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Abstract

Background: A rapidly growing amount of knowledge about signaling and gene regulatory networks is available in
databases such as KEGG, Reactome, or RegulonDB. There is an increasing need to relate this knowledge to high-
throughput data in order to (in)validate network topologies or to decide which interactions are present or inactive in a
given cell type under a particular environmental condition. Interaction graphs provide a suitable representation of
cellular networks with information flows and methods based on sign consistency approaches have been shown to be
valuable tools to (i) predict qualitative responses, (ii) to test the consistency of network topologies and experimental
data, and (iii) to apply repair operations to the network model suggesting missing or wrong interactions.

Results: We present a framework to unify different notions of sign consistency and propose a refined method for
data discretization that considers uncertainties in experimental profiles. We furthermore introduce a new constraint to
filter undesired model behaviors induced by positive feedback loops. Finally, we generalize the way predictions can
be made by the sign consistency approach. In particular, we distinguish strong predictions (e.g. increase of a node
level) and weak predictions (e.g., node level increases or remains unchanged) enlarging the overall predictive power
of the approach. We then demonstrate the applicability of our framework by confronting a large-scale gene
regulatory network model of Escherichia coli with high-throughput transcriptomic measurements.

Conclusion: Overall, our work enhances the flexibility and power of the sign consistency approach for the prediction
of the behavior of signaling and gene regulatory networks and, more generally, for the validation and inference of
these networks

Keywords: E. coli, Gene regulation, Interaction graphs, Sign consistency, Uncertainty, Logic modeling, Answer Set
Programming (ASP)

Background
The advancements of measurement technologies and
high-throughput methods in molecular biology have led
to a tremendous increase in the availability of factual
biological knowledge as well as of data capturing the
response of biological systems to experimental conditions.
Knowledge about metabolic, signaling, and gene regula-
tory interactions and networks is available in databases
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such as KEGG, Regulon DB, PID, or Reactome which can
be used as a starting point to build causal models of bio-
molecular networks [1]. Specifically, signaling and gene
regulatory networks carrying signal and information flows
can be represented as interaction (or influence) graphs
[2–6], Bayesian networks [7], some form of logic (includ-
ing Boolean or constrained fuzzy logic) modeling [4, 8, 9],
or ordinary differential equations [10–12]. However, there
is an increasing need to relate large-scale network models
to high-throughput data in order to (in)validate network
topologies or to decide which regulatory or signaling
interactions are present in a particular biological system,
cell type, environmental condition etc.
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Significant work has been published on this subject,
attempting to detect inconsistencies among measured
high-throughput data and signaling and regulatory net-
works and to subsequently identify missing or inactive
interactions such that the optimized network struc-
ture maximizes consistency with experimental data
[2, 4, 13–18]. Some of these approaches use signed
directed graphs, also called interaction or influence
graphs (IG), as underlying model where edges indicate
either positive or negative effect of one node upon
another. Although these models are qualitative and
simple, they have frequently been used to study signal
flows in a wide range of biological systems. Moreover,
the fact that every Boolean and every ODE model has
an underlying interaction graph renders their analysis
directly relevant for other modeling formalisms and it
has been shown that some important global properties of
Boolean or ODE models are determined by the structure
of their associated IG [6, 19, 20]. IG have also been used
for qualitative reasoning, to describe physical systems
where a detailed quantitative description is unavailable
[21]. In fact, this has been one motivation for using IG
in the context of biological systems [20] where knowledge
and data are usually uncertain.
One important class of methods relating IG with experi-

mental data is based on the notion of sign consistency. The
key idea here is to represent the potential network behav-
iors resulting from steady-state shift experiments (such as
upregulation or downregulation of node activation levels
after network perturbations) by certain kinds of discrete
constraints. A first approach based on sign consistency
was introduced in [2]. There, experimentally measured
changes in node activities were represented by two labels
(increase, decrease) on the IG nodes. Constraints relating
nodes labels and IG are introduced to model the propa-
gation of regulatory effects. Later, in [3, 22], Answer Set
Programming (ASP) [23] was used to find admissible node
labelings adhering to the posed constraints, and opti-
mal repairs to restore sign-consistency were proposed. A
related formalismwas presented in [17]. Major differences
to previous studies were (i) consideration of three node
labels (increase, decrease, 0-change), (ii) the representa-
tion of the constraints as an integer linear programming
(ILP) problem, and (iii) the introduction of new repair
operations minimizing inconsistencies between the IG
structure and the experiments.
The goal of this study is fourfold. First, we aim at uni-

fying existing approaches into a general framework. We
show that different notions of sign consistency mainly
differ in the way zero changes are modeled. Then, we
propose a refined method for data discretization allow-
ing one to express uncertainties during the discretization
step. In addition, we introduce a new constraint to filter
undesired self-fulfilled explanations which result from

positive feedback loops. Finally, we introduce an extended
prediction method that allows not only strong (e.g.,
"increase") but also weak predictions (e.g., "increase or 0-
change"), enlarging the predictive power of the approach.
We applied the extended framework to a realistic case
study where we analyze high-throughput transcriptomic
measurements of Escherichia coli in the context of a
large-scale gene regulatory network model obtained from
RegulonDB. Taken together, we demonstrate that these
extensions increase the applicability and flexibility of the
approach significantly.

Methods
Definitions
An influence or interaction graph (IG) is a signed directed
graph (V ,E, σ), where V is a set of nodes, E a set of edges,
and σ : E → {+,−} a labeling of the edges. Every node in
V represents a species in the modeled system and an edge
j→ imeans that the change of j in time influences the level
of i. Every edge j→ i of an IG can be labeled with a sign,
either + or −, denoted by σ(j, i), where + (−) indicates
that j tends to increase (decrease) i. An example IG is given
in Fig. 1.
In this framework, we confront the IG with experimen-

tal profiles. In our approach, the experimental profiles
are supposed to come from steady-state shift experiments
where, initially, the system is at steady-state, then exter-
nally perturbed in certain nodes, and settles eventually
into another steady-state. For some species S ⊆ V (genes,
proteins, or metabolites) concentrations are measured in
the initial and final state. The raw data is given by a real
value obs(s) for every measured species s ∈ S specifying

Fig. 1 Interaction graph with a positive feedback loop between E
and F
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the difference of the node states at the beginning and
in the new steady state. As defined below, we determine
for these nodes whether the concentration has increased,
decreased or not significantly changed.

Data discretization
We propose a refined method to discretize the measure-
ments using four (condition-dependent) thresholds t1 ≤
t2 < 0 < t3 ≤ t4, allowing one to consider uncertainties
in the discretization process. As illustrated in Fig. 2, these
thresholds define a mapping μ : S → {−,�, 0,�,+} as
follows:

μ(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− | obs(s) ≤ t1,
� | t1 < obs(s) ≤ t2,
0 | t2 < obs(s) < t3,
� | t3 ≤ obs(s) < t4,
+ | t4 ≤ obs(s).

We consider measurements which are smaller than
t1, bigger than t4, and between t2 and t3 as certain
(decrease -, increase +, no-change 0) while measurements
that are between t1 and t2 (resp. t3 and t4) are uncer-
tain (uncertain-decrease�, uncertain-increase�) and not
exactly classifiable. With that, an experimental profile
(S, I,μ) is defined by the set of measured species S, the
set of input nodes I ⊆ S (the experimentally perturbed
species) whose changes are trivially explained, and the
mapping μ as defined above.

Local consistency rules
Given an IG (V ,E, σ) and an experimental profile (S, I,μ)

one can describe the rules that relate both. For this pur-
pose we look for total labelings μt : V → {−, 0,+} that
satisfy the local constraints defined below. It is impor-
tant to notice that μt will define a total labeling using the
three labels {−, 0,+} whereas μ defines a partial label-
ing (only measured nodes are labeled) based on the five
labels {−,�, 0,�,+} representing the discretized mea-
surements.
With the first constraint, we look for total labelings μt

that satisfy the observed measurements captured in the
partial node labeling given by μ:

Constraint 1 (satisfy observations). Let (V ,E, σ) be an
IG, (S, I,μ) an experimental profile, μt : V → {+,−, 0}

be a total labeling, and let i ∈ V be a node with μt(i) ∈
{+, 0,−}.
Then μt satisfies Constraint 1 for node i iff i /∈ S,

or μt(i) = + and μ(i) ∈ {+,�}, or μt(i) = 0 and
μ(i) ∈ {�, 0,�}, or μt(i) = − and μ(i) ∈ {�,−}.

Note, uncertain measurements restrict the labeling of a
node to two out of the three values {+,−, 0}, while mea-
surements with high certainty fix a node’s label to exactly
one value.
Next we demand for every non-input node i, that its

change μt(i) ought to be explained by the total influence
of its predecessors in the IG. The influence of j on i is given
by the product μt(j)σ (j, i) ∈ {+,−, 0}.

Constraint 2 (change must be justified by a change in
a predecessor). Let (V ,E, σ) be an IG, (S, I,μ) an experi-
mental profile, μt : V → {+,−, 0} be a total labeling, and
let i ∈ V \ I be a non-input node with μt(i) ∈ {+,−}.
Then μt satisfies Constraint 2 for node i if there is some

edge j→ i in E such that μt(i) = μt(j)σ (j, i).

Constraint 2 is consistent with the propagation rule
used in [2, 3] which demands that increases and decreases
must be explained by predecessor nodes while 0-changes
are unconstrained, that is 0-changes can always occur irre-
spective of the state of the predecessor nodes (note that
0-changes were not considered in [2, 3]). One argument
for this reasoning is that it is often impossible to esti-
mate the strength of the influences and the thresholds at
which a downstream effect occurs are unknown. Hence,
we cannot guarantee that an influence really has an effect
and therefore allow 0-change. On the other hand, the con-
straint still enforces explanations for observed changes
in node activation levels; each change must be explain-
able by an influence (with proper sign) of at least one
predecessor.
Melas et al. [17] suggested also to demand proper expla-

nations for 0-changes using the following constraint:

Constraint 3 (0-change must be justified). Let (V ,E, σ)

be an IG, (S, I,μ) an experimental profile, μt : V →
{+,−, 0} be a total labeling, and let i ∈ V \ I be a non-
input node with μt(i) = 0. Then μt satisfies Constraint 3

Fig. 2 Discretization of observed changes into sign constraints
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for node i if there is either no edge j→ i in E such that
μt(j)σ (j, i) ∈ {+,−} or there exist at least two edges j1 → i
and j2 → i in E such that μt(j1)σ (j1, i) + μt(j2)σ (j2, i) = 0

Constraint 3 restricts the occurrence of 0-changes. A
node is only allowed to show 0-change if it receives either
no influence or contradictory influences. This constraint
thus assumes that each influence has indeed an effect and
only contradictory influences can cancel each other out.
In Fig. 3, we illustrate IGs with different labelings where

green stands for increase, red for decrease and blue for
0-change. Notice, that Constraint 2 intentionally allows
situations like in labeling g and h, where D is labeled as 0-
change even if the predecessor B is showing an increase
resp. decrease. On the other hand, Constraint 2 forbids D
to increase or decrease, if all predecessors are labeled as
0-change.

From local to global reasoning
While there might exist several total labelings that sat-
isfy the local constraints for some nodes we are interested
in checking global consistency, where a total labeling
exists such that the local constraints are satisfied for all
nodes. In Fig. 4, we illustrate an IG together with a partial
labeling which is locally consistent but globally inconsis-
tent. In other words, there exist two total labelings such
that the local consistency rules (Constraints 1, 2 and 3) are

satisfied, for either A or B, but there exists no single total
labeling that satisfies these constraints for all nodes.
We use the previously defined constraints to define the

following global consistency notions.

Consistency Notion 1 (weak propagation, WP). We
call an IG and an experimental profile (S, I,μ) consistent
under weak propagation (WP), iff there exists a total label-
ing μt such that Constraint 1 and 2 are satisfied for all
nodes.

Consistency Notion 2 (strong propagation, SP). We
call an IG and an experimental profile (S, I,μ) consistent
under strong propagation (SP), iff there exists a total label-
ing μt such that Constraints 1, 2 and 3 are satisfied for all
nodes.

Further, we introduce here a new global constraint to
ensure that every node change is justified by a chain of
influences that can be traced back to an (perturbed) input
node. This natural constraint is especially useful to for-
bid self-justification of changes via positive feedback loops
(see Fig. 5).

Constraint 4 (a change must be founded in an input).
Let (V ,E, σ) be an IG, (S, I,μ) an experimental profile,μt :

Fig. 3 IGs with different labelings where green stands for increase, red for decrease, and blue for 0-change. All labelings satisfy the basis Constraint 2
for node D, but only the labelings a-d satisfy also Constraint 3. Examples with uncertain measurements are shown in the Additional file 1
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Fig. 4 Example for an influence graph with partial labeling, which is locally consistent for A and B, but globally inconsistent because there exist no
single total labeling satisfying Constraint 2 for A and B

V → {+,−, 0} be a total labeling, and i ∈ V a node with
μt(i) ∈ {+,−}.
Then μt satisfies Constraint 4 for node i if either i is an

input node i ∈ I, or there exist a path (v0, . . . , vk) in E with
v0 ∈ I, vk = i and μt(vn−1)σ (vn−1, vn) = μt(vn) for all
n = 1 . . . k.

In Fig. 5, we illustrate an IG with a partial labeling
(left) and two total labelings (middle and right) derived
from the partial one. Both total labelings satisfy the local
propagation rules (Constraints 2, 3), but only the sec-
ond total labeling satisfies the global propagation rule
(Constraint 4). While the first labeling suggests a self-
sustained increase in B and C as explanation for the
increase in D, the second labeling hints to an increase in
the input node A. Using Constraint 4 we can avoid man-
ual removal of positive feedback loops as done in previous
studies [17].
We combine the new constraint with previously defined

constraints into the following consistency notions.

Consistency Notion 3 (founded weak propagation,
FWP). We call an IG and an experimental profile (S, I,μ)

consistent under founded weak propagation (FWP), iff

there exists a total labeling μt such that Constraints 1, 2
and 4 are satisfied for all nodes.

Consistency Notion 4 (founded strong propagation,
FSP). We call an IG and an experimental profile (S, I,μ)

consistent under founded strong propagation (FSP), iff
there exists a total labeling μt such that Constraints 1, 2,
3, and 4 are satisfied for all nodes.

Consistency checking
We can now apply the previously defined consistency
notions to enumerate consistent total labelings and to ver-
ify the consistency of network and observation data for a
given experimental profile. We consider an IG consistent
with an experimental profile (S, I,C) if there exists at least
one consistent total labeling (consistent with respect to
the chosen Notion WP, SP, FWP or FSP). Consider Fig. 6
which shows the total labelings of the IG in Fig. 1 consis-
tent with an example experimental profile (A and D were
increased resulting in a measured 0-change in H) under
the different consistency notions. Note that the notions
become more strict, accepting less labelings as consis-
tent and therefore excluding certain system behaviors.
The set of admissible labeling under SP is a subset of the

Fig. 5 Example for an influence graph with partial labeling, which can be explained either by self activation in B and C or by the input node A
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Fig. 6 Consistent total labelings of the example in Fig. 1 under different consistency notions. The consistent labelings under all four consistency
notions are fully displayed, a grey cell indicates that the labeling above is consistent and a white cell with “.” means that it is not a consistent labeling

admissible labelings under WP and the set of admissible
labeling under FSP is a subset of the admissible labelings
under SP. Further, one can see that Constraint 4 excludes
all labelings where E and F decrease. This behavior does
not satisfy Constraint 4, as it is only possible by mutual
inhibition using the positive loop between E and F, which
is not founded in an input.

Predictions under consistency
The consistency check of network and experimental data
is the first analysis that is performed with the sign con-
sistency approach. If network and data are consistent the
sign consistency approach can be used to predict the
behavior of unmeasured entities in the network. This can
also be used to predict the outcome of a planed exper-
iment and reversely to plan an experiment that should
result in a specific desired behavior. In the sign consis-
tency approach, each consistent labeling represents an
admissible behavior of the system. We call a statement
that holds in all admissible behaviors under the given
consistency notion a prediction. If parts of the system
act the same in all admissible behaviors this can be pre-
dicted. We can predict the following types of behaviors
in our systems. We predict that a species increases +
(resp. decreases −, does not change 0) if it increases (resp.
decreases, does not change) in all admissible labelings.
We call these strong predictions, because the possible
behaviors of a species are reduced to exactly one. Fur-
ther, we can predict that a species does not increase (resp.
does not decrease, does change) if it does not increase
(resp. not decrease, does change) in all admissible label-
ings. Therefore, we can also predict weak increase ⊕,
when a species does not decrease, but increases in at least
one admissible behavior, and does not change in another

admissible behavior. Likewise, we predictweak decrease�
when a species does not increase, but decreases in at least
one admissible behavior, and does not change in another.
Finally, we predict change ± when a species does always
change, it increases in at least one admissible behavior and
decreases in another. We call ⊕, �, and ± weak predic-
tions because one possible behavior is excluded while one
degree of freedom is left.
Formally, for a set V of nodes in our network and the

set M of labelings consistent with our experimental pro-
file, we define the prediction function pred : V →
{+,−, 0,⊕,�,±, no} as follows:

pred(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ | ∀μ ∈ M : μ(x) = +,
− | ∀μ ∈ M : μ(x) = −,
0 | ∀μ ∈ M : μ(x) = 0,

⊕ | ∀μ ∈ M : μ(x) �= −, ∃μ∈M : μ(x) = +,
∃μ∈M : μ(x) = 0,

� | ∀μ ∈ M : μ(x) �= +, ∃μ∈M : μ(x) = −,
∃μ∈M : μ(x) = 0,

± | ∀μ ∈ M : μ(x) �= 0, ∃μ∈M : μ(x) = +,
∃μ∈M : μ(x) = −,

no | else.
Recovery rate and precision
In Table 1, we show the predictions for the example given
in Fig. 1. One can see that the more constrained consis-
tency notions yield smaller sets of admissible labelings and
a higher recovery rate (for how many unmeasured species
can predictions be obtained). In the systematic compari-
son of the consistency notions based on real experimental
data we not only consider recovery rate but also prediction
precision (true positives/(true positives + false positives)).
A strong prediction (+/−/0) will be a true positive if it has



Thiele et al. BMC Bioinformatics  (2015) 16:345 Page 7 of 13

Table 1 Predictions for the example in Fig. 1 derived from the
admissible behaviors in Fig. 6

B C E F G

Notion WP ⊕ no no no no

Notion FWP ⊕ no ⊕ ⊕ no

Notion SP + ± ± ± 0

Notion FSP + + + + 0

The nomeans that the node can have any value of {+, 0, −} which means that
pratically no prediction is possible

a certain measurement with the same value (+/−/0). A
weak prediction ⊕ (resp. � and ±) will be a true positive
if it has a certain measurement + or 0 (resp. − or 0 and +
or−). Reversely, a prediction will be a false positive if has a
certain measurement value with a contradictory value +.

Repairing inconsistent networks and data
If network and data are inconsistent the natural ques-
tion arising is how to repair networks and/or data, that
is, how to modify network and/or data in order to re-
establish their mutual consistency. A major challenge
lies in the range of possible repair operations, since
an inconsistency can be explained by missing interac-
tions or inaccurate information in a network as well as
by measurement errors. The sign consistency approach
can be used to determine a set of repair operations
that are suitable to restore consistency. Typically, plenty
of suitable repair operations are possible, in particu-
lar, if multiple repair operations are admitted. How-
ever, one usually is only interested in repairs that make
few changes on the model and/or data. These minimal
repair sets cannot only be used for hypotheses gener-
ation (e.g., which data might be questionable or which
edges might be missing or inactive) but as a quantita-
tive measure for the fitness of model and data. Also note
that once consistency is re-established, network and data
can again be used for predicting behaviors of unmeasured
entities.
In [17], four repair operations were introduced; two of

them for single experiments (SCEN-FIT, Minimal Cor-
rection Sets (MCoS)) and two for multiple experiments
(OPT-SUBGRAPH, OPT-GRAPH). The latter two are
computationallymore demanding as they seek to optimize
the whole network structure based on many perturba-
tion experiments. SCEN-FIT, as explained in detail in the
Additional file 1, seeks to find a consistent node label-
ing that is closest to the given measurements and can
thus help to identify inconsistencies between network and
dataset. Herein we will focus on MCoS and thus deal
with analysis of single experiments. This is motivated by
our application example where we indeed have multiple
experiments (105) but where the number of experiments

is low compared to the number of edges and nodes in the
network (1646) disabling a meaningful network structure
optimization. However, we note here that our extended
notion FSP can be straighforwardly applied to these repair
operations as well.

Minimal Correction Sets (MCoS)
To resolve inconsistencies one may add new influences
to the model if the later is considered to be potentially
incomplete (which is often the case in practice). Adding
an influence can be used to indicate missing (unknown)
regulations or oscillations of regulators that would explain
the (topology-inconsistent) measurements. We use mini-
mal correction sets (MCoS) as defined in [17] as minimal
sets of new signed (positive or negative) input influences
that restore consistency of model and data. MCoS are
defined as signed influences and are specific for a single
experiment; they might be incompatible with other exper-
iments. Note that every inconsistency can be repaired
by adding a new influence. Therefore, adding influences
is always suited to restore consistency. Also the MCoS
can be interpreted as a measure of consistency of model
and data. Compared to SCEN-FIT, MCoS yields always a
smaller or equal number of repairs. Therefore we define
the inconsistency-index of a network with respect to data
as (MCoS/number of observations in the experiment).
Figure 7 illustrates how repair through addition of influ-
ences works.

Prediction underminimal repair
Due to the capability of repairing, the sign consistency
approach enables prediction even if model and data are
mutually inconsistent. Predictions under minimal repair
are obtained from the identification of consequences
shared by all consistent labelings under all possible mini-
mal repairs. Note that this approach although it confines
to minimal repairs following the law of parsimony, does
not favor any of the possible minimal repairs but only
considers a statement a prediction if it holds under every
minimal repair.

Software
The different consistency notions as well as the methods
for consistency checking and quantification, prediction,
and all data and network repair operations were imple-
mented in an open source application iggy [24]. iggy
uses ASP [23] as logical modeling and constraint solving
paradigm, it is part of the BioASP software collection and
can easily be installed via the python package index (PyPI).
ASP is used to model problems from NP and provides
state-of-the-art solvers. In particular, we use the solver
clasp [25] via the pyasp [26] package. On an AMD
Opteron 6168 1.9 GHz with 96 GB RAM, given a network
with 1646 nodes and 4277 edges our software needs ≈ 20
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Fig. 7 Repair by adding signed influences example (Minimal Correction Sets - MCoS). There exist three alternative repair sets: repair set a adds a
positive influence to A and repair set b includes a negative influence on B, repair set c includes a positive influence on A and a negative influence on
B. Repair sets a and b are minimal containing only one repair, repair set c is not minimal having two repairs. Looking at the intersection of the
labelings under minimal repairs, we can conclude that C is either responsible for an increase in A or a decrease in B. We can therefore exclude a
labeling of C with 0, we can predict: pred(C) = ±

min to compute the predictions under minimal repair
(MCos) for the unmeasured species of 105 experiment
data sets each containing 1392 measurements. For further
information visit http://bioasp.github.io/iggy.

Results and discussion
To investigate the suitability of the different consistency
notions, we used the gene regulatory network of
Escherichia coli and confronted it with Microarray data.
The network was obtained from RegulonDB [27], version
8.3 in october 2013, and we focused on its biggest weakly
connected component which is composed of 1646 nodes
and 4277 edges and covers 94% of the nodes of the full
RegulonDB network. Unsigned edges are treated as two
parallel edges with opposite signs. The data refers to the
microarray log ratio expression of 3607 genes measured
under 240 different stress conditions in E. coli published
in [28]. We chose 105 of 240 experiments which can be
interpreted as steady state shift experiments and 1392 of
the 3607 genes which occur in the RegulonDB network.

Since the input nodes for the stress condition experi-
ments are unknown, we simply defined all nodes without
predecessors as inputs.
The GEO/GSE codes for the used experiments are listed

in the Additional file 1. The microarray data was dis-
cretized as described in the Methods Section using the
typical thresholds: t1 = −2, t2 = −0.01, t3 = 0.01, t4 = 2,
to generate the constraints that restrict the labeling μ for
the nodes measured in the experimental profile.
To evaluate the influence of the minimal correction sets

(MCoS) and to investigate the suitability of the different
consistency notions to predict the behavior of unobserved
entities in a regulatory network, we performed a cross-
validation using the E. coli data.

Quality of regulatory network when confronted to the
expression profiles
As a first step, we assess the quality of network and
data by comparing it to randomized data. We gener-
ated 100 randomized datasets for each real experiment by

http://bioasp.github.io/iggy
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Fig. 8 Inconsistency index of the 105 experiments. The x-axis shows
the inconsistency index of the original experiments and the y-axis the
average inconsistency of the shuffled experiments. The error bars
indicate the standard deviation of the inconsistency index among
100 shuffled samples

shuffling the observed signs among the observed nodes;
but preserving the sign distribution for each dataset. We
then computed for real and randomized data the incon-
sistency index which is defined as the quotient of the
number of minimal corrections (MCoS) to restore con-
sistency (under notion FSP) divided by the number of
observations in the experiment. Then we computed the
Wilcoxon signed-rank test to assess whether the pop-
ulation means of the two samples differ. The obtained
p-value of 2.0497e-11 indicates a highly significant differ-
ence of real and randomized data, suggesting that the real

data are more (sign-) consistent with the network topol-
ogy than random data. Figure 8 shows the inconsistency
index for real and randomized data for each experiment.
We can see that the real E. coli dataset exhibits a sig-
nificantly lower inconsistency index than the randomized
data.
Figure 9 shows the distribution of the measured signs in

the experimental data revealing that the data tends to be
less consistent if more +/- are contained.

Predictions under the different consistency notions
To investigate the suitability of the different consistency
notions to predict the behavior of unobserved entities in
a regulatory network, we performed a cross-validation
using the E. coli data. While other validation methods
exist, we decided to use cross-validation as a model val-
idation technique because it allows us to assess how the
results of the approach will generalize to independent
datasets. To set up cross-validation, we created for each
experiment 100 samples each containing a random 10%
share of themeasurements.We then confronted the E. coli
network with these samples, determined the minimal cor-
rections necessary to restore consistency, and computed
the predictions that hold under all minimal correction
sets.
In Table 2 one can see the distribution of the +, −,

0 and weak predictions as well as how the precision of
the different types of predictions varies among the differ-
ent notions (WP is similar to FWP see Additional file 1).
With the different consistency notions we were on aver-
age able to compute behavior predictions for up to 69%
of the remaining nodes in the network, for which no mea-
surement was given. One can observe that the share of
nodes with predictions increases drastically with notion

Fig. 9 Distribution of observed signs in the experimental data. The x-axis shows the 105 experiments ordered after their inconsistency index
represented by the black line, getting less consistent from left to right. The left y-axis quantifies the cumulative percentage of nodes in the network
which were measured. The signs are represented by the following colors: − (red), � (purple), 0 (blue), � (turquoise), and + (green)
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Table 2 Average % of unobserved nodes that have predictions of a particular behavior, their information gain and the precision for these predictions under the different notions
giving 10% or 50% of the E. coli expression measurements as input. In the last major column (“all predictions”) the rows “% of unobserved nodes” quantify the overall recovery rates

Prediction +/− 0 Weak predictions ⊕/�/± All predictions

Notion FWP SP FSP FWP SP FSP FWP SP FSP FWP SP FSP

Obtained using 10% of the measurements as input.

% of unobserved nodes 0.13% 2.60% 2.91% 1.19% 46.43% 53.64% 7.74% 12.99% 13.14% 9.06% 62.03% 69.70%

Information gain 0.13% 2.60% 2.91% 1.19% 46.43% 53.64% 2.86% 4.80% 4.85% 4.17% 53.83% 61.41%

Precision of prediction 29.02% 56.28% 54.50% 82.16% 70.69% 71.66% 80.94% 85.19% 85.14% 80.03% 72.97% 73.24%

P-value 0.2791 1.0389e-08 8.0897e-10

Obtained using 50% of the measurements as input.

% of unobserved nodes 0.48% 3.06% 3.08% 4.84% 67.93% 72.30% 28.99% 7.27% 7.07% 34.31% 78.26% 82.45%

Information gain 0.48% 3.06% 3.08% 4.84% 67.93% 72.30% 10.70% 2.68% 2.61% 16.02% 73.67% 77.99%

Precision of prediction 24.10% 62.16% 62.14% 82.79% 70.22% 70.97% 82.44% 86.75% 86.80% 81.33% 71.10% 71.57%

P-value 0.5 2.9782e-09 2.0785e-10
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SP and even further with FSP,mainly through an increased
prediction of 0-change behaviors.
The different types of predictions contain different

amount of informations. A weak prediction gives less
information than a strong prediction because it discards
only one out of three possible labels. Hence, the 69% of
nodes with prediction does not equal 69% of information
gained. Therefore, we also computed the information gain
given by these predictions. For n unconstrained nodes,
for which no measurements are taken into account, 3n
possible behaviors exist, for k nodes with strong predic-
tions the possible behaviors can be restricted to just 1, and
for l nodes with weak predictions remain still 2l possible
behaviors, form nodes without predictions remain still 3m
possible behaviors, and the overall information gain can
then be expressed as (log(3n)− log(1k +2l +3m)/log(3n)).
In our experiments we observed an average information
gain up to 61% for the nodes for which no measure-
ments had been taken into account. For more information
on how to compute the information gain we refer to the
Additional file 1.
To validate the quality of the predictions (obtained from

10% of the data), we compared them with the validation
data (the remaining 90% of measurements). For the nodes
where a prediction and validation data was available, we
compared both. We obtained on average precisions that
range from 73% to 80%. Overall, SP and FSP allow us to
make predictions for a much bigger part of the network,
resulting in a much higher information gain with only a
slightly decreased precision, and for + and − predictions

with a significant higher precision than FWP. In Section 5
of the Additional file 1 we plot the detailed recovery and
precisions per experiment for notions FWP and FSP.
To test the influence of the number of measurements on

recovery rate and precision, we also created a dataset with
50% and 75% (see Additional file 1: Table S3) of the mea-
surements. Compared to the results with 10% the overall
recovery rate increases up to 82% (FSP). This is due to
the fact that the increased amount of data helps to put
more constraints on the systems behavior. For notion SP
and FSP the number of weak predictions drops slightly
because many of them become strong predictions. The
precision of +, − and weak predictions benefits from
the richer datasets under notion SP and FSP, while the
precision of 0-change decreases only slightly.
Weak predictions easily have higher precisions, because

they have a bigger chance to be true positives. To val-
idate that the precisions obtained in our test case are
indeed meaningful, we tested our approach on a ran-
domized dataset. We could verify that the predictions
from randomized data have less precision than the pre-
dictions obtained from the real data (see Additional file 1:
Table S3),especially for notions SP and FSP. Accordingly
the p-values shown in Table 2 indicate a high signifi-
cance that the predictions made by SP and, even more
pronounced, by FSP are better than random.
These results show that the strong-propagation notions

(SP and FSP) are the most pertinent choice to explain
gene expression shifts within the E. coli transcriptional
network. Using FSP we predict with high precision

Fig. 10 Confusion matrices for predicted behaviors under each notion given 10% (left) 50% (right) of the data. The columns indicate the predicted
behavior and the rows the measured behavior. Given are the average numbers of nodes predicted to change as indicated by the column and
measured in the experiment as indicated by the row with respect to the total number of measured predictions. Predictions that are consistent with
the measurement are in green and confusions in red. Gray fields denote either predictions that could not be verified because no validation data was
available or nodes for which validation data was available but no predictions had been made
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that 53% to 72% of the network remains unaltered (0-
change). Understanding the differentially expressed net-
work regions becomes more delicate, since the precision
remains on average 54% to 62% which, however, is still
significantly higher than for notion FWP. Nevertheless,
48% of the experiments had a precision above 75% for
up- or down-regulation (strong) predictions when con-
sidering a dataset with 50% of the measures. Note, that
the notion of precision changes its conclusiveness when
applied to incompletely determined predictions. Thus, we
use confusion matrices as an alternative representation
to illustrates the performance of our prediction method.
Here one can see that for uncertain observations, rela-
tively few strong predictions are confused (see Fig. 10).
Therefore, wrong predictions may be related to the choice
of the discretization thresholds and that a single threshold
was chosen for all genes.

Conclusion
We presented a unified framework to express differ-
ent notions of sign consistency on interaction graphs.
A refined methodology for data discretization into five
values allows the consideration of uncertainties in exper-
imental profiles. Within this framework we introduced
a new constraint to filter undesired self-fulfilled regula-
tions that result from positive feedback loops. Finally, our
extended prediction method considers not only strong
(unique value) but additionally weak (multiple admissible
values) predictions, enlarging the predictive power of the
approach.
We evaluated our framework by confronting the

full RegulonDB network with 105 experimental gene-
expression profiles. Our cross-validation results obtained
when choosing 10% of the initial dataset show that the
overall precision of the methods ranges from 72% to
80%. The precision of the FSP notion has a much higher
and significant p-value. With its increased precision and
recovery, FSP appears to be the superior notion.
We expect that the information gain is in general higher

for datasets from (typically smaller) signaling networks
(see e.g. [17]). This might be due to the fact that in the
stress experiments considered here the (perturbed) inputs
of the gene regulatory network were unknown which
poses less constraints than in signaling networks with
normally well-defined signal inputs (given by the applied
ligands, inhibitors etc.).
Our method requires a careful selection of discretiza-

tion thresholds. Therefore, we performed a detailed sen-
sitivity analysis on a wide range of the discretization
thresholds (see Additional file 1: Section 4). The analysis
shows that there is a relatively small sensitivity of the
results (precision, information gain) w.r.t. the chosen
thresholds. We also discuss further aspects of threshold
selection in the Additional file 1.

There is a relationship between the concept of sign con-
sistency and the dependency matrix (discussed in more
detail in [17]). The notion of the dependency matrix was
originally introduced in [4] and has been used in sev-
eral studies for checking consistency between signaling
network topologies and experimental data from stimulus-
response experiments, (e.g., [5, 29]). In fact, the depen-
dency matrix can be seen as another sign consistency
notion which is more relaxed than SP or FSP (what
might still be useful, e.g. when analyzing transient instead
of steady-state responses). Since additional propagation
rules are straightforward to implement in the framework
presented herein, other sign consistency notions, includ-
ing the dependency matrix or those that pose different
constraints for 0-changes, could be considered as well.
Overall, our work enhances the flexibility and power of
the sign consistency approach for the prediction of the
behavior of signaling and gene regulatory networks and,
more generally, for the validation and inference of these
networks.

Additional file

Additional file 1: Supplementary. Contains the following
supplementary material. Explanation of SCEN-FIT. Explanation of uncertain
observations. Information gain by predictions in the sign consistency
approach. Sensitivity analysis - Choosing the thresholds for discretization.
Recovery and precision for E. coli cross-validation experiments.
GEO/GSEcodes for the experiments used. (PDF 1218 kb)
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