0 A of those in the
bound peptide. Residues were selected using PyMOL
(Schrodinger, LLC). Only amino acids with the side
chain oriented towards the peptide were included. Thus,
each pocket included the union of contact residues in all
the MHC crystal structures of a given class. For class II
alleles, since the alpha subunit of HLA-DR (HLA-DRA)
is practically invariable [44], only residues in the beta
subunit were included. The amino acids in the positions
defined as contact residues according to Ssc and Hc
were extracted from HLA sequences and compiled into
a pocket library (Fig. 2b), where each pocket is a non-
contiguous sequence of residues ordered by their
positions.

Composite matrix construction

Each SLA protein sequence was aligned to a reference
HLA sequence (HLA-A*0101 for class I and HLA-
DRB1*0101 for class II) to extract its contact residues
(Fig. 2c) based on Ssc and Hc approaches. SLA pockets
were compared to the HLA pocket library to identify the
best human match for each SLA pocket. SLA-HLA
pocket similarity was determined using PAM and BLO-
SUM substitution matrices for closely (PAM30 and
BLOSUM90) and distantly related (PAM120 and BLO-
SUMS62) protein sequences [45, 46]. For a pocket com-
parison between SLA sequence x and corresponding
HLA sequence vy, both of length N, the similarity score
was calculated as the sum of the similarity scores of each
amino acid i using a specific substitution matrix M. The
score was then divided by the similarity score of the
SLA pocket compared to itself.

ZZIM[xi’ 7yi]
ZZIM[xi’ 7yi]

The HLA pocket with the highest similarity score was
considered to be the best human match (Fig. 2d). The
pocket profiles of the best human matches for each
pocket were then combined to form composite matrices
(Fig. 2e).

simy(x,y) =

Matrix validation and performance evaluation

Composite matrices were used to score a set of random
9-mer peptides. The raw binding score bind,,.(p) for
each peptide p was calculated as the sum, over a set I of
relevant peptide positions, of the coefficient K[, p;] of
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the amino acid p; at position i in p. Positions 1, 2, 3, 6,
7, and 9 were used for class I and 1, 4, 6, 7, and 9 for
class II, as those positions most interact with each SLA
pocket.

bind,., (p) = ZielK[i’pi]

The average y and standard deviation o of the scores
were used to normalize scores into a Z-score scale
(binding likelihood score).

_ bind,w(p)-¢
N o

V4

Next, the ability of the composite matrices to separate
binders from non-binders and binders from a set of ran-
dom peptides was evaluated by comparing the mean of
the Z-scores of the datasets [28]. Differences were evalu-
ated for significance by Wilcoxon-Mann—Whitney test.
For class II binders longer than 10 amino acids, 9-mers
overlapping by eight amino acids were scored because in
general, the lengths of MHC binding cores are 9 amino
acids [47]. The 9-mer frame with the highest Z-score
was selected to be the most likely MHC binder and its
score was used for calculation of the mean Z-score of
binders and non-binders. In addition, for each allele, the
HLA matrix with the lowest overall pocket identity with
the SLA was used to score both set of peptides, binders
and random peptides, as a negative control matrix.

Peptides in the top 5 % of the normal curve, where the
Z-score is greater than or equal to 1.64, were considered
to be potential binders. This threshold has been shown
to identify peptides that are highly likely to bind HLA
molecules [22]. So as to evaluate the predictive perform-
ance of the matrices, we calculated the area under the
receiver operating characteristic (ROC) curve (AUC)
using the sensitivity and 1 - specificity values for the
same dataset of binders and non-binders.

Finally, PigMatrix SLA class I predictions were com-
pared to those of PickPocket 1.1 and NetMHCpan 2.4
and 2.8. A threshold of 500 nM in binding affinity (or
0.426 prediction score based on 1 - logsoxlaffinity), was
set to classify binders and non-binders as previously de-
scribed [6, 18].

Results

Pocket residues

The contact residues that form the binding pockets in SLA
were defined from (1) SLA-1*0401 crystal structures (SLA-
specific contacts, Ssc), and (2) HLA class I and II crystal
structures (HLA contacts, Hc). Figure 3 shows contact resi-
due similarities and differences for SLA-1*0401 in determi-
nations using Hc and Ssc. Thirty-nine positions were
identified with Hc, of which 34 were in common with Ssc
(shown in light blue in Fig. 3) and five were unique to Hc
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SLA-specific contacts (Ssc)

HLA contacts (Hc)

SLA
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Pocket (peptide position)
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Fig. 3 Comparison of contact residues in the binding pockets based
on SLA-specific contacts (Ssc) and HLA contacts (Hc). Top: Schematic
representation of the crystal structure of SLA-1*0401 (PDB:3QQ4;
residues 1 to 181 rendered with PyMOL (Schrodinger, LLC))
showing the residues involved in the binding pockets. SLA
contact residues and the ligand (ATAAATEAY, yellow) are represented
as sticks. Residues common for both Hc and Ssc approaches are show
in light blue; residues unique to Ssc in green and unique to Hc in
orange. Bottom: Positions in the SLA binding pockets are shown. The
first column (SLA position) is the residue and position number in the
SLA-1*0401 protein sequence (Genbank:2352988). Residue positions
shown in bold and underlined are identical (i.e. amino acid involved in
the same pocket(s)) for both approaches. Positions in light blue are
common for both approaches; positions in orange are unigue to Hc.
The next columns show, shaded in gray, the positions involved
in pockets A through F that interact with relative ligand positions
(peptide position). The last column (Count) is the number of pockets
in which an amino acid participates. The last row (Total) is the total
number of residues in each pocket

(in orange); there were no positions unique to Ssc. Several
amino acids were involved in more than one pocket; how-
ever, this was more frequent for Hc than Scc due to the
nature of the approach; only 23 of the 34 common posi-
tions belonged to exactly the same pockets by both defini-
tions (positions shown in bold and underlined in Fig. 3). Hc
included for each pocket, the union of amino acids over all
the HLA crystal structures analyzed. Based on Hc, positions
97,99 and 114 were part of four pockets; these residues are
located in the central part of the MHC binding groove and
depending on the characteristics of their R chain and the
bound peptide, they can interact with more than one resi-
due of the ligand. We also observed that the total number
of contact residues per pocket was lower in Ssc. The main
differences in SLA class I were observed for pockets C
and D where SLA structures had fewer contact residues
involved in the binding. Pocket F, on the other hand, was
identical for both.

For class II, only Hc was applied because no SLA-
DR crystal structures were available. Twenty-two posi-
tions were considered in contact with ligands; four
positions were common to three pockets, four to two
pockets and 14 were involved in only one pocket. Five
positions were included for pocket A, seven in B, seven in
C, eight in D, and seven in F (Additional file 3). In pockets
B, C, D, and E, we identified in total 8 allele-specific
pocket residues; Y30 in pocket B for HLA-DRB1*1501,
D28 and R74 in pocket C for DRB1*0301, Q70 and R74
for DRB1*0301 and R13 for DRB1*1501 in pocket D, and
V38 for DRB1*0301 and Y37 for DRB1*0401 in pocket E.

Matrix construction, validation and evaluation

We built composite matrices for each SLA allele and
evaluated whether they were able to distinguish SLA
allele-specific binders from non-binders and random
peptides (Fig. 4). In some cases, the best human matches
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Density

SLA

Similarity

Mean binding likelihood expressed as Z-score (sd)

Fig. 4 Validation of composite matrices. Top: Binding likelihood
(Z-score) means and standard deviations (sd) of binders and non-binders
calculated using the matrices built based on Ssc and Hc and different
scoring methods for pocket selection are shown for SLA class | and I
alleles. Z-score means and sd calculated using negative matrices, HLA
matrices with the lowest overall pocket identity for each SLA allele, are also
shown. Instances where the Z-scores of binders and non-binders were
statistically different (p-value < 0.05) using a Wilcoxon-Mann-Whitney test,
are shown in gray. Bottom: Comparison of binding likelihood (expressed
as Z-score) between matrices (PAM30-Ssc and Negative) shown as density
estimates (smoothed histograms). Note that y-axes are differently
scaled. Binders and non-binders were scored with PAM30-Ssc
(for class 1), PAM30-Hc (for class Il) and Negative control matrices.
100,000 natural random 9-mers were scored with either PAM30-Ssc
(class 1) or PAM30-Hc (class I). The black line indicates the threshold at
which a 9-mer is considered a potential binder (Z-score of 1.64). Ssc
was not applied to SLA-DRB1*0201 because crystal structures are

Ssc Hc
allele score
Binders Non-binders Binders Non-binders
PAM30 2.12(0.46) 1.49(0.57) 1.65(0.55) 1.79 (0.48)
BLOSUM90  2.98(1.00) 3.06(1.00) 2.99(0.96) 3.15(0.97)
1*0401 PAM120 2.12(0.46) 1.49(0.57) 1.61(0.54) 1.69(0.51)
BLOSUM®62 2.98(1.00) 3.06(1.00) 3.02(0.97) 3.17(0.96)
Negative -0.58 (0.76) -0.45(0.78) 0.51(0.67) 0.53(0.52)
PAM30 2.30(0.76) 1.45(0.84) 2.07(0.83) 1.83(1.10)
BLOSUM90  2.30(0.76) 1.45(0.84) 2.07(0.83) 1.83(1.10)
2*0401  PAM120 2.30(0.76) 1.45(0.84) 2.07(0.83) 1.83(1.10)
BLOSUM62  2.30(0.76) 1.45(0.84) 2.20(0.98) 1.96 (1.09)
Negative 0.56 (0.59) 1.00(0.75) 0.56 (0.59) 1.00 (0.75)
PAM30 1.42(1.05) 1.16(0.77) 1.34(1.17) 1.12(0.78)
BLOSUM90  1.62(0.81) 2.20(0.82) 1.71(0.90) 1.96 (0.82)
3*0401 PAM120 1.36(0.72) 1.95(0.78) 1.27(1.06) 1.68 (0.95)
BLOSUM62  1.74(0.79) 2.22(0.75) 1.98(0.90) 2.32(0.87)
Negative 0.52(0.70) 0.47(0.55) 0.54(0.82) 1.13(0.96)
PAM30 1.85(0.65) 1.29 (0.52)
BLOSUM90 1.67 (0.57) 1.36(0.55)
DRB1*0201 PAM120 1.67(0.57) 1.36 (0.55)
BLOSUM62 1.67 (0.57) 1.36 (0.55)
Negative 0.30(0.42) -0.03 (0.43)
SLA-1*0401
1.0
0.8
0.6
0.4+ :
0.2+
0.0 T
SLA-2*0401
0.6+
0.4
0.2 -
0.0-
SLA-3*0401
0.6+
0.4+
0.2+
0.0-
SLA-DRB1*0201
1.0+
0.8 -
0.6 -
0.4+
0.2+
0.0 T
-2 0 2 4

Binding likelihood (Z-score)

Z

Random
(PAM30-Ssc)

Binders

(Negative)

Non-binders
(PAM30-Ssc)

Binders
(PAM30-Ssc)

not available

were the same regardless of the approach used to define
pocket residues and the pocket similarity scoring
method applied; therefore, prediction results were iden-
tical (e.g. Fig. 4 left, SLA-2*0401). For SLA-1*0401 and
2*0401, two and four scoring methods respectively, gen-
erated Ssc matrices capable of separating binders from
non-binders (highlighted in gray in Fig. 4 left). For these
matrices, mean Z-scores of binders were above the
threshold to be considered a potential binder (1.64) and
non-binder Z-scores were below. Furthermore, the dif-
ference between the sets of peptides was statistically sig-
nificant (p <0.001) using a Wilcoxon-Mann—Whitney
test. None of the class I Hc matrices was able to dis-
tinguish with statistical significance binders from non-
binders. Likewise, for all SLA-3*0401 matrices, mean
Z-scores of the binders were either not above the
1.64 threshold or the non-binders had higher mean
Z-scores. For class II allele SLA-DRB1*0201, binders
scored using Hc matrices were above the threshold
and were statistically distinct from mean Z-scores of
the non-binders (p <0.01). Negative control-matrices
for all SLA alleles (using HLA alleles with the lowest
overall pocket identity) did not separate binders from
random peptides (means range from -0.57 to 1.13),
showing that the selection of the best human match
based on similarity is critical. In sum, these results
show that some composite class I Ssc matrices and
class II Hc were able to separate binders from ran-
dom peptides and non-binders.

To evaluate the predictive performance of the
matrices, we built ROC curves and then calculated
the AUC. For the AUC, a value of 0.5 corresponds to
a random prediction and a value of 1 to a perfect
prediction. Figure 5 shows a comparison of the AUCs
of Ssc and Hc matrices, PickPocket and NetMHCpan.
For class I, matrices based on Ssc had higher AUCs
than Hc-based matrices. Class I and II matrices



Gutiérrez et al. BVIC Bioinformatics (2015) 16:290

Page 8 of 11

\

SLA-1*0401 SLA-2*0401 SLA-3*0401 SLA-DRB1*0201
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Fig. 5 Matrix performance comparison. AUCs of the matrices built for SLA class | and Il alleles are shown. The highest AUC for each method is
shown above the bars. For SLA-3*0401, AUC of SsCyoegs, @ PAM30-Ssc matrix with a pocket B profile different than the best human match, is
shown in a dashed rectangle to illustrate the impact of pocket B. If one or more matrices for the same approach (Ssc or Hc) have equal AUC, it is
indicated with *

constructed using PAM30 to score pocket similarity
had higher AUCs compared to matrices constructed
using PAM120, BLOSUMG62 and PAMI120, with one
exception (Hc SLA-1*0401 built using BLOSUMG62).
Compared to PickPocket and NetMHCpan 2.4 and
2.8, PigMatrix’s AUC was equivalent or better for
SLA-1*0401 and 2*0401; however, due to the nature
of the tests, we could not assess statistical signifi-
cance. It is worth noting that, in contrast with NetMHC-
pan 2.8, SLA peptide data did not contribute to training
PigMatrix..

The SLA-3*0401 PAM30-Ssc matrix had the lowest
AUC (0.60). This was not unexpected as matrices for
this allele were unable to separate binders from non-
binders as described above (Fig. 4). For these reasons,
we examined the binding preferences of the best human
matches for the PAM30-Ssc matrix and compared them
to the amino acid frequencies in the sets of binders and
non-binders. The most evident differences were observed
in pocket B. The best human match for pocket B was
HLA-A*0301 (simpap3o 0.49). Of all binders reported for
SLA-3*0401, the most common residue in position two
(Pocket B) was arginine, found in 37 % of binders,
followed by alanine, found in 19 % of binders. These fre-
quencies were more similar to the binding preferences in
HLA-B*2705 (simpanso 0.17) pocket profile, in contrast to
A*0301, which had negative coefficients for arginine and ala-
nine. Based on this observation, we modified pocket B of
PAM30-Ssc matrix from A*0301 to B*2705 (Sscyioqp). This
matrix had a higher AUC (0.81) than the original matrix
(Fig. 5). This result showed that predictions could poten-
tially be improved by selecting best human matches based
on similarity in terms of binding preferences if binding in-
formation is available. However, it is important to note that
this improvement in the AUC was specific to the set of pep-
tides available to date, and further prospective studies are
needed to validate the preference of this particular pocket.

Overall, these results demonstrate that matrices built
using contact residues from SLA structures and using
the PAM30 substitution matrix to identify the best hu-
man match for each pocket, had the best predictive
power of the approaches that were tested. Although the
matrices showed predictive power, the limited number
of known binders makes the AUC values less robust. For
this reason, an analysis of a larger dataset of SLA-
specific binders and non-binder peptides will be required
to revalidate the predictive power of the matrices.

Discussion and conclusions

Immunoinformatics tools have accelerated the identifica-
tion of epitopes and design of human vaccines. However,
comparable tools have not been applied extensively to
pigs. During the last two decades, swine T cell epitope
discovery has been based on experimental studies of nu-
merous overlapping peptides [37-39, 48-54]. While
these studies are essential for validating T cell epitope
prediction tools, they can be expensive and time con-
suming. To reduce experimental effort and expedite the
process, algorithms developed for human T cell epitope
prediction have also been used to identify porcine epi-
topes [55—57]. However, the substitution of HLA predic-
tions for SLA predictions may not reflect the fine
specificity of SLA binding, which limits the efficacy of
this oversimplified approach. To overcome this, we have
developed PigMatrix, a simple yet effective method that
leverages available data (SLA-binding peptides, SLA
structures and HLA binding data) and pocket profiles
already constructed for HLA-based epitope prediction in
EpiMatrix to predict potential T cell epitopes for SLA
class I and II alleles. Using the pocket profile method and
the concept that pockets that have similar amino acids will
share similar binding preferences, we built and validated
matrices that were able to separate SLA-restricted pep-
tides from random peptides and non-binders.
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Human pan-specific tools based on the pocket profile
method have been described for prediction of class I
(PickPocket) and class II T cell epitopes (TEPITOPEpan)
[9, 18]. These methods defined the amino acids in the
pockets from HLA crystal structures. Similarly, we defined
SLA-specific contacts (Ssc) from two crystal structures
available for SLA-1*0401. Additionally, we extrapolated
the pocket residues from crystal structures of HLA class I
and II crystal structures (Hc). Both approaches assume for
a given pocket that all contact residues are conserved
across all class-specific MHC molecules. However, be-
cause there are differences in the pocket residues between
MHC alleles and even between the same allele structures
depending on the ligand [2], this simplification is a limita-
tion of the peptide:MHC modeling approach. Even so, it is
a reasonable approximation when structural information
is limited. For class I, differences in the pocket residues
using the Hc and the Ssc approaches were noticeable and
impacted the subsequent selection of the best human
match to build the prediction matrices. Matrices based on
pockets defined from SLA structure-specific contacts per-
formed better than HLA-derived pockets. While a defin-
ition of the contact residues based on several HLA
structures account for the intra- and inter-allelic variabil-
ity of binding pockets, it also dilutes the importance of
key residues in the peptide:MHC interaction. We specu-
late that more allele-specific pockets could potentially im-
prove the selection of the best human match and
therefore the predictions. Selection might be also im-
proved by weighting the similarity score by conservation
of key contact residues.

PickPocket and TEPITOPEpan use a method based on
BLOSUMBS62 to calculate a weighted score of specificity
to define the most similar HLA-derived pocket. For Pig-
Matrix, in addition to BLOSUM®62, we used PAM120,
which is considered equivalent to BLOSUMS62 for com-
parison of distantly related proteins [46], to calculate
pocket similarity. We also included PAM30 and BLO-
SUM90, which are both designed to score similarity be-
tween closely related protein sequences. The SLA
matrices with highest AUC were based on PAM30 using
both Hc and Ssc, with only one exception. If we consider
the pocket contact residues as short pseudo-sequences,
the better performance of PAM30-based matrices might
be explained because low-numbered PAM matrices are
more efficient for searches involving short sequences.
BLOSUMBS62 on the other hand, performs better to iden-
tify distant homologs using longer sequences. BLO-
SUM90, like PAM30, is used for closely related
sequences; however, it is not recommended for short
peptides [46] and unsurprisingly did not perform as well
as PAM30 in these studies.

Predictive methods for porcine T-cell epitopes are
limited, and none existed previously for SLA class II.
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PigMatrix is the first tool to make binding predictions
for an SLA-DR allele. Class II predictions were limited
to the Hc method because no SLA-DR molecule has
been crystallized. Since SLA-DR-specific binding data
are scarce, predictions require further prospective valid-
ation. While it is not possible at this time to benchmark
the SLA-DR matrix against other predictors, a compari-
son can be made for the SLA class I matrices developed
here. NetMHCpan has been used for SLA binding pre-
dictions. PickPocket, which is also based on the pocket
profile method, has been described primarily for HLA
class I [18], but predictions are also available for SLA al-
leles. In this study, for an existing set of published pep-
tides, PigMatrix performed equally or better than two
versions of NetMHCpan and PickPocket for SLA-1*0401
and 2*0401. While PigMatrix and PickPocket derive SLA
binding preferences from HLA binding data, NetMHC-
pan artificial neural networks are trained using informa-
tion derived from available binding data as well as
peptide sequences and MHC sequence information [6].
It was previously demonstrated that in a scenario where
the quantitative binding data were limited for human
and non-human MHC alleles, PickPocket performed
better than NetMHCpan [18]. This is also evident when
NetMHCpan 2.4 results are compared to NetMHCpan
2.8 predictions. NetMHCpan 2.4 was trained with a lim-
ited set of SLA binders and its predictions were equiva-
lent to random selection (average AUC 0.47). Version
2.8, on the other hand, was trained with more data and
its performance improved for the alleles we evaluated
(average AUC 0.76). Conversely, PigMatrix was not
trained with SLA-specific binding data and performed
similarly or better than NetMHCpan 2.8 predictions for
two of three class I alleles we tested. Moreover, because
the number of published peptides is limited, we were
not able to compile a test dataset of peptides known to
be different from the training set used by NetMHCpan
2.8. Hence, it is possible that NetMHCpan 2.8 perform-
ance was overestimated.

For SLA-3*0401, PickPocket and NetMHCpan 2.8
outperformed PigMatrix. Upon closer analysis, these
results provided an example of how PigMatrix could
be improved. We were able to build a better perform-
ing model by modifying pocket B in the matrix con-
structed using PAM30-Ssc. This might be explained
by the role of the amino acid in position two of the
peptide as a binding anchor and its specific inter-
action with this pocket. It is also worth noting that
the HLA pocket library we used was limited to 12
class I and eight class II supertypes alleles available in
EpiMatrix. It is possible that pocket sequences from
other HLA alleles and their profiles are more similar
to SLA pockets. Therefore, if the number of HLA al-
leles in the library is increased, we might find better
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human matches for SLA pockets, which could poten-
tially improve matrix performance.

So as to illustrate the PigMatrix approach, we built ini-
tially matrices for only three SLA class I alleles and one
class II SLA allele for which quantitative binding data
were available. These alleles are commonly expressed in
different porcine breeds and cell lines for in vitro culture
[32-36]. However, like HLA, SLA diversity is consider-
able. These results demonstrate the potential of the ap-
proach to be extended to SLA alleles with limited or
nonexistent epitope binding data. Thus, future versions
of PigMatrix will include a more comprehensive and
representative set of matrices for SLA alleles expressed
in outbred porcine populations. Moreover, prospective
in vitro and in vivo evaluation of PigMatrix predictions
will help to refine the matrices.

We developed the PigMatrix tool with the intent to inte-
grate it into the iVAX toolkit, which is a comprehensive
set of tools for computational vaccine design that includes
EpiMatrix, Conservatrix, ClustiMer, EpiAssembler, Janus-
Matrix, and VaccineCAD [58]. When the PigMatrices are
used to substitute for HLA matrices (EpiMatrix) in iVAX,
all of the existing suite of iVAX vaccine design tools can
be used with the SLA epitope predictions, which makes it
possible to envision accelerated development of novel T
cell epitope-based vaccines or whole subunit vaccines op-
timized for epitope content that protect against infectious
disease in swine.
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