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Abstract

Background: Local trend (i.e. shape) analysis of time series data reveals co-changing patterns in dynamics of
biological systems. However, slow permutation procedures to evaluate the statistical significance of local trend scores
have limited its applications to high-throughput time series data analysis, e.g., data from the next generation
sequencing technology based studies.

Results: By extending the theories for the tail probability of the range of sum of Markovian random variables, we
propose formulae for approximating the statistical significance of local trend scores. Using simulations and real data,
we show that the approximate p-value is close to that obtained using a large number of permutations (starting at
time points > 20 with no delay and > 30 with delay of at most three time steps) in that the non-zero decimals of the
p-values obtained by the approximation and the permutations are mostly the same when the approximate p-value is
less than 0.05. In addition, the approximate p-value is slightly larger than that based on permutations making
hypothesis testing based on the approximate p-value conservative. The approximation enables efficient calculation of
p-values for pairwise local trend analysis, making large scale all-versus-all comparisons possible. We also propose a
hybrid approach by integrating the approximation and permutations to obtain accurate p-values for significantly
associated pairs. We further demonstrate its use with the analysis of the Polymouth Marine Laboratory (PML) microbial
community time series from high-throughput sequencing data and found interesting organism co-occurrence
dynamic patterns.

Availability: The software tool is integrated into the eLSA software package that now provides accelerated local
trend and similarity analysis pipelines for time series data. The package is freely available from the eLSA website:
http://bitbucket.org/charade/elsa.

Background
Time series data are important resources to explore the
dynamics of biological systems, where the factors of inter-
est could be genes in gene regulation studies, or organ-
isms and/or environmental factors in ecological studies.
Identifying reliable association patterns between these
factors could further our understanding of the function-
ality and interaction of biological systems [1, 2]. When
the actual associations are active only within certain time
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subintervals or the responses lag the stimulants [3, 4],
ordinary correlation based analysis methods (i.e. Pear-
son’s and Spearman’s correlation) considering the expres-
sion/abundance profiles across the entire time span may
fail to recover these local and potentially time-delayed
association patterns. Fortunately, a wealth of computa-
tional methods had been developed to overcome such dif-
ficulties, such as local similarity analysis [3, 5, 6] and local
trend (shape) analysis [4, 7]. Those methods complement
ordinary analytical approaches and have important appli-
cations in gene profile clustering, regulatory network con-
struction, co-occurrence pattern identification and many
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other areas [3–9]. For instance, Qian et al. [3] proposed a
local similarity based measure to identify local and poten-
tial time-delayed associations between gene expression
profiles. This local similarity analysis technique is further
extended and successfully applied to microbial ecology
time series studies [5, 6, 10, 11].
In local similarity analysis, local indicates the two fac-

tors are only associated within some time subinterval, and
time-delayed indicates there is a time shift in the asso-
ciated profiles. The strength of the local association is
measured by the local similarity (LS) score. For time series
data of two factors with normalized levels X1,X2, · · · ,Xn
and Y1,Y2, · · · ,Yn, the LS score is defined as the maxi-
mized absolute value of summation S = ∑l−1

k=0 Xi+kYj+k ,
where I =[ i, i+l−1] and J =[ j, j+l−1] correspond to the
intervals maximizing the summation – to be determined
by the Smith-Waterman dynamic programming algorithm
[12]. By definition, LS score is proportional to the Pear-
son’s correlation coefficients (PCC) of the aligned parts of
the two series. Its statistical significance can be evaluated
by a large number of permutations [3, 6] or using the
approximation recently proposed by Xia et al. [13].
While local similarity analysis bases its similarity mea-

sure on the similarity of the profile or abundance lev-
els of the factors, others suggested that the similarity
of increasing, stabilizing or decreasing trends along the
time line can also be strong indicators of associations
and developedmethods based on this alternativemeasure.
Ji and Tan [7] explored this idea by transforming the
changing trend of gene expression profiles of n consecu-
tive time points into a n− 1 time point series correspond-
ing to the status of {decrease, no change, increase} in
expression levels. All possible local associations of a spe-
cific length of time span were analyzed by an exhaustive
search algorithm to find clusters of genes with significant
locally similar expression profiles. Later, He and Zeng [14]
renovated the analysis using a dynamic programming
algorithm and employed a permutation approach to eval-
uate the statistical significance for the local trend scores.
The techniques used by He and Zeng [14] were similar to
those used in local similarity analysis except that the orig-
inal time series data were first transformed to changing
trends series.Wewill thus refer to the local similarity anal-
ysis techniques performed on the transformed changing
trends series as the local trend (a.k.a. shape) analysis (LTA)
and its corresponding similaritymeasure as the local trend
(LT) score.
Local trend analysis has since been extended and

applied to a wide range of biological applications, such as
gene-gene association networks [15–17], gene-metabolite
networks [18], and transcription factor networks [19–21].
However, one of the major limitations common to local
trend analysis is the time consuming permutation proce-
dure used to evaluate the statistical significance (p-value)

of the LT score. While in practice false discovery rate
(FDR or q-value) [22] is used tomitigate themultiple com-
parison problem, still, fast and efficient approximation
for the statistical significance of the LT score is urgently
needed to estimate the p-value. In addition, Madeira
et al. [8] first transformed gene expression data into trends
for each gene and developed linear time algorithms to
find maximal biclusters. Recently, Goncalves andMadeira
[9] extended the biclustering algorithms to allow for time
delays [8]. These developments are highly significant by
considering groups of genes simultaneously instead of
gene pairs. However, the statistical issues related to max-
imal clusters of gene groups are beyond the scope of this
study.
Recently, progress has been made to develop efficient

statistical significance approximations for local similarity
analysis [13, 23]. We notice that by extending the method
proposed in Xia et al. [13], it is also possible to obtain
p-values of local trend scores more efficiently. In this
paper we will describe an extension of Xia et al.’s
[13] method to local trend analysis, including the
mathematical modelling, algorithm implementation and
computational validation with simulations and real data
applications. In the Methods section, we first formally
introduce the concept of local trend analysis and bring
in useful results from related works. We then describe
the method to model the transformed trend series using
the Markov chain theory in both two and three letter
alphabet cases. We also propose an approximation for-
mula and numerical computation methods for the statis-
tical significance of LT score based on these models. In
the Results and Discussion section, we validate and show
the efficiency of our new approach using simulated and
real datasets and analyze a real microbial ecological time
series dataset from the next generation sequencing (NGS)
of marine samples collected near the Polymouth Marine
Laboratory (PML) by Gilbert et al. [24].
The major difference between this paper and Xia et al.

[13] is the study of statistical significance of local trend
score here while Xia et al. [13] studied the statistical signif-
icance of local similarity scores based on the original time
series data. After transformation of the original time series
data to trends, the trend variables are highly dependent
even if the original data are independent, making the eval-
uation of statistical significance of LT score challenging.
New approximation results on the tail probabilities of the
sums of Markov random variables need to be employed to
derive an approximate formula to calculate the statistical
significance of LT scores.

Methods
The local trend analysis
The first step in local trend analysis is to discretize the
factor profile into a changing trend alphabet � – a set of
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symbols of interest, which represent distinctive changing
trend states [8]. Typically either two letter alphabet
� = {D,U} or simply � = {−1, 1} for trend-down
and trend-up states [25, 26], or three letter alphabet
� = {D,N ,U} or simply � = {−1, 0, 1} for trend-down,
no-change and trend-up states [7, 27] are used. Discretiza-
tion into larger size alphabet is possible but seldom used
in practice. For given time seriesX1,X2, · · · ,Xn, We trans-
form the n-dimensional vector X to a n − 1 dimensional
trend vector dXi , i = 1, 2, · · · , n− 1, by the following rules.
When Xi �= 0,

dXi =

⎧⎪⎨
⎪⎩

1 if Xi+1−Xi
|Xi| ≥ t

0 if − t <
Xi+1−Xi

|Xi| < t
−1 if Xi+1−Xi

|Xi| ≤ −t
, (1)

where t ≥ 0 is a threshold value for declaring changing
trends. When Xi = 0, dXi is defined as:

dXi =
⎧⎨
⎩

1 if Xi = 0 and Xi+1 > 0
0 if Xi = 0 and Xi+1 = 0

−1 if Xi = 0 and Xi+1 < 0
. (2)

The trend series generating process and the dependency
between Xi’s and dXi ’s are depicted in Fig. 1. These rules
were formalized in Ji and Tan [7] and Madeira et al. [8].
Based on this data transformation, the subsequent algo-

rithms and statistics of local trend analysis closely fol-
low that for local similarity analysis [3, 5, 6]. That is,
for a pair of transformed trend series dX1 , d

X
2 , · · · , dXn−1

and dY1 , dY2 , · · · , dYn−1, the Smith-Waterman dynamic pro-
gramming algorithm [6, 12] is used to find the interval
pair I =[ i, i + l − 1] and J =[ j, j + l − 1] of the same
length l with |i − j| ≤ D such that the absolute value
of S = ∑l−1

k=0 d
X
i+kd

Y
j+k is maximized, which we refer to

as local trend (LT) score with maximum time delay D,
whereD is a pre-defined parameter. Statistical significance
for LT score corresponds to the probability of observ-
ing such a score or larger under the null hypothesis that

the two factors X and Y are not associated. It was used
to be approximated by permuting one of the time series
data many times and calculating the fraction of times
that the LT score for the permuted data is higher than
that for the original data [3, 14]. With the permutation
approach, the observations for the samples at the differ-
ent time points are assumed independent under the null
model.

Approximate statistical significance for local trend analysis
The permutation procedures described above to approx-
imate the statistical significance for local trend analy-
sis have several drawbacks. First, the calculated p-values
have substantial inherent variability associated with the
randomness in permutation unless the number of per-
mutations is very large. Second, the procedure is com-
putationally expensive– the computational time scales
linearly with the inverse of the required p-value precision,
which is prohibitive for all-versus-all pairwise analysis of
high-throughput datasets.
In fact, the asymptotic theories for the tail distribu-

tion of the range of partial sum of zero-mean indepen-
dent, identically distributed (i.i.d.) and first order Markov
chain exist [28–30] and can be applied here to calcu-
late p-values under the null model. Formulae for fast and
efficient approximation of the statistical significance for
aligning two i.i.d. zero-mean sequences had been obtained
and successfully applied to local similarity analysis pre-
viously [13]. In contrast, in local trend analysis, even if
the original series Xi’s are considered independent, the
transformed trend series dXi , i = 1, 2, · · · , n − 1 are not
independent because, for any consecutive pair dXi and
dXi+1, they both depend on Xi (as shown in Fig. 1). They
are not even a Markov chain of any order. In order to
use the theory in [28–30] to approximate the statistical
significance of LT scores, we make several simplifying
assumptions.
The first assumption is that the time series data Xi, i =

1, 2, · · · , n and Yi, i = 1, 2, · · · , n are exchangeable in that
any order of the sample is equally likely. Time series data
generally do not follow the exchangeability assumption

Fig. 1 Generation of the trend series. The original series X is changed into the trend series dX using the discretizing rules given in equations 1 and 2.
Note that the value of dXi depends solely on the values of Xi+1 and Xi but not any other values of X
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and usually follow some trends. In particular, the value
at a particular time may depend on the value at a previ-
ous time point. One way to overcome this complexity is
to regress the value at time t + 1 with respect to the value
at the previous time point t and use the resulting residue
for the follow up analysis. In the following of the paper, we
assume that such transformations have been carried out
and the exchangeability assumption as in most studies in
the literature holds.
Secondly, we naively assume the first order Markov

chain model for dXi , i = 1, 2, · · · . As stated above,
this assumption is obviously incorrect. We make this
assumption for the convenience of using the theory in
[28–30].We also assume that the product of a pair of inde-
pendent trend series dXi d

Y
i follows a first order Markov

chain, i.e. ,

P
((
dXdY

)
i |

(
dXdY

)
i−1 , . . . ,

(
dXdY

)
1

)
(3)

≈ P
((
dXdY

)
i |

(
dXdY

)
i−1

)
.

Under the assumption that X and Y have supports in
an interval, dXi dYi is irreducible and aperiodic so that the
theories for Markov random variables in [28–30] can be
adapted.
Thirdly, we make the simplifying assumption that the

LT scores for different time delays are independent when
we do local trend analysis allowing time delays. Since the
LT scores for different delays are all calculated based on
the same values of X′s and Y ′s, this independent assump-
tion is violated. We make this assumption purely for
computational convenience.
We note the lack of mathematical rigor for approximat-

ing the p-value in this study. Therefore, the approaches
presented in this paper can only be regarded as heuris-
tic and should not be regarded as rigorous mathematical
approximations. We show the usefulness of our approxi-
mation by comparing the approximate p-value with that
obtained from a large number of permutations. They are
close in the sense that the first no-zero decimals of the
p-values from the approximation and the permutations
are mostly the same. The simulations also show that the
approximate p-value is slightly larger than that obtained
through permutations. Due to the conservativeness of
the approximate p-value, hypothesis testing for associ-
ated pairs of factors based on the approximate p-value
may have lower power compared to that based on more
accurate p-values. We recommend a hybrid approach
to combine approximation with permutations to obtain
associated pairs of factors without lowering the power.
The conservative nature of the approximate p-value allows
us to first calculate the approximate p-values for all pairs

of factors and then use permutations to obtain the more
accurate p-values only for factor pairs with approximate
p-value less than a loose threshold. This practice sig-
nificantly saves computational time as most factor pairs
have relatively large approximate p-values. Future studies
on more accurate approximation of statistical significance
for LT scores based on rigorous mathematical theory
are needed.
Using the theory of Bachelier-Wiener processes, Feller

[28] studied the approximate distribution of the range Rn
of the partial sum of n i.i.d. random variables {Zi}ni=1 with
mean 0 and variance σ . Daudin et al. [29] studied the
distribution of the maximum partial sum of either i.i.d.
random variables or an irreducible aperiodic first order
Markov chain taken values on a finite subset of the real
line. Let ϕ be the stationary distribution of the Markov
chain Zi, i = 1, 2, · · · , Eϕ(Z1) = 0 and

σ 2 = Eϕ

(
Z2
1
) + 2

∞∑
k=1

Eϕ

(
Z1Zk+1

)
. (4)

Based on these results, it can be shown

L(x) = lim
n→∞P

{
Rn√
nσ

≥ x
}

=1 − 8
∞∑
k=1

(
1
x2

+ 1
(2k − 1)2π2

)
exp

(
− (2k − 1)2π2

2x2

)
,

(5)

where Rn is the range of partial sums of Z1,Z2, · · · ,Zn.
We will use this equation to approximate the statistical
significance of local trend score. For local trend analysis
with no time delays, we let Zi = dXi d

Y
i and approximate

Zi by a first order Markov chain. Then the statistical sig-
nificance of LT score without time delays (D = 0) can
be approximated using equation (5). With time delay of at
most D, using a similar argument as in [13] and assuming
that the LT scores for different delays are independent, we
can approximate the statistical significance (p-value) of a
LT score with delay at most D by

LD(x) = P
(
LS(D)/(σ

√
n) ≥ x

)
≈ 1 − 82D+1

(
∞∑
k=1

(
1
x2 + 1

(2k−1)2π2

)

exp
(
− (2k−1)2π2

2x2

) )2D+1

.

(6)

The Markov chain model: two letter alphabet case
We first propose a Markov chain model for local trend
analysis with the relatively simple two letter alpha-
bet case (i.e. t = 0), for which an exact solution for
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σ is available. Consider X1,X2, · · · ,Xn as continuous
random variables such that the probability of tak-
ing a fixed value to be 0. By order statistics, we have
P

[
(dXi , dXi+1) = (1, 1)

] = P[ (dXi , dXi+1) = (−1,−1)]=
1/6 and P

[(
dXi , dXi+1

) = (1,−1)
] = P

[(
dXi , dXi+1

)
= (−1, 1)] = 1/3 and P(dXi = 1) = P(dXi = −1) = 1/2 if
the Xi’s are exchangeable. Assuming that dXi ’s form a first
orderMarkov chain, we can solve for the transition matrix

T =
1 -1

1 1/3 2/3
-1 2/3 1/3

. (7)

Then it can be shown by spectral expansion [31] that

Tk = 1
2

(
1 + (−1)k/3k 1 − (−1)k/3k
1 − (−1)k/3k 1 + (−1)k/3k

)
.

For k ≥ 1, we have P
(
dX1 d

X
k+1 = 1

)
=(

1 + (−1)k/3k
)
/2 and P

(
dX1 d

X
k+1 = −1

)
=(

1 − (−1)k/3k
)
/2. Thus, E

(
dX1 d

X
k+1

)
= (−1)k /3k .

In local trend analysis, we compare dX1 , d
X
2 , · · · , dXn−1

with dY1 , d
Y
2 , · · · , dYn−1. Therefore, we have σ 2

dXdY =
E

((
dX1

)2)E
((
dY1

)2)+2
∑∞

k=1 E
(
dX1 d

X
k+1

)
E

(
dY1 d

Y
k+1

)
=

1 + 2
∑∞

k=1 1/32k = 1 + 1/4 = 1.25. When D = 0, LT
score for local trend analysis is the range of partial sum∑

i dXi d
Y
i . Following the result presented in equation (4),

we obtain the approximate formula for local trend score
p-value in the two letter alphabet case (i.e. t = 0):

P(LT(D) ≥ sD) = P
(

LT(D)

σdXdY
√
n

≥ sD
σdXdY

√
n

)
(8)

= LD

(
sD√

1.25 × n

)
,

where the function LD is defined in equation (6) and sD is
the LT score with delay at most D.

The Markov chain model: the three letter alphabet case
We next show the Markov chain modeling for local trend
analysis with the three letter alphabet case (i.e. t > 0) –
allowing a more flexible description of state changes. In
this case, the transition matrix T(t) is a function of the

threshold value t. However, a closed form formula for T(t)
is not readily available for general zero-mean i.i.d. random
variable Xi’s. Instead, we have to use Monte Carlo strat-
egy to numerically approximate T(t) for a given threshold
value t.
To do the Monte Carlo simulation, we first generate a

series of i.i.d. standard normal random values X1, . . . ,XN
for N large and use rules in equations (1) and (2) to trans-
form the series into trend series dX1 , . . . , d

X
N−1.We approx-

imate the transition probability from a to b by T(t)a,b =
Ca,b/Ca, a, b = −1, 0, 1, where Ca,b is the number of pairs
such that

(
dXi , dXi+1

) = (a, b), i = 1, 2, · · · ,N −1 and Ca is
the number of pairs such that dXi = a. In this study, we let
N = 10000. Because all the rows of T(t) sum to 1, using
the symmetry condition, we have T(t)1,1 = T(t)−1,−1 =
b, T(t)1,−1 = T(t)−1,1 = c, T(t)0,1 = T(t)0,−1 = d,
T(t)1,0 = T(t)−1,0 = 1 − b − c and T(t)0,0 = 1 − 2d and
therefore T(t) is of the following form:

T =
1 0 -1

1 b 1-b-c c
0 d 1-2d d
-1 c 1-b-c b

. (9)

Any row of the infinity power of T(t), T∞(t), converge
to the stationary distribution ϕ. So we only need to esti-
mate b, c, d to obtain T(t) and ϕ, reducing the number of
parameters to be estimated to three. Though numerical,
this Monte Carlo approach is very fast and accurate given
today’s computational power.
With T(t) known, its eigenvalues {λi(t)}3i=1, right col-

umn eigenvectors {ri(t)}3i=1 and left column eigenvectors
{li(t)}3i=1 are readily solvable. To be concise, we simply
omit the dependence on t in notation and denote λ(t), r(t),
l(t) and T(t) in shorthand by λ, r, l and T. The property
of transition matrix of aperiodic and irreducible Markov
chain guarantees λ1 = 1, r1 = 1 (a three dimensional vec-
tor of all 1s) and ϕ = l1. Using spectral expansion, we can
expand the k-th power of T, Tk , as:

Tk =
3∑

i=1
λki ril

′
i = 1l′1 +

3∑
i=2

λki ril
′
i,

where the individual entry Tk
u,v = ∑3

i=1 λki ri,uli,v. Actually
carrying out the expansion, we obtain:

Tk =

⎛
⎜⎜⎝

1
2 (b − c)k + (−1+b+c)(b+c−2d)k

2(−1+b+c−2d)
− d

−1+b+c−2d
−1+b+c

−1+b+c−2d + (1−b−c)(b+c−2d)k

−1+b+c−2d − 1
2 (b − c)k + (−1+b+c)(b+c−2d)k

2(−1+b+c−2d)
− d

−1+b+c−2d
− d

−1+b+c−2d + (b+c−2d)kd
−1+b+c−2d

−1+b+c
−1+b+c−2d + 2(1−b−c)(b+c−2d)kd

(−1+b+c)(−1+b+c−2d)
− d

−1+b+c−2d + (b+c−2d)kd
−1+b+c−2d

− 1
2 (b − c)k + (−1+b+c)(b+c−2d)k

2(−1+b+c−2d)
− d

−1+b+c−2d
−1+b+c

−1+b+c−2d + (1−b−c)(b+c−2d)k

−1+b+c−2d
1
2 (b − c)k + (−1+b+c)(b+c−2d)k

2(−1+b+c−2d)
− d

−1+b+c−2d

⎞
⎟⎟⎠ (10)



Xia et al. BMC Bioinformatics  (2015) 16:301 Page 6 of 14

and let k → ∞, we have the stationary distribution:

ϕ =
(

d
1−b−c+2d ,

1−b−c
1−b−c+2d ,

d
1−b−c+2d

)
. (11)

Subsequently, we have

P
(
dX1 d

X
k+1 = 1

) = P
(
dXk+1 = 1|dX1 = 1

)
P

(
dX1 = 1

)
+P

(
dXk+1 = −1|dX1 = −1

)
P

(
dX1 = −1

)
= ϕ1Tk

1,1 + ϕ−1Tk−1,−1.

Similarly,

P(dX1 d
X
k+1 = −1) = ϕ1Tk

1,−1 + ϕ−1Tk−1,1.

The symmetry of states 1 and -1 ensures ϕ1 = ϕ−1 in the
stationary distribution. Thus, using equation (4) we can
compute σdXdY (t) as following:

σ 2
dXdY (t) = E

((
dX1

)2)E
((
dY1

)2) + 2
∞∑
k=1

E
(
dX1 d

X
k+1

)
E

(
dY1 d

Y
k+1

)
= (ϕ1 + ϕ3)

2 + 2
∞∑
k=1

(
P

(
dX1 d

X
k+1 = 1

)
−P

(
dX1 d

X
k+1 = −1

))2
= (ϕ1 + ϕ3)

2 + 2
∞∑
k=1

(
ϕ1Tk

1,1 + ϕ3Tk
3,3

−ϕ1Tk
1,3 − ϕ3Tk

3,1

)2
= 4ϕ2

1 + 2ϕ2
1

∞∑
k=1

(
Tk
1,1 − Tk

1,3 + Tk
3,3 − Tk

3,1

)2

= 4ϕ2
1

(
1 + 2

∞∑
k=1

(b − c)2k
)

= 4
(

d
1 − b − c + 2d

)2(
1+ 2(b − c)2

1 − (b − c)2

)
. (12)

Since equation (12) can be numerically calculated based
on the Monte Carlo estimates of b, c, d, we can calcu-
late σdXdY (t) and then plug it into LD as defined in
equation (6) to obtain:

P(LT(D) ≥ sD) = P
(

LT(D)

σdXdY (t)
√
n

≥ sD
σdXdY (t)

√
n

)

= LD

(
sD

σdXdY (t)
√
n

)
, (13)

which is the final formula for approximating the p-values
of LT scores in the three letter alphabet case.
We compare the approximate p-values calculated using

equation (6) and the p-value using simulations. We then
apply our method to analyze three real datasets. The first
one is a microarray gene expression dataset of yeast cell
division cycles (referred to as ‘CDC’), synchronized by the
cdc-15 gene from Spellman et al. [32]. The second one is

a human microbiota dataset from one male (M3) and one
female (F4) sampled daily at three body sites (feces, mouth
and palms) for 15 months (M3) and for 6 months (F4)
from the motion picture of human microbiome paper by
Caporaso et al. (referred to as ‘MPH’) [33]. The third one
is a microbial ecological time series data from recent NGS
of marine microbial community samples collected from
sites close to the Polymouth Marine Laboratory (PML)
[24] (referred to as ‘PML’). We apply local trend analysis
(with t = 0 and t = 0.5) to analyze the first two datasets
and compared the approximate and permutation p-values.
We are the first to analyze the third dataset using local
trend analysis and found interesting results.

Results and Discussion
Simulation Studies
Monte Carlo estimates of the transition probabilities
In deriving the approximate statistical significance, i.e.
p-values, for local trend analysis, we make simplifying
assumptions to use Markov chain modeling on dXi and
dYi . However, the validity and accuracy of the approxima-
tions have to be evaluated. Thus, we first study whether
the transition probabilities estimated based on simulated
time series data are close to those approximated using the
Markov chain theory. We demonstrate this when Xi’s and
Y ′
i s are i.i.d. standard normal random variables, because in

most common applications, raw biological experimental
series data are normalized before pairwise comparisons.
We use 10,000 Monte Carlo randomly generated Xi and
Yi’s, transform them with the thresholds t = 0 and t = 0.5
and estimate the parameters b, c, and d in the probabil-
ity transition matrix. Meanwhile the transition matrix of
the Markov chain is still solvable by integration using the
Mathematica software.
In Table 1, for all the thresholds studied, the numeri-

cal integration results are very close to that learned from
the randomly generated series. For example, when t = 0,
the estimated parameters are (b = 0.3342, c = 0.6658)
while the Markov chain theory yields (b = 0.3333, c =
0.6667). When t = 0.5, the estimates are (b = 0.2313, c =
0.6083, d = 0.4034) and the Markov chain theory numer-
ical results are (b = 0.2311, c = 0.6088, d = 0.4043).
With 10,000 simulations, the estimates differ at the third
or fourth decimals and the Monte Carlo calculation is
done within only seconds. With a larger number of sim-
ulations, the precision can be even better. Therefore our
Markov chain modeling approximates the state transition
probabilities and stationary distribution efficiently and
accurately.

Approximating the tail probability of the LT score using
equation (6)
The approximate p-value for the local trend score given in
the Methods section is only applicable when the p-value
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Table 1 The estimated parameters of the probability transition
matrix using Monte Carlo simulations are very close to that based
on numerical integration using Mathematica for all cases studied:
t = {0, 0.5, 1, 2}. Parameters b, c, d as introduced in equation (10)
are sufficient parameters to describe such a Markov chain. P. =
parameters, Num. Int. = numerical integration, N.A. = not
applicable

P. Monte Carlo Num. Int.

t=0 b 0.3342 0.3333

c 0.6658 0.6667

d N.A. N.A.

t=0.5 b 0.2313 0.2311

c 0.6083 0.6088

d 0.4034 0.4043

t=1 b 0.1265 0.1268

c 0.4998 0.5000

d 0.3432 0.3429

t=2 b 0.0310 0.0303

c 0.1608 0.1617

d 0.2203 0.2199

is small and the number of time points is large. Therefore,
we first study the range of applicability of our approxima-
tion formulae. For the two alphabet case, we pre-calculate
σdXdY = √

1.25 for t = 0. Table 2 gives the approximate
tail probability (p-value) based on equation (8) (2nd col-
umn) and the simulated probability P(LT(0)/

√
1.25n ≥ x)

(3rd to 9th columns) for different numbers of time points
when D = 0. It can be seen that the approximate tail
probability is close to the simulated probability when the

approximate p-value is less than 0.05 starting from n = 20
time points in the sense the first no-zero decimal of the
approximate p-value is mostly the same as that of the
simulated p-value. In general, the approximate tail prob-
ability is slightly larger than the simulated values when
D = 0 (see Table 2). Similar results were observed for
D = 1, 2, 3 (see Tables 3, 4 and 5). Thus, it will be slightly
conservative in declaring significant associations if we use
the approximate tail distribution to calculate the p-value.
However, for relatively small value of x, the approximate
tail probability can be much larger than the simulated tail
probability. Since we are mostly interested in significant
associations with small p-values, we do not consider this
as a problem. On the other hand, since the approximate
p-value is larger than the true p-value, the test based on
the approximate p-value is conservative and the power of
the test can be lower than the power based on the true
p-value, which can be approximated by simulations.
In many studies, investigators calculate the p-values by

permuting the time series many times. Next, we com-
pare the permutational and approximate p-values by sim-
ulations. For the simulated data in the last paragraph,
we calculate the p-values using both the permutation
approach (Pperm) and the approximate formulae (Ptheo) for
exactly the same pair of time series data. We do 1000
permutations for each pair and the maximum resolution
(precision) of Pperm is 0.001.
Figure 2 shows the comparison between (Pperm) and

(Ptheo). We find at D = 0, starting from n = 20 to
30, points in scatter plots become concentrated on the
diagonal line (where Pperm=Ptheo) and they become more
aligned to the diagonal as n increases. This indicates

Table 2 Approximation for the tail probability of local trend score (LT score) versus the simulated probability P(LT(D)/
√
1.25n ≥ x).

The approximate probability based on equation (8) is given in the 2nd column and the probability that LT(D)/
√
1.25n ≥ x from

simulations is given in the 3rd to the 9th columns. Here, D = 0

The number of time points n

x Approximation 10 20 30 40 60 80 100

2.0 0.1815 0.0483 0.1284 0.0948 0.0974 0.1148 0.1405 0.1304

2.2 0.1111 0.0483 0.0717 0.0595 0.0663 0.0613 0.0853 0.0799

2.4 0.0656 0.0121 0.0419 0.0358 0.0455 0.0428 0.0481 0.0465

2.6 0.0373 0.0042 0.0205 0.0217 0.0174 0.0222 0.0283 0.0223

2.8 0.0204 0.0042 0.0111 0.0071 0.0103 0.0107 0.0157 0.0127

3.0 0.0108 0.0000 0.0048 0.0035 0.0038 0.0077 0.0076 0.0070

3.2 0.0055 0.0000 0.0021 0.0017 0.0014 0.0034 0.0037 0.0036

3.4 0.0027 0.0000 0.0001 0.0008 0.0003 0.0021 0.0013 0.0016

3.6 0.0013 0.0000 0.0001 0.0002 0.0003 0.0007 0.0011 0.0003

3.8 0.0006 0.0000 0.0001 0.0001 0.0001 0.0004 0.0006 0.0002

4.0 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0002

4.2 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
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Table 3 Approximation for the tail probability of local trend score (LT score) versus the simulated probability P(LT(D)/
√
1.25n ≥ x).

The approximate probability based on equation (8) is given in the 2nd column and the probability that LT(D)/
√
1.25n ≥ x from

simulations is given in the 3rd to the 9th columns. Here, D = 1

The number of time points n

x Approximation 10 20 30 40 60 80 100

2.0 0.4516 0.0840 0.2674 0.2184 0.2350 0.2711 0.3295 0.3054

2.2 0.2977 0.0840 0.1576 0.1422 0.1659 0.1483 0.2034 0.2007

2.4 0.1841 0.0285 0.0855 0.0899 0.1118 0.1099 0.1206 0.1236

2.6 0.1077 0.0041 0.0447 0.0527 0.0478 0.0582 0.0663 0.0541

2.8 0.0601 0.0041 0.0192 0.0150 0.0291 0.0271 0.0335 0.0326

3.0 0.0320 0.0000 0.0078 0.0069 0.0092 0.0188 0.0173 0.0189

3.2 0.0164 0.0000 0.0028 0.0037 0.0065 0.0080 0.0081 0.0098

3.4 0.0081 0.0000 0.0004 0.0015 0.0025 0.0035 0.0027 0.0030

3.6 0.0038 0.0000 0.0004 0.0002 0.0017 0.0017 0.0022 0.0015

3.8 0.0017 0.0000 0.0002 0.0000 0.0007 0.0011 0.0007 0.0007

4.0 0.0008 0.0000 0.0000 0.0000 0.0000 0.0002 0.0003 0.0002

4.2 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

4.4 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

an increasing rate of agreement between the approxi-
mate and permutation p-values as a good approximation.
The same is true with D = 1, 2, 3 as the approxima-
tion become significantly closer to the permutation results
when n increases and starting from n = 30 to 40.
However, as the time delay increases, the approximation
becomes increasingly less accurate. In summary, we see

that if we are interested in statistical significance at a
given type I error threshold, the approximation provides
results comparable to that from permutations starting
from n = 30 although the theoretical p-value is slightly
conservative.
The simulation results for t = 0.5 are presented in

Additional file 1.

Table 4 Approximation for the tail probability of local trend score (LT score) versus the simulated probability P(LT(D)/
√
1.25n ≥ x).

The approximate probability based on equation (8) is given in the 2nd column and the probability that LT(D)/
√
1.25n ≥ x from

simulations is given in the 3rd to the 9th columns. Here, D = 2

The number of time points n

x Approximation 10 20 30 40 60 80 100

2.0 0.6326 0.1148 0.3733 0.3108 0.3358 0.3966 0.4744 0.4284

2.2 0.4452 0.1148 0.2235 0.2013 0.2380 0.2355 0.3145 0.2864

2.4 0.2876 0.0306 0.1227 0.1258 0.1633 0.1749 0.1884 0.1825

2.6 0.1730 0.0057 0.0575 0.0768 0.0682 0.0908 0.1064 0.0829

2.8 0.0981 0.0057 0.0267 0.0219 0.0441 0.0419 0.0571 0.0480

3.0 0.0528 0.0000 0.0109 0.0110 0.0153 0.0287 0.0274 0.0250

3.2 0.0272 0.0000 0.0037 0.0044 0.0081 0.0120 0.0128 0.0119

3.4 0.0134 0.0000 0.0005 0.0018 0.0018 0.0045 0.0051 0.0037

3.6 0.0063 0.0000 0.0005 0.0004 0.0009 0.0015 0.0035 0.0018

3.8 0.0029 0.0000 0.0000 0.0001 0.0003 0.0009 0.0014 0.0008

4.0 0.0013 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0002

4.2 0.0005 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000

4.4 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 5 Approximation for the tail probability of local trend score (LT score) versus the simulated probability P(LT(D)/
√
1.25n ≥ x).

The approximate probability based on equation (8) is given in the 2nd column and the probability that LT(D)/
√
1.25n ≥ x from

simulations is given in the 3rd to the 9th columns. Here, D = 3

The number of time points n

x Approximation 10 20 30 40 60 80 100

2.0 0.7539 0.1130 0.4402 0.3841 0.4214 0.4882 0.5808 0.5319

2.2 0.5616 0.1130 0.2688 0.2530 0.3015 0.2901 0.3974 0.3751

2.4 0.3779 0.0278 0.1451 0.1643 0.2079 0.2164 0.2475 0.2473

2.6 0.2336 0.0047 0.0762 0.0992 0.0869 0.1131 0.1471 0.1165

2.8 0.1346 0.0047 0.0324 0.0308 0.0535 0.0538 0.0804 0.0682

3.0 0.0732 0.0000 0.0130 0.0169 0.0171 0.0344 0.0423 0.0393

3.2 0.0379 0.0000 0.0048 0.0072 0.0084 0.0140 0.0198 0.0206

3.4 0.0187 0.0000 0.0005 0.0041 0.0024 0.0046 0.0061 0.0060

3.6 0.0089 0.0000 0.0005 0.0008 0.0010 0.0016 0.0037 0.0026

3.8 0.0040 0.0000 0.0000 0.0003 0.0005 0.0008 0.0015 0.0015

4.0 0.0018 0.0000 0.0000 0.0002 0.0001 0.0002 0.0003 0.0009

4.2 0.0007 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002

4.4 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The CDC dataset
The CDC dataset consists of the expression profiles of
6,177 genes at 24 time points. It is extremely time consum-
ing to approximate the p-values for local trend analysis for
all the gene pairs using permutations. Thus, we only ran-
domly select 25 genes and estimate the p-value for each
of the 300 gene pairs by permuting the original data 1000
times. We then compare Ptheo from our approximation to
Pperm from the permutation approach, as shown in Fig. 3.
For both t = 0 and t = 0.5 andD = 0, 1, 2, 3, it can be seen
from the figure that Ptheo is highly positively correlated
with Pperm, but Ptheo is slightly higher than Pperm indi-
cating that it is conservative when we declare statistical
significance using Ptheo.
For all the situations considered, among the gene pairs

with Pperm ≤ 0.05, over half of them are declared as sig-
nificant by Ptheo. For the t = 0 case, none of Ptheo is less
than 0.05 when Pperm > 0.05. With D = 0, we have 29
(10 %) out of 300 found significant while 260 (87 %) non-
significant by both approaches, and in total 289 (97 %)
are in agreement. Among the gene pairs with Pperm >

0.05, none of them are significant using Ptheo. Among the
gene pairs declared as significant by Pperm, about 29/40
(73 %) are declared as significant by Ptheo. Similarly, with
D = 1, 2, 3, there are 286 (95 %), 284 (95 %) and 285
(95 %) p-value pairs in agreement with both Pperm and
Ptheo, respectively.
For t = 0.5, with D = 0, we have 260 (87 %) out of 300

found to be non-significant by both approximation and
permutations. Among the remaining, 28(9 %) are found

significant by both methods, and in total 288 (96 %) are
in agreement. The results are similar with D = 1, 2, 3,
with 284 (95 %), 286 (95 %) and 278 (93 %) in agree-
ment, respectively. Moreover, all-to-all pairwise analysis
of the whole CDC dataset with D = 3 and permutation
1000 times cannot be completed in 100 hours on a “Dell,
PE1950, Xeon E5420, 2.5GHz, 12010MB RAM” comput-
ing node, while, using the approximate approach, it can be
finished within two hours on the same computing node.

The MPH dataset
The MPH dataset was collected from two healthy sub-
jects, one male (M3) and one female (F4), both were sam-
pled daily at three body sites (gut (feces), mouth, and skin
(left and right palms)) 130, 133 and 135 days, respectively
[33]. There are 335, 1295 and 373 unique operational tax-
onomic units (OTU) from feces, palm and tongue sites of
‘F4’ and ‘M3’, respectively. In order to feasibly finish com-
putational time of the permutation approach, we select 40
abundant OTUs from the right palm of ‘F4’ of the MPH
dataset.We present approximate and permutation p-value
comparison for local trend analysis in Fig. 4. The figure
shows that the approximate p-value is close to that from
the permutations when t = 0. However, the approxi-
mate p-values are generally much larger than that based
on permutations. One potential explanation is the sparsity
of the data due to the large number of OTUs.
We choose type-I error threshold to be 0.05. For t = 0,

the results show good agreement. With D = 0, we have
482 (62 %) and 263 (34 %) out of 780 found non-significant



Xia et al. BMC Bioinformatics  (2015) 16:301 Page 10 of 14

Fig. 2 Local trend analysis (t = 0). The values of Ptheo vs Pperm for
10,000 pairs of simulated data. Columns D0 to D3 are for D = 0, 1, 2, 3.
Rows n10 to n100 are for n = 10, 20, 30, 40, 60, 80, 100

and significant, respectively, by both methods. In total
745 (96 %) are in agreement. Among the 33 (4 %) OTU
pairs with discordant significance by Ptheo and Pperm, all of
them are significant by Pperm but non-significant by Ptheo,

Fig. 3 The values of Ptheo and Pperm for all-to-all pairwise local trend
analysis (t = 0 and t = 0.5) of 25 gene expression profiles from the
CDC dataset. Rows are for t = 0, 0.5, respectively. Columns D0 to D3
are for D = 0, 1, 2, 3, respectively

which is more conservative. The results are similar with
D = 1, 2, 3, with 744 (95 %), 743 (95 %) and 732 (94 %)
in concordance, respectively, and about 3–4 % incidences
significant by Pperm but non-significant by Ptheo.
For t = 0.5 and D = 0, we have 489 (63 %) out of

780 found non-significant and 188 (24 %) significant by
both methods. In total, 677 (87 %) are in agreement. All
of the discordant 103 (13 %) pairs are significant by Pperm
but non-significant by Ptheo. The results are similar with
D = 1, 2, 3, where 676 (88 %), 676 (88 %) and 685 (88 %)
are in concordance, respectively. There are about 12–13 %
associations significant by Pperm but non-significant by
Ptheo, showing that Ptheo is more conservative.

Fig. 4 The values of Ptheo and Pperm for all-to-all pairwise local trend
analysis (t = 0 and t = 0.5) of 40 abundant OTUs from the MPH
dataset. Rows are for t = 0, 0.5, respectively. Columns D0 to D3 are for
D = 0, 1, 2, 3, respectively
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Fig. 5 (a1): Normalized abundance level series of PMLba1 (Alphaproteobacteria031) and PMLba7 (Alphaproteobacteria032) having the highest
positive LT score starting from the 1st time point. (a2): Trend series of PMLba1 (Alphaproteobacteria031) and PMLba7 (Alphaproteobacteria032)
with a LT score 0.830986 (D = 0 with P = 0, Q = 0.000007 in approximation) starting from the 1st time point. (b1): Normalized abundance levels of
PMLba8 (Gammaproteobacteria0341) and PMLba25 (Bacteroidetes0326) associated starting from the 8th time point. (b2): Trend series of PMLba8
(Gammaproteobacteria0341) and PMLba25 (Bacteroidetes0326) with a LT score 0.56338 (D = 0 with P = 0.000598, Q = 0.022149 in approximation)
starting from the 8th time point

Fig. 6 (a1): Normalized abundance level series of PMLba55 (Gammaproteobacteria03170) and temperature are associated from the 1st time point.
(a2): Trend series of PMLba55 (Gammaproteobacteria03170) and temperature with a LT score 0.577465 from the 1st time point (D = 0 with
P = 0.000381, Q = 0.017572 in approximation). (b1): Normalized abundance level series of PMLba7 (Alphaproteobacteria032) and DX1 (a cosine
term of day length) associated from the 2nd time point. (b2): Trend series of PMLba7 (Alphaproteobacteria032) and DX1 (a cosine term of day
length) with a LT score 0.56338 from the 2nd time point (D = 1 withP = 0.000598, Q = 0.022149 in approximation)
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Fig. 7 An association network generated from the PML microbial community data. Round (brown), square (blue) shaped nodes are environmental
factors and bacteria, respectively. Solid (red) edges are positively associated, while dashed (blue) edges are negatively associated. Arrows indicate
the time-delay direction

The PML dataset
Gilbert et al. [24] studied the microbial community com-
position change using high-resolution 16S rRNA tag NGS
sequencing of samples taken monthly over 6 years at a
temperate marine coastal site off Plymouth Marine Labo-
ratory (PML), Plymouth, UK (total 72 time points). They
identified a total of 8,794 different bacterioplanktonOTUs
and environmental factors, and their presence are most
common, abundant and variable across all the samples. As
a proof-of-concept analysis, we select 73 abundant OTUs,
including 15 environment factors. The taxonomic level
to which the OTUs could be identified was Phylum and
Class. The raw read counts data were first normalized by
percentile and Z-score transformation and then converted
into trend series of {−1, 0, 1} with t = 0. We then apply
the local trend analysis to the trend series and analyze the
results below.
In total 77 (81.9 %) of 94 associated OTU pairs (P <

0.05, Q < 0.05) are bacteria to bacteria. In those 77 OTU
pairs, there are 54 OTU pairs belonging to Proteobacte-
ria, which includes: Alphaproteobacteria, Betaproteobac-
teria and Gamaproteobacteria; nine pairs of OTUs belong
to Bacteroidetes, Cyanobacteria and Verrucomicrobia.
While the remaining 14 pairs of OTUs show the inter-
group association between Proteobacteria and other bac-
teria. For example: PMLba1 (Alphaproteobacteria031)
and PMLba7 (Alphaproteobacteria032) have the highest
positive LT score from time point 1 (LT = 0.830986,
D = 0 with P < 1e−16, Q = 0.000007). Their abundance
level time series and trend series are shown in Fig. 5(a1)
and Fig. 5(a2), respectively. PMLba8 (Gammaproteobac-
teria0341) and PMLba25 (Bacteroidetes0326) with a LT
score 0.56338 (D = 0 with P = 0.000598, Q = 0.022149
in approximation), whose abundance level time series
and trend series are shown in Fig. 5(b1) and Fig. 5(b2),

respectively, have similar trends from the 8th time point
and onward.
Through studying the associations between environ-

ment factors and bacteria OTUs, we find that day length
(DX1) and temperature are the main factors associated
with bacteria among the 15 environment factors we select.
PMLba55 (Gammaproteobacteria03170) and temperature
are associated with a LT score of 0.5774 from the 1st
time point (D = 0 with P = 0.0004, Q = 0.0176).
The abundance levels and trend series of PMLba55 and
temperature are shown in Fig. 6(a1) and Fig. 6(a2), respec-
tively. PMLba7 (Alphaproteobacteria032) and day length
are associated with a LT score of 0.5633 starting from the
2nd time point (D = 1 with P = 0.0006, Q = 0.0221).
The abundance levels and trend series and day length are
shown in Fig. 6(b1) and Fig. 6(b2), respectively.
Overall, we show that the majority of positive associ-

ated OTU pairs are within the same phylum, while there
are some associations between different phylum. Finally,
we used Cytoscape to create a network from the selected
PML data as shown in Fig. 7. The hubs with large num-
ber of associations are Alphaproteobacteria (PMLba1,
PMLba11, PMLba26, etc.). However, the environment fac-
tors are not directly associated with Alphaproteobacteria.
Most bacteria association are synchronized and delays can
only be found between environment factors and PMLba7.
In addition, all the associations among bacteria trend
series are positive. The eLSA software package is used for
analyzing the relationships between environment factors
and bacteria and generating the interaction network.

Conclusions
Many breakthroughs in high-throughput experimental
technologies have made possible very large scale time-
resolved omics studies (proteomics, transcriptomics,
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metagenomics) possible, tracking hundreds, thousands,
or even tens of thousands of molecules simultaneously.
Time-series data generated from these studies provide an
invaluable resource to investigate the changing dynam-
ics of biological systems. To make full use of huge size
datasets, accurate and efficient statistical and computa-
tional methods are urgently needed in all levels of analysis,
from accurate estimation of abundance and expression
levels, to pairwise association and network analysis.
In this paper, we provide asymptotic formulae to

approximate the statistical significance of local trend
scores used in local trend analysis for time series data.
From our simulations and real data analysis, Ptheo is more
conservative than Pperm– a property particularly needed
in many biological applications that are prone to false pos-
itive calls, such as microarray analysis [22]. However, the
power of detecting the association can be low using the
approximate p-values. If more accurate p-values for sig-
nificant associations are desired, we suggest a “hybrid"
approach: first use a relatively loose threshold on the fast
approximate p-values and obtain a relatively small set of
associated pairs and then slow permutation approaches
are used only for this set of associated pairs to obtain
more accurate p-values. This will significantly reduce the
computational time yet maintain the power.
An important reason for us to embrace the approxima-

tion is its computation efficiency. As shown in Xia et al.
[5], for a given type-I error, α, the time complexity of com-
puting Pperm is O(DMN/α), where D is the delay limit, N
is the sample number andM is the replicate number. With
Ptheo, before any pairwise comparison, we may compute
and store (LT score, p-value) pairs into a hashing table.
Then, for each comparison, it only costs constant time
O(1) to read out Ptheo and is independent of D, M, N and
α, a strongly desired feature in large scale analysis.
For instance, in metagenomics, after short read assign-

ment and abundance estimation [34, 35], profiles of thou-
sands of microbial OTUs are present. Before this work,
pairwise local trend analysis with this number of factors
was hardly tractable using permutation procedures, if not
impossible. Parallel computation and hardware accelera-
tion or additional pre-clustering and filtering approaches
are required, increasing the difficulty of analysis. With the
new method, researchers can quickly compute the statis-
tical significance for all OTU pairs on desktop computers,
allowing on-the-fly association network mining and anal-
ysis. Finally, We have implemented the newmethod in the
eLSA package [5], which now provides a high-throughput
pipeline for local trend analysis.

Availability of data andmaterials
The eLSA software package that implements the local
trend analysis and theoretical approximation is freely
available for academic use from the website: http://

bitbucket.org/charade/elsa. The eLSA package is a stan-
dard Python and C++ extension module that requires a
Python distribution and a C++ compiling environment
to install. eLSA has been extensively tested running on
Ubuntu Linux machines (see the README file coming
with the software for details).
The ‘CDC’, ‘MPH’ and ‘PML’ datasets are all pub-

licly available in the supplementary of their publications
[24, 32, 33]. No ethics approval was required for the
study and no informed consent was required for the study,
because the study involves no human and animal sub-
jects and the study is not generating new human data.
The human microbiome data analyzed in the study was
published in Caporaso et al. [33] and publicly available.
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Additional file 1: Simulation results for t=0.5. (1004 Kb)
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