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Abstract

normal approximation.

Background: In cancer research, the comparison of gene expression or DNA methylation networks inferred from
healthy controls and patients can lead to the discovery of biological pathways associated to the disease. As a cancer
progresses, its signalling and control networks are subject to some degree of localised re-wiring. Being able to detect
disrupted interaction patterns induced by the presence or progression of the disease can lead to the discovery of
novel molecular diagnostic and prognostic signatures. Currently there is a lack of scalable statistical procedures for
two-network comparisons aimed at detecting localised topological differences.

Results: We propose the dGHD algorithm, a methodology for detecting differential interaction patterns in
two-network comparisons. The algorithm relies on a statistic, the Generalised Hamming Distance (GHD), for assessing
the degree of topological difference between networks and evaluating its statistical significance. dGHD builds on a
non-parametric permutation testing framework but achieves computationally efficiency through an asymptotic

Conclusions: We show that the GHD is able to detect more subtle topological differences compared to a standard
Hamming distance between networks. This results in the dGHD algorithm achieving high performance in simulation
studies as measured by sensitivity and specificity. An application to the problem of detecting differential DNA
co-methylation subnetworks associated to ovarian cancer demonstrates the potential benefits of the proposed
methodology for discovering network-derived biomarkers associated with a trait of interest.

Keywords: Network comparisons, Co-methylation networks

Background

Current efforts at understanding diseases rely on the abil-
ity to identify differences between healthy and affected
tissues. A number of high-throughput platforms are now
commonly used to compare genome-wide molecular pro-
files collected from large cohorts of healthy and diseased
subjects in search for patterns that differentiate between
them. For instance, in cancer research, gene expression
and DNA methylation profiles from diseased tissues are
compared to those extracted from normal controls in
order to identify groups of genes whose expression or
methylation levels are significantly different, and conse-
quently associated to the trait of interest. From a statis-
tical modelling standpoint, the primary interest of these
studies lies in detecting statistically significant changes
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in average gene expression or methylation values in a
two-sample comparison. A number of standard statis-
tical tests, which are generally applied in a univariate
fashion, have been proposed for this task and generate
candidate sets of genes for further investigation [1]. Statis-
tical methods have also been developed to assess whether
these candidate genes are over-represented in pre-defined
biological pathways or subnetworks within protein inter-
action networks [2]. These developments are based upon
the principle that, in order to understand the roles of
genes in complex diseases, genes need to be studied in
the context of the regulatory systems they are involved
in [2-4].

An alternative way of analysing genome-wide expres-
sion and methylation levels observed in a random sample
consists of studying their interaction patterns, which are
often represented in the form of networks [5, 6]. Net-
work edges quantify the similarity in transcription activity
between two genes [7] or in DNA methylation between
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two CpG islands [8], respectively. The notion of simi-
larity is usually measured by linear correlation, partial
correlation or mutual information coefficients estimated
from the sample data [7, 9]. The networks arising in
the two-sample setting above can then be compared to
assess whether there are statistically significant differ-
ences in network topology that can be associated to the
disease. The detection of markedly distinct interaction
patterns across conditions may be indicative of local dis-
turbances within known biological pathways, and can be
taken as candidate biomarkers. For instance, as a cancer
progresses, it has been observed that its signalling and
control networks are subjected to re-arrangments which
are advantageous for the cancer [10]. Changes in methy-
lation levels are believed to be among the earliest and
most common alterations in human cancers [11, 12], and
topological differences in healthy and diseased networks
can reflect significant dysregulations associated to the
disease [13].

In this paper we discuss the the problem of comparing
two labelled biological networks, each one representing a
different population or condition, with the aim of detect-
ing statistically significant differences between them. We
approach this problem from a hypothesis testing perspec-
tive. This is a challenging statistical problem as only one
random network is observed under each condition. Vari-
ous computational methodologies have been developed to
compare networks, including graph matching and graph
similarity algorithms [14]. Graph matching algorithms
have been used to discover similarities between molec-
ular pathways across organisms and functions [15, 16],
but are typically limited to unlabelled graphs, and are
not concerned with hypothesis testing. Graph similarity
algorithms also assume that the graphs are unlabelled,
and the attention has mostly focused on detecting pat-
terns that are most similar between networks [17]. For
instance, gene modules can be identified separately in
each network first, and then compared across networks
[7, 18, 19]. More closely related work includes inferen-
tial methods for performing two-sample hypothesis tests
where the sampling unit is a network, and assess whether
the two paired networks come from the same assumed
model [20].

We take a non-parametric approach to inference that
does not require to make assumptions about a specific
random network model. Our premise is that any true
topological differences between the two networks would
involve only a smaller set of edges, compared to all edges
in the network, which we aim to detect. Our contri-
butions to this problem are as follows. First, we con-
sider the issue of choosing a distance measure between
two paired networks that is able to capture subtle topo-
logical differences. Second, we discuss how to establish
whether large values of this distance can be deemed
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statistically significant under a null hypothesis that the
networks are independent. Finally, we ask whether it is
possible to identify a differential subnetwork, starting
from two large networks, in a computationally efficient
manner.

The article is organised as follows. In Section The gen-
eralized Hamming distance we introduce a distance for
labelled networks, the Generalised Hamming Distance
(GHD). Building on this distance, a permutation-based
test statistic for two-sample network comparisons is intro-
duced in Section A non-parametric test for network
com- parison. Conditions for asymptotic normality are
provided so that p-values can be obtained in closed-form
without the need to carry out computationally expensive
permutations. In order to verify these results in special
cases, in Section Validation of asymptotic normality on
scale-free networks we argue that the proposed conditions
hold true for various random network models, and pro-
vide a sketch proof for the case of scale free networks.
In Section Differential subnetwork detection we describe
an algorithm, dGHD, for the detection of differential sub-
networks. In Section Results we present a number of
simulation experiments that highlight the advantages of
the proposed methodology under different graph models.
As an illustrative application of the proposed methodol-
ogy, a case-control study involving DNA co-methylation
networks in ovarian cancer is presented in Section Appli-
cation to co-methylation net- works in ovarian cancer. We
conclude with a discussion in Section Conclusions.

Methods

We assume to have observed two paired biological net-
works, each represented by a graph, denoted by A =
(V,E4) and B = (V,Ep), respectively. Both graphs are
defined on a common set, V = {1,2, ..., N}. The respec-
tive sets E4 and Ep of edges indicate the connection
between the nodes in the two graphs. We also let the
matrices A = (A;) and B = (Bj) denote the two
(N x N) adjacency matrices associated with graphs .4 and
B, respectively.

The Hamming distance (HD) between A and B pro-
vides a commonly used metric to quantify the difference
between the networks, and is defined by 3tr[(4 — B)?],
where tr[-] denotes the trace of a matrix. This distance
takes into account the number of edges that are in com-
mon between the two networks. Here we propose an
extension of this metric, which we call the Generalised
Hamming Distance (GHD), defined as

GHD(AB) = — a;; — bj; g (1)
N(N - 1) &
12
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where zz;j and b;j are mean-centred edge weights defined
as
= ! b,=b ! b
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and }; denotes summation over distinct i and j. The
edge weights, which depend on the topology of the net-
works, provide a measure of connectivity between every
pair of nodes i and j in A and B3, respectively. When a;; and
bjj are binary values indicating the presence or absence
of an edge, i.e. are the elements of A and B, GHD(A, )
is related to the HD. The specific node weights we pro-
pose here instead quantify the topological overlap (TO)
between a pair of nodes by taking into account the local
neighbourhood structure around those nodes [21]. In the
literature, the TO measure has been successfully applied
for the detection of communities in biological networks,
and there is empirical evidence that it carries biological
meaning [7, 22].

We use the one-step TO between nodes i and j indicat-
ing whether they share direct connections to other nodes.
The weights are obtained from the adjacency matrix as
follows:

DiijAiAy + A
min (31, Au — Aj X1y At — Ay) + 1

()

a,-j =

when i # j, and otherwise a;; = 1, and analogously for
bij. The GHD sums the squared differences (agj — b;j)2
over all pairs of nodes in the network. Note that the
term ) £, AitAyj is a count of all vertexes (i, /,j) contain-
ing node pair (i,7). This term measures the connectivity
information of each (i,j) pair plus their common one-
step neighbours. The denominator in (2) can be written
as min(d;, dj) + 1 — Ay, where d; and d; represent the
node degrees of i and j, respectively. It is roughly equal
to the smaller of (d;, d;) and normalises a;; such that 0 <
a; < 1. A large discrepancy between 4}, and b indi-
cates a topological difference localised around that pair
of nodes.

By exploring the neighbourhood of each node, the pro-
posed GHD can detect subtle topological changes with
higher sensitivity compared to the HD. A simple illustra-
tion of this is given in Fig. 1, where four simple networks
are shown: the network labelled (a) is taken as reference
while the three paired networks (b), (c), and (d) have been
generated by changing the position of a single edge in (a).
The two distances, HD and GHD, have been computed
to quantify the difference between (a) and each of the
other three networks. It can be observed that, whereas the
HD is unable to distinguish between the three networks,
the GHD score is more sensitive to subtle topological
variations and can discriminate between them.
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A non-parametric test for network comparison

For inferential purposes, we require computing the prob-
ability that a distance as extreme or more extreme than
the observed GHD value could have been observed by
chance only. By treating the GHD as a random variable
with unknown sampling distribution, this probability can
be estimated non-parametrically via permutation testing.
First, we specify the null hypothesis as being

Ho : networks A and B are independent. (3)

By taking B3 as reference, each permutation consists of
shuffling the labels of the nodes in A while keeping the
edges unchanged. This generates a permuted network A4,
that is isomorphic to A, and the exchangeability prop-
erty holds. In turn, this signifies that the original and
permuted networks are generated from the same underly-
ing, but unspecified, model [23, 24]. Since all permutation
networks are isomorphic, permuting the labels of the net-
work is equivalent to shuffling rows and columns of the
adjacency matrix, an approach that bears some similarity
with Mantel’s test [25] for the comparison of two distance
matrices. All the the N! possible permutations are then
collected in a set I1, and for each = € IT a permuted GHD
value is denoted as

1 \2
GHD (Ar. B) = w5 Z (a;mnw - bz-;) ,
&)

and is calculated from the edge weights a’, O after per-
mutation. The exact permutation distribution is obtained
by carrying out an exhaustive calculation of all GHD,
values, and p-values can then be evaluated as usual. In
practice, however, doing so is computationally infeasible
because the cardinality of IT is generally extremely large,
even for relatively small networks. The exhaustive eval-
uation for all permutations in IT could be replaced by
a Monte Carlo approach whereby only a smaller num-
ber of random permutations are explored. Nevertheless,
the overall computational costs remain high for networks
of the moderately large sizes observed in applications or
when this procedure has to be repeated several times, for
instance when searching for a differential subnetwork as
in Section Differential subnetwork detection.

In what follows, we propose an alternative approach that
removes the need to carry out computationally expen-
sive permutation testing altogether. We demonstrate that,
under our null hypothesis, the exact GHD permutation
distribution can be approximated well by a normal dis-
tribution with moments that can be obtained analytically,
in closed form. First, we notice that the GHD can be
rewritten in an equivalent form in terms of a generalised
correlation coefficient as follows:
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Fig. 1 Networks (b), (c) and (d) are generated from the reference network (a) by a single edge change. Both HD and GHD between the reference
network and each modified paired network have been computed in each case

2

GHD; (A7, B) = ¢ — N5 Z“ﬁruwwb?f" (4)
ij

where c is a constant that does not change under permu-
tations. By making use of this alternative representation,
we are able to exploit well-known sufficient conditions for
asymptotic normality, which can also be easily checked in
practice. For a generalised correlation coefficient of this
form, the exact permutation distribution is asymptotically
normal under two sufficient conditions [26—28]:

Za;j = Z b;j =0 and (5a)
ij ij
A 2 bbb 2
[Zijkl “ij“ik“ﬂ] _ [Zi/'kl i ik il] _
N—o0o ;o 3 —NI_I)HOO b 3
[Zijk “ij“ik] [Ziik ij ik]
(5b)

Condition (5a) follows directly from the definition of
a;j and b;j as being mean-centred. In order to gain some
insight into the meaning of condition (5b) in our context,
it is instructive to consider the case where a;; and b;; are

elements of the two adjacency matrices, i.e. they indicate

the presence of an edge. On defining a; = Z#i a;; and

— 1 .
a= g )_;a.,wehave

a;, = Za;j =a; —a, (6)
J#i
and condition (5b), with reference to network A, can be
written as

. [Zi(N“;'-)S]Z
lim ==————2 = lim —
N—o0 [Zl(Nﬂ;)Z] N—o0 [Zi(al" _ 61)2]
and analogously for B. It can be observed that, when using
the adjacency matrix, a;. represents the degree of the i
node. An analogous condition also applies to B. There-
fore, checking (5b) amounts to computing the degree of
each node in the two networks, and assessing the limiting
behaviour. When the TO measure is used instead, as in the
GHD, the coefficient ;. represents the overall topological
overlap information at node i, and can also be computed
using (6).
When both (5a) and (5b) hold true, under the null
hypothesis, the permutation distribution of GHD(A, 5)

. _ =372
[Zi(“t» “)] —0, (7)
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is approximately normal. We then standardise the GHD

value by mean-centring and normalising it, so that it

follows a standard normal distribution asymptotically,
GHD; (Az, B) — n

On

~N(0,1) (8)

where u, and o, are the mean and standard deviation of
GHD under the exact permutation distribution, respec-
tively. These two moments can be computed precisely and
in closed-form by enumerative combinatorics; the calcu-
lations follow developments described in the context of
related permutation-based testing procedures [25], and
can also be found in [29]. Here we provide explicit formula
for both 11, and o2 as follows. First, we need to define

N N N [N 2
té};:ZZa%,t:l,Z and Ta=Z aj
i=1 j=1 i=1 \j=1
N N N [N 2
tSb:Zbej»tsz and Tb:z b,j
i=1 j=1 i=1 \j=1
where af-j and bfj are edge weights with power ¢. Here

IS 25 ..
NN-D and Ny are empirical raw moment of edge

weight a;;, and analogously for b;;. Furthermore we need
to introduce the following quantities,

Ag = (ISa)Z»Ba =T, - (Zsa) ’
and C, = A, +2(3S,) — 4T,
Ap = (1517)2 By =Ty — (Sp),
and Cp = A, + 2 (3Sp) — 4T}

Then, closed-form expressions for the mean u, and

variance o2 are,
_28a 428, 2('Sa)('Sh)
Hr=NN-D NnN-12
4 4(Ba) (Bp)
o = s |2 0908) + R
(C)(Cp)  (Ag)(Ap)
(N-2)(N—-3) NN-1)]

With the expressions for the first two exact moments,
a corresponding p-value can therefore be efficiently com-
puted from the normal approximation, even for very large
networks. We will exploit the computational efficiency
gained here in Section Differential subnetwork detec-
tion, where we apply the test repeatedly on networks of
increasingly smaller size in order to detect differential
subnetworks.

Validation of asymptotic normality on scale-free networks
The closed-form approximation for the computation of
p-values only requires that conditions (5a) and (5b) are
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satisfied, and does not need any random network model
to be specified. These two conditions can also be verified
analytically in special case when certain random network
models are assumed. For instance, in [29] it was proved
that these conditions hold true for scale-free (SF), random
geometric (RG) and Erdos-Rényi (ER) network models
when using both HD and GHD distances. In this section
we provide a simplified proof for the case of SF networks
using the Hamming distance. This proof should serve as
an illustration of how these derivations can be carried out
analytically, and as simple validation of the methodology
described in Section A non-parametric test for network
comparison for SF networks. An analogous proof using
the GHD distance can be found in the Supplementary
Material, and we refer the reader to [29] for the other
models.

A SF network is a network whose node degree distri-
bution follows a power law, at least asymptotically, and
has often been used to describe real biological networks
[30-32]. The degree of each node is assumed to be
an independent and identically distributed (IID) random
variable with probability mass function defined as

Pdi=k)=ck™*, k=mm+1... K, 9)

where m and K are the lower and upper cut-offs for the
node degree, respectively, ¢ is a normalising constant, and
o represents a power exponent. It is generally assumed
that « is greater than 1, and the lower cut-off m is gen-
erally be taken to be 1. The upper cut-off K for « > 2 is

conventionally specified as K = N = [33], and generally
K =N—-1forl < o < 2. Values of « for different bio-
logical networks have been characterised, and mostly vary
between 1.4 to 1.7 [30].

On defining the weights a;; and b;; as elements of A and
B, respectively, (7) becomes

(S ]

lim ——- =0,

Ve Iy a2]

where d is the average node degree. In order to study this
limiting behaviour, we exploit the fact that both numera-
tor and denominator are powers of the centralised empir-
ical moments of the node degree distribution. We let
s = ¢ 3K @~ denote the s theoretical moment and

(10)

ms = % SN d; the corresponding empirical moment
of this distribution. In order to study the limit above we
need to characterise the order of m;, for s = 1,2,3, as N
increases. Our strategy here consists of first characterising
the order of 115 asymptotically, for the first three moments,
and establishing a correspondence with m.

We start by examining the order of ug, for s = 1,2, 3,
in the limit. Since this depends on s, we consider three
distinct cases: (a) s —a +1 < 0,(b)s —a+1 = 0 and
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(¢) s—a+1 > 0. For (a), the order of u; is 25:1 a%ld’l =
O(1). For (b), the order of wu; is Z{d(:l d~1 = o(n(K)).
Finally, for (c), we need to study how u; increases with K.
First, we apply the Euler-Maclaurin formula,

al K |x)
Y& =K 4 (@ - s)f %mdx + 0(1),
1 X
d=1

where |x] denotes the largest integer that is not greater
than x. To compute the order of Z{i(:l 45 %, we need to
know which one of the two terms in the sum dominates in
order. By applying 'Hospital’s rule we have

. Sf 1K xoz|fcsj+l dx s

lim = )

K—oo Ks—otl s—a+1

which is a finite constant, and hence ;s has the same order
as K*~**1, For a SF network, the condition for asymptotic
normality also depends on the values taken by the expo-
nent. In the case where 1 < o < 2, for which K = N — 1,
the calculation of the s moment falls under case (c),
hence we conclude that the order of the first three theo-
retical moments are, respectively, O(N>~%), O(N>~%) and
O(N*~%).

We now turn to the direct comparison of the orders of
s and mg in the limit. Specifically, we assess whether the
order of each u; established above also holds true for the
corresponding 1. This can be verified by checking that

(11)

for s = 1,2, 3, and for some positive constants ¢,. To study
the above limit, we apply the Weak Law of Large Numbers
(WLLN). For the WLLN to hold, jts must be finite. Hence
we first transform d; so that u;, after the transformation,
is finite. We let Ny = NSHs_a, and define z;; = ]‘\i—;_ . The
distribution of zg; is '

1 2 K
- NS,NS"')Nsﬁ

Pz =2) =z79, z

where ¢ = cN;. Thus the s theoretical moment of z; is
d7? 7
./ - __ ./ - —a S
) o A A=
z d

which is finite. Denoting by #1, the s empirical moment
of zy,i = 1,...,, N, we have

N N
1 1 dl' 5 Mg
NZZ;I:NZ(]VS> :Ns+1—a'

i=1 i=1

Mzs =

Now, since i, is finite and since dp,ds, ..., dn are
assumed IID, zg, 22, ...zgn are also 1ID, and according to
the WLLN, m,s converges to iz in probability. Hence we
have

ms
. Mz . stl—a . myg
1= lim = lim NM = lim —,
N—oo lzs ~ N—oo NTi—a N—00 [Us
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indicating that m; and p, are of the same order asymp-
totically. Using this result, we are able to approximate the
orders of the numerator and denominator of condition (7):

~\3
2 (di - d) = N (m3 — 2mamy + 2m3) is O (N*7*T1),

and ), (d,' — 4_1)2 = N(my — m?) is ON3~%*1). Sub-
stituting into (7), we see that the numerator is of order
O(N8®20+2) the denominator is of order O(N°3*+3)
and therefore the ratio is of order O(N*~2). Hence for
1 < o < 2, the limit in (10) is 0. By following a similar
procedure, it can be proved that the normality condition
is also satisfied when o > 3.

Differential subnetwork detection

In this section we leverage the test statistic of Section A
non-parametric test for network comparison to detect a
differential subnetwork. When comparing the two net-
works, the expectation is that only a subset of edges
would present altered interaction patterns. This task is
formulated here as the problem of detecting a subset
V* < V for which there is no sufficient evidence to
reject the null hypothesis that the corresponding sub-
networks A*(V*,E4«) and B*(V* Ep+) are statistically
independent.

An algorithm for the detection of V* should take into
account the fact that a certain degree of topological dif-
ference between A4 and B is always bound to be observed,
even when the two population networks are the same,
due to finite sample variability. The GHD test provides an
efficient way to assess the statistical significance of any
observed discrepancy between two paired networks, and
is used as a building block to derive an algorithm that
identifies differential subnetworks.

We indicate by Vi a subset of V of size K < N, and
define the centralised GHD test statistic computed by
comparing A = (Vx, E4) and B = (Vk, Ep) by

Ay, = GHD(A(Vk,Ea), B(Vk, EB)) — Iy, (12)
where v, is the mean of the permutation distribution
for node set Vx. Furthermore we define Ay, ; to be the
centralised GHD value computed by comparing the two
networks after removal of node i. The quantity

8i = Avyli — Av

measures the influence that node i has on the mean-
centred GHD test when comparing two subnetworks
defined on set Vx. We propose an iterative procedure
which removes a node or set of nodes at each step, and
generates a sequence of node sets of increasing smaller
size, i.e.

VND VN-1D...D VN



Montana et al. BMC Bioinformatics (2015) 16:327

where Npin < N is a constant indicating the smallest
allowed size of subnetwork. Starting with V, the two cor-
responding networks are compared by the GHD test, and
a p-value is computed, as described previously. For each
node indexed by i = 1,...,N, the corresponding §; is
computed, and the node associated with the largest posi-
tive §; value is removed. Given a new set Viy_1, the process
is then repeated again, and then again until a specified
minimal set size is reached.

This simple algorithm produces a monotonic sequence
of p-values that increases as the subnetwork size decreases
(e.g. see Fig. 2). The p-values should be adjusted for multi-
ple testing, e.g. by controlling the false discovery rate [34].
In the presence of a differential subnetwork, the sequence
is expected to feature a peak corresponding to the size
of the subnetwork. Specifically, for a given desired sig-
nificance level «, the algorithm finds the largest K, with
N > K > Nnin, such that the adjusted p-value exceeds
a. Clearly the algorithm benefits from the fact that p-
values at each iteration can be computed very quickly in
closed-form.

Results

In this section we report on three different simulation
experiments that have been carried out to study the
properties of the proposed methodology. Our simulations
make use of RG networks, which are plausible models
for biological networks [17, 35-37]. Two-dimensional RG
networks were generated by first uniformly sampling N
points on [0, 1]%, each one corresponding to a node in
the graph. A pair of nodes was connected by an edge if
the Euclidean distance between the corresponding two-
dimensional points was smaller than a pre-determined

threshold d.

Differential subnetwork: statistical significance

1.0

0.8

0.6
I

Adjusted p-value

0.2

o

200 400 600 800 1000
Subnetwork size
Fig. 2 Sequence of adjusted p-values produced by the dGHD algorit
hm as a function of subnetwork size. The size of the subnetwork is
progressively reduced by removing nodes that further increase the
distance between the subnetworks. For this example we simulated
2D RG networks of size 1,000 and subnetworks of size 200
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The purpose of the first simulation study was to con-
firm the asymptotic null sampling distribution of the
GHD statistic. In this case we randomly generated 10,000
pairs of networks A and B of size N = 250, with param-
eters d = 0.3 and d = 0.15. For each d value, paired
networks were independently generated, and the GHD
test was computed to detect differences between them.
As a result of this process, we obtained an empirical dis-
tribution of p-values. Under the null, this distribution is
expected to be uniform on [0, 1], and the resulting QQ
plots confirm that the empirical moments of this dis-
tribution agree perfectly with the expected theoretical
moments for a RG model; see Fig. 3.

In the second study, we compared the ability of the
GHD test to detect differential networks against three
competing tests: Mean Absolute Difference (MAD) [38],
Quadratic Assignment Procedure (QAP) [39] and Condi-
tional Uniform Graph (CUG) [40]. The MAD test counts
the number of different edges in the two networks

1
MAD(A, B) = m Z laj — bij|, (13)
i

where a;; and b;; correspond to the (i, /) elements in the
adjacency matrices of A and B, respectively. The QAP

QQ plot for RG

1.0

Empirical moments
0.4

0.2
!

I I
00 02 04 06 08 10

Theoretical moments

Fig. 3 QQ plots confirming the asymptotic null distribution of the
GHD test. For RG model, 10,000 paired networks of size 250 were
independently generated and the GHD test was applied to detect
differences between them. An empirical distribution of p-values was
obtained through 10,000 comparison for each model, which under
the null is expected to be uniformly distributed on [0, 1]. The figure
shows that empirical and theoretical moments agree
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uses edge set product statistics to test for the indepen-
dence between networks,
1

QAP(A,B) = Ty %:a,]bu, (14)
where a; and b; are again elements of the adjacency
matrices. For both the MAD and QAP tests we also used
the traditional permutation testing approach. We further
included in the study the CUG approach. According to
this procedure, random networks are generated with pre-
determined properties, such as size and density, matching
the properties of the observed networks. For each simu-
lated pair of random networks, a measure of correlation
between networks is computed, and its empirical distri-
bution is built up over many simulations. The correlation
coefficient is defined as:

Zi,j aij Zi,}' bjj
geor(A,5) = 2;: (“” NN - 1)) (b" NN - 1)) ’
where a;; and bj; are elements of the adjacency matrices
for A and B, respectively [41].

This experiment required the simulation of paired net-
works with a pre-specified degree of topological dissimi-
larity. This was achieved by generating A first, using one
of the two random models as described above. Network
B was then obtained by first making an exact copy of
A, and then randomly shuffling a fixed proportion y of
edges so that, as y increases, the dissimilarity between A
and B increases. For each given value of y, we generated
1,000 pairs of networks, computed the tests and corre-
sponding p-values, and evaluated the proportion of tests
that rejected the null hypothesis of independence ata 5 %
significance level. The results of this study are summarised
in Fig. 4 where the “power” is defined as the proportion of

Power comparisons: RG network

0.8
L

Power
0.4

0.2

T T T T T T
0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

Fig. 4 The “power” is defined as the proportion of replications when
the null hypothesis of independence is not rejected. As the noise
level y increases, the GHD test has more power to detect true
structural changes compared to competing methods. Simulations are
based on 2D RG networks

Page 8 of 13

replications, out of 1,000, when we accept the null hypoth-
esis of independence. This rises from zero at y = 0.84,
when networks are still associated, to close to 1 when a lot
of shuffling has been carried out, to produce nearly inde-
pendent networks. This figure shows that for noise levels
as large as y = 0.93, the tests based on HD consider the
two networks to be strongly associated. It is only when
reaching that threshold that their power starts increas-
ing rapidly away from zero. This suggests that the tests
based on HD may be too stringent for real application
and miss importance differential patterns. By contract, the
GHD test is able to detect differences at lower noise levels
compared to other tests and capture more subtle differ-
ences. This is not surprising as GHD is more sensitive to
topological changes, as seen in Fig. 1.

In the third simulation study, we carried out an inves-
tigation to assess the behaviour of the differential subnet-
work detection algorithm, and quantify its performance in
comparison with other tests. We report on experiments
involving RG networks .4 and B of size 1,000 and gener-
ated as described above using a noise parameter y. Two
independent subnetworks, denoted here by A* and B*,
were introduced by randomly selecting a subset V* C V
of size 200, and replacing the existing edges with con-
nections simulated from two independent RG networks.
For each value of y, we generated 100 such paired large
networks containing smaller differential subnetworks. We
term a true positive (TP) a node that is correctly iden-
tified as belonging to the differential subnetwork, and a
false negative (FN) a node that belongs to the subnet-
work but has not been detected by the algorithm. Similarly
we define false positives (FP) and true negatives (TN).
In Table 1 we report the sensitivity or true positive rate
(TPR) computed as TP/(TP + FN), and the specificity
(SPC) computed as TN/(FP + TN). For comparative pur-
poses, we have also implemented an alternative algorithm,
called dHD, which is similar to dGHD but uses the Ham-
ming distance instead for distance calculations. As can
be observed, both dHD and dGHD maintain high sensi-
tivity and specificity up to moderately high noise levels.
For noise levels at the top end of the spectrum, dHD
has slightly higher sensitivity but much smaller specificity

Table 1 Sensitivity (TPR) and specificity (SPC) of the subnetwork
detection algorithms for different values of y, the noise level. The
results are based on simulated RG networks

y 0.055 0.1 0.23 0.54 0.79 0.95

dGHD TPR 0.897 0.889 0.855 0.627 0.570 0.789
SPC 0.987 0.984 0.974 0912 0.768 0439

dHD TPR 0914 0.904 0.872 0.725 0.712 0.862

SPC 0978 0971 0956 0843 0567  0.201
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than dGHD, indicating that it detects a larger number of
incorrect nodes.

Figure 5 provides an example of simulated networks
A and B and ground truth differential subnetworks A4*
and B* as well as the differential subnetworks A* and 5*
detected by dGHD in one of the 100 simulations. The cor-
responding sequence of p-values generated by running the
dGHD algorithm in this example is shown in Fig. 2. It can
be noticed how the null hypothesis of independence is
rejected for all the subnetworks of size ranging from 1000
down to 200, at which point there is no evidence to reject
the null, and the algorithm produced large p-values for all
sizes smaller than 200.

Application to co-methylation networks in ovarian
cancer

We present an application to a case-control epigenetic
study of ovarian cancer. The dataset for this study was
originally presented in [42]. Methylation profiles for
27,578 CpGs islands were obtained from whole blood
samples in 540 women, of which 266 were samples taken
from postmenopausal women with ovarian cancer and
274 were from age-matched healthy controls. In our
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analysis we set out to compare control and case DNA
co-methylation networks in search of a differential sub-
network.

Raw data files were downloaded from GEO (repos.
number GSE19711), and were obtained from Illumina
Infinium 27k Human DNA methylation Beadchip v1.2.
The raw data was pre-processed by using the 1umi pack-
age in R [43]. After quantile normalization, PCA applied to
the beta value was used to detect and remove extreme out-
liers. After quality control, 243 control samples and 215
case samples remained for further analysis. The networks
was inferred by taking each probe as a node. Following
[44], an adjacency measure was computed as w; = (1 +
cor(g;, g))/ 2|7 where cor(g;, gj) denotes the Pearson’s cor-
relation coefficient between beta values observed at the
i and j™ CpG sites. The power exponent b was set to a
default value of 12 so as to place more emphasis on higher
positive correlations [7]. Two nodes were linked in the
network if w;; was higher than 0.2 so that the presence
of an edge indicates a strong correlation. This value also
yields networks that roughly follow a SF model (see Fig. 6).
The number of resulting edges is 48,224 and 75,913 in the
control network A and case network B, respectively.

edges colored red. Please refer to Table 1 for full results

Fig.5 ExampLe of differential subnetworks detected by dGHD using 2D RG networks. A* and B* are the true simulated independent subnetworks,
and A* and B* are the subnetworks detected by the algorithm (y & 0.23). Nodes belongs to differential subnetwork are coloured in green, and
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Control network

-5 -4 -3 -2

Log node degree distribution
-6

Case network

Log node degree

Fig. 6 Node degree distribution for control and case co-methylation networks. Both plots shows that the networks roughly follow SF network models

Log node degree

At a significance level of 5 % and after correc-
tion for multiple testing, the dGHD algorithm detected
a subnetwork of size 1,642, with 1,954 edges in A*
and 12,556 edges in B*. The two resulting subnet-
works are presented in Fig. 7. Although the algorithm
does not constrain the differential networks to be con-
nected, they both comprise a number of connected
subgraphs. The Walktrap community detection algo-
rithm, as implemented in the R package iGraph [45],
was used to identify communities in these two subnet-
works, as shown in the figure. The density of the six
largest communities, which are denoted Cy,...,Cs, dif-
fers quite substantially between control and cancer net-
works. In almost all communities, the density is much

higher in B*, with the exception of Cg, where it is higher
in A*.

To gain initial insight into the biological meaning of
the subnetworks and the communities within them we
used the R package GOstat [46] to identify enriched
Gene Ontology (GO) terms within two broad categories,
Biological Processes (BP) and Molecular Functions (MF).
At a 5 % significance level, the hypergeometric test
detected 762 BP and 154 MF statistically significant terms
enriched in the subnetworks where most of these terms
can be found in 6 communities. For instance, the top
three BPs were response to stimulus, cellular response
to stimulus and response to chemical stimulus, and the
top three MFs were protein binding, collagen binding

o AT

Fig. 7 DNA co-methylation networks: differential subnetworks .A* (controls) and B* (cases) detected by dGHD algorithm. Six main communities
within the subnetworks are characterised by a much higher network density in cancer patients compared to healthy controls. Differential
methylation is mostly concentrated in C;, C3, Cs and Cg (See also Table 2 and Fig. 8)
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and RNA polymerase II transcription cofactor activity.
Furthermore, we carried out a pathway enrichment anal-
ysis to identify any significantly enriched KEGG path-
ways. At a 5 % significance level, 12 pathways were
found to be enriched, including hematopoietic cell lin-
eage, acute myeloid leukemia, and regulation of action
cytoskeleton.

Probes showing statistically significant changes in mean
methylation levels were detected by a two-sample SAM
statistic as implemented in the R package samr. After
Benjamini & Hochberg correction for multiple testing,
2,770 probes were found to be differentially methy-
lated (DM) at the 5 % significance level. Of these, 620
were also found in the differential subnetworks, 90 %
of which are concentrated in communities Cy,Cs,Cs and
Ce. For example in community Cs, there are 109 probes
in total, half of which (54) are differentially methylated.
Figure 8 shows the distribution of DM probes in the
subnetworks. These results suggest that a differential
analysis based exclusively on detecting mean levels of
differential methylation may miss important differences
that can only be identified by comparing the interaction
networks.

Table 2 provides a breakdown of the number of
probes, differentially methylated probes (g;), density ratio
between control and case subnetworks (R;), and dis-
tribution of enriched GO terms and KEGG pathways
in the 6 communities (see also Fig. 7). Replicated GO
terms and pathways involved in different communities
were excluded in the subtotal. In C5 we found that
all top 6 ranked significant BP terms were related to
interleukin-3 (IL-3), a cytokine that is made by leuko-
cytes and other cells in the body. IL-3 can increase
the number of leukocytes, neutrophils, and platelets
made by the bone marrow [47]. As Myelosuppression
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induced by chemotherapy is closely related to the effect
of IL-3 in blood cells when suppressing a tumor dur-
ing the therapy [48], this may offer a possible expla-
nation for the observed enrichment results. A possible
explanation for the observed difference in the C¢ clus-
ter may be related to hypermethylation being linked to
cancer [49, 50].

Conclusions

The comparison of DNA methylation or gene expres-
sion profiles across conditions is enabling the discovery
of novel biomarkers for diagnosis or prognosis, and holds
the promise to identify novel targets for therapeutical
intervention. In this paper we have discussed the prob-
lem of comparing two labelled networks that are rep-
resentative of two conditions (e.g. healthy and diseased
tissues) and detecting statistically significant differences
in their topology. Identifying disrupted interaction pat-
terns in two labelled network comparisons is a challenging
problem requiring novel statistical tools, and three con-
tributions have been made here in this direction. Firstly,
we have proposed the GHD, a distance between two
labelled networks that detects more subtle differences
compared to the traditional Hamming distance. Secondly,
we have demonstrated that the GHD can be used as a
non-parametric test to assess whether two paired net-
works are statistically independent, and have described
how p-values can be computed in closed-form without
requiring computationally expensive permutation proce-
dures. The plausibility of the conditions underpinning our
derivations has been discussed using scale-free random
network models as an example. Thirdly, we have proposed
a fast subnetwork detection procedure, the dGHD algo-
rithm, to detect localized topological differences between
two paired networks. This methodology provides a useful

A*

co-methylation networks

B*

Fig. 8 Visualization of the distribution of differential methylated probes (red) in differential subnetworks detected by dGHD in the DNA
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Table 2 DNA co-methylation networks: a summary for different
communities

C Cy Cs C4 Cs Ce Subtotal Overall
# of probes 418 66 109 34 347 200 1174 1642
qi 4 66 54 1 338 97 560 620
Ri 181 013 012 0 .002 234 145 156
BP 320 25 38 22 236 54 568 762
MF 54 4 15 3 43 27 125 154
KEGG 5 0 1 1 0 1 8 12

addition to standard two-sample tests that are commonly
used for biomarker discovery. An initial evaluation has
been carried out by comparing co-methylation networks
inferred from healthy and cancer patients, and detecting
differential subnetworks. Further experimental evalua-
tion on independent datasets will be required to validate
these results. In future work, the methodology could be
extended to the case of more than two conditions.
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