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Abstract

Motivation: Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole
human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads
associated with NGS technologies requires care and sophistication in order to draw compelling inferences about
phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant
calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling
can come at a computational cost.

Results: We describe our experience implementing and evaluating a group-based approach to calling variants on
large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy
and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the
individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon
supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization
considerations into our workflow while calling variants on 437 whole human genomes generated as part of large
association study.

Conclusions: We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient
manner. We argue that studies like ours should motivate further investigations combining hardware-oriented
advances in computing systems with algorithmic developments to tackle emerging ‘big data’ problems in biomedical
research brought on by the expansion of NGS technologies.
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Background
Recent advances in next-generation DNA sequencing
(NGS) technologies have increased the efficiency, reli-
ability, and cost-effectiveness of sequencing, leading to
ever-expanding amounts of high-quality data [1]. How-
ever, NGS reads have limited biological utility without
reliable downstream processing and analysis, including
read-quality assessment, alignment to a reference genome,
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assembly, variant identification, and individual genotyp-
ing [2]. While the tools for performing these steps have
improved, processing a whole genome from generating
and assessing the quality of the reads to calling and geno-
typing variants among a set of individuals remains an
expensive and time-consuming component of sequenc-
ing studies. Furthermore, the reliability of genotyping
from sequence data depends on accurate identification
and accommodation of sequencing errors, which can
be overcome to some degree by quality-control steps
and by processing large numbers of sequencing reads
simultaneously.
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Here, we describe an efficient approach for obtaining
high-quality variant calls and genotype assignments from
a large set of whole human genomes sequenced on an
Illumina HiSeq 2500 platform. Our approach exploits a
‘group calling’ framework to minimize genotype assign-
ment errors that arise from an incomplete knowledge of
sequencing error rates and inconsistent coverage of the
genomes being processed. Essentially, group calling lever-
ages reads obtained from more than a single individual’s
genome in order to make more confident claims about the
presence of a variant allele in any single genome.
This strategy can help mitigate false positive variant

assignments but does have a few drawbacks, including
the need to analyze individuals in a group with similar
genetic backgrounds given varying allele frequencies and
population-specific variants on a global scale [3]. In addi-
tion, the identification of de novo and very rare variants
might be compromised with a group calling approach
unless sensitivity to their possible existence is permitted.
We showcase our strategy on 437 whole human genomes
sequenced to ~35× coverage and describe our implemen-
tation and results in detail.
Implementing variant calling workflows and computa-

tional schemes in an appropriate computing environment
for studies involving large cohorts like ours is not triv-
ial, as simply ingesting and storing the massive volume of
data requires care and sophistication. In addition, design-
ing and running a group calling workflow at large scale
comes with unique challenges in high-throughput, data-
intensive computing that are simply not present in small
scale studies. In order to overcome the computational
and storage requirements associated with the proposed
approach and scale of our study, we leveraged computing
facilities at the San Diego Supercomputer Center (SDSC)
and in particular the Gordon computing system [4]. The
Gordon system is unique among supercomputing systems
and has many state-of-the-field features including a large
amount of high-bandwidth memory per processing node,
enough high-performance disk capacity to support all of
the input, output, and intermediate data generated during
a NGS analysis, and local flash-based storage to support
the very intensive input and output operations necessary
for implementing group calling workflows.
In order to process raw NGS reads and generate variant

calls, we implemented the Broad Institute’s best prac-
tices pipeline recommendations, using the Genome Anal-
ysis Toolkit (GATK v2.7.2), including theHaplotypeCaller
algorithm for calling variants [2, 5, 6]. This pipeline, like
others, works in steps that include assessing the qual-
ity of the sequencing reads, aligning them to a refer-
ence genome, quality-control steps to improve variant
identification, and assigning individual genotypes at each
position in the sequence. Each of these steps has differ-
ent computational requirements, including the number

of concurrent computing nodes or ‘threads’ the step can
use, how much memory it will need, how much imme-
diate storage or ‘disk bandwidth’ it can consume, how
many input/output (IO) operations per second (IOPS) it
generates, and how much time it will take. In order to
minimize cost, we optimized the steps involved to make
them run as efficiently as possible on Gordon by run-
ning them in parallel across different components of the
system where possible and appropriate. Furthermore, we
were able to leverage several computing nodes containing
large amounts of flash memory in addition to the default
computing nodes on Gordon.
After benchmarking different strategies for variant call-

ing we settled on using GATK’sHaplotypeCaller in groups
of 20–24 genomes. This number of genomes per group
was determined to balance computational efficiency with
reliability of the variant calls. Furthermore, we found that
variation in the ancestral backgrounds of the individuals
used in a group influences the accuracy of variant calls
and, consequently used groups consisting of individuals
with similar ancestral backgrounds. Ultimately, our results
provide insight into the computational challenges that
researchers will face in the emerging era of ‘big data’ ana-
lytics in biomedical research and suggest that it is possible
(and in fact critical) to incorporate sophisticated comput-
ing platforms with advanced algorithms and software to
meet this challenge.
In this paper, we describe the resources used, vari-

ant calling approach, workflows, and the resulting variant
calls from 437 whole genomes. First, we consider qual-
ity control steps pertaining to the reads and computing
strategies to mitigate the computational burden associ-
ated with these steps. Next, we focus on the construction
of the groups within which variant calling was pursued
and, in particular, the influence of group size and the
ancestry of the individuals in those groups. An assessment
of the accuracy, sensitivity, and specificity of our group
variant calling approach is provided by leveraging a gold
standard human genome from the National Institute of
Standards and Technology (NIST) [7]. We finally consider
a comparison of our group variant calling with a simpler,
oft-used single genome variant calling pipeline. We close
with a discussion of additional computational aspects and
limitations of our study as well as suggestions for future
directions.

Results
Alignment and read processing
Mapping/Merging
When mapping reads with BWA, we attempted to use
multi-threading over 16 cores per read group, but found
that the mapping speed did not improve linearly with
the number of computing threads (Fig. 1b). Therefore, we
specified 8 threads per read group as a more cost-effective
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Fig. 1 Technical summary of processing pipeline. a Storage requirement (GB) per sample for output file of each processing step. b Computational
cost of mapping raw reads versus file size with 8 (green) or 16 (blue) computing threads. c Computational cost (SUs) per sample for each processing
step. d Computational cost of PrintReads step versus file size with 8 (green) or 16 (blue) computing threads

approach. The output of the mapping stage resulted in an
uncompressed sequence alignment/map (SAM) format-
ted text file that is ~4× larger than a compressed fastq file
(~400–500 GB/sample; Fig. 1a, Additional file 1: Table S1).
Subsequent compression of the SAM file resulted in a
BAM file requiring only 25–30 % of the storage space,
thereby reducing the overall footprint of aligned read files
from ~175 TB to ~60 TB (Additional file 1: Figure S1A).
The merged BAM file was comparable in size to the sum
of the files containing individual read groups.

Sorting
When sorting a single whole human genome, upwards of
800 temporary files are generated, totaling up to 150 GB
per genome. These files are repeatedly opened, read, writ-
ten, and closed, imposing demanding IO performance. To
fully utilize the sixteen CPU cores on each node, a sin-
gle compute node must be capable of processing 2.4 TB of

intermediate data spread across over 10,000 files. Unfor-
tunately, the large parallel file systems available on most
massively parallel supercomputers are designed to deliver
high streaming bandwidth, not high IOPS [8, 9], and
sorting several dozen genomes concurrently on Gordon’s
Lustre file system resulted in severe performance degra-
dation. To circumvent this issue, we utilized 2 “BigFlash”
nodes, each with 4.4 TB of SSD flash storage.
The ability to write the temporary files to the flash

space allowed us to maintain very efficient CPU utilizia-
tion through the sort step by processing 32 genomes
(16 per node) concurrently without being limited by IO
performance, ultimately decreasing both the computa-
tional cost and wall time for this step. Without this ability,
job packing would have been impossible and sorting the
reads could have come at a needlessly high computational
cost as a result of the IO limitations. The output file from
the sorting step resulted in a slight compression from the
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unsorted input BAM file, requiring ~15 % less space than
the unsorted file.

Realignment/Recalibration
When running, we allotted ~8GB ofmemory per genome,
allowing us to process 8 samples on a 64 GB node. Thus,
2 cores were designated for each instance of MarkDu-
plicates. This approach prevented the possibility of mul-
tiple job submissions exceeding the available memory
and causing run errors. The RealignerTargetCreator step
was similarly designated 8 GB of memory per genome
and IndelRealigner steps utilized 12 GB of memory per
genome, so 8 and 5 samples were run on a single node,
respectively. This approach prevented memory allocation
errors arising frommemory exhaustion. BaseRecalibrator,
on the other hand, could be run in parallel and was mul-
tithreaded to 8 cores per genome. Finally, PrintReads was
run in parallel over 8 or 16 cores. When we established
that specifying 16 computing threads yielded no perfor-
mance increase, subsequent jobs were multithreaded over
8 cores (Fig. 1d).
The output from RealignerTargetCreator and BaseRe-

calibrator were negligible in size, while the output of
MarkDuplicates and IndelRealigner were BAM files com-
parable in size to the sorted BAM file. The final, recali-
brated BAM file was roughly double the size of the input
BAM file and approximately 200 GB were required for
each sample (Fig. 1a). Given the extraordinary amount
of data being processed and generated, it is important
to remove large, intermediate files after subsequent pro-
cessing has been completed to minimize required storage
resources. Without deleting intermediate files during the
processing phase, each sample would require >1TB of
storage space, totalling nearly half a petabyte for our
cohort of 437 individuals (Additional file 1: Figure S1A).
We suggest using correlations between input and output
files sizes as one indication of successful completion of
processing steps prior to deleting intermediate files from
previous steps (Additional file 1: Figure S1B).

Variant calling
Computing time
By comparing variant calling approaches using differ-
ent group sizes, we show that the total computing time
required to call variants for a group grows quadratically as
the group size increases (Fig. 2a). Consequently, as group
size increases, the "per sample" cost of calling variants
sharply reduces at first, but then increases linearly when
the group size is large (Fig. 2b). We estimate that the "per
sample" cost of variant calling reaches a minimum for
groups of ~15 individuals. Any computational cost bene-
fit of group calling is lost when the group size reaches 75
and the cost increases linearly from there (~60 % increase
per 100 individuals). For particularly large groups (>100),

variant calls were made on only a fraction of chromosome
21 before the job timed out after 72 hrs (Additional file 1:
Figure S3).

Accommodating ancestry
To further guide or grouping approach for variant calling,
we called variants on portions of the NA12878 genome
in groups with varying ancestral background (Additional
file 1: Figure S4B). Concordance, defined as the fraction
of variant calls made in all four ancestral test groups,
amongst all four test groups tended to be higher after
variant filtration was applied than in calls prior to filter-
ing. Concordance was also higher for SNVs than indels
(Additional file 1: Figure S5). For indels, over 87 % of vari-
ant positions were identified in at least 3 of 4 groups,
while SNVs had greater than 90 % concordance amongst
all test groups with over 95 % of SNV calls being made
in at least 3 of 4 groups. To test the hypotheses that
ancestral background of a group would affect the sen-
sitivity and specificity of the variant calling process, we
used a validated set of variant calls in high-confidence
regions of the NA12878 genome [7]. We found evidence
that the number of false negative SNV and indel calls
was affected by the ancestral background of the group,
but not the number of false-positive variants, suggest-
ing that ancestral environment has a greater influence on
sensitivity than specificity (Additional file 1: Figure S6).
Because the NA12878 genome is of European ances-
try, we investigated whether the estimated percent of
European ancestry within a test group had an effect on
the number of false-negatives or false-positives called on
NA12878. The results were consistent with the initial
results, indicating a positive correlation between sensi-
tivity and the estimated fraction of European admixture
within the test group for SNVs and indels after con-
trolling for region of the genome (Fig. 2c). Again, there
was no effect for the specificity of variant calls (Fig. 2d).
Similarly, there was a positive correlation between over-
all accuracy and negative predictive value and fraction
of European admixture, respectively, but no correla-
tion with positive predictive value (Additional file 1:
Figure S7). These results suggest that calling variants
in groups of similar ancestry could result in fewer
missed variant calls than a heterogenous group con-
taining a high degree of admixture. Thus, in order
to obtain high-quality variant calls in a computation-
ally efficient manner, we called variants on the indi-
viduals in groups of 20–24 based on shared ancestry
(Fig. 2e).

Variant call comparison
Summary
The resulting variant calls were compared on an indi-
vidual scale and as a cohort with variant calls made
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Fig. 2 Variant calling assessment. a Total computational cost (SUs) of calling variants on chromosome 21 in varying group sizes. Adjusted R2
provided for linear (purple) and quadratic (green) fits. b Computational cost per sample (relative to individual variant calling approach) of calling
variants on chromosome 21 in varying group sizes. Adjusted R2 provided, assuming linear (purple) and quadratic (green) fits for total computational
cost. c, d Sensitivity c and specificity d of variant calls on NA12878 versus estimated proportion of European admixture within a group (normalized
by chromosome). e Admixture estimates of groups used for variant calling
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using the conventional pipeline. Our approach yielded
29,915,861 positions in which a SNV was identified
across all 437 samples, while the conventional pipeline
identified 30,790,918 SNV positions across 435 samples.
Of those positions, both pipelines identified 27,247,530
(~81.4 %), while 3,543,283 (~10.5 %) were identified
only by the conventional pipeline and 2,668,331 (~8.0 %)
were identified only by our pipeline (Fig. 3a). Con-
cordance between pipelines, defined as the intersection
versus the union of variant sites for the pipelines, var-
ied greatly for each individual as well, ranging from
71–82 %, and displayed a bimodal distribution (Fig. 3b).
Surprisingly, our pipeline called, on average, more SNVs
per genome despite identifying fewer unique positions,
though the number of variants called on an individual
varied between pipelines (Fig. 3a,c), and additional evi-
dence of a batch effect is apparent in the conventional
workflow.

The most glaring difference between variant call sets
was the dearth of variant calls made by the conventional
pipeline in the highly polymorphic human leukocyte anti-
gen (HLA) region of chromosome 6 (Fig. 3d). The con-
ventional workflow resulted in only a handful of calls in
this region, while our own pipeline made tens of thou-
sands of calls on the cohort. This may partially explain
why our pipeline identified more SNVs per individual but
fewer positions overall. This discrepancy could have stag-
gering consequences in an association study, given the
importance of the region in many autoimmune diseases.
Other regions of inconsistency between call sets appeared
most commonly near centromeres and telomeres. Often,
both pipelines made variant calls in these regions that
were inconsistent with one another (Additional file 1:
Figure S9). This could be a result of poor local align-
ment in these particular regions. We further considered
the prevalence of variant calls on each chromosome. After

Fig. 3 Comparison of conventional and HC variant calls. a Average number of variants called per genome by HC (green), conventional (blue), or
both (orange). b Distribution of percent concordance between conventional and HC calls for 437 samples. c Number of variant calls made by
conventional pipeline versus number of variant calls made by HC for each patient, colored by self-reported race. d Number of pipeline specific
variant calls per 100 Kb in HLA region
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removing variants from the HLA region, the conven-
tional pipeline resulted in more unique variant positions
on each of the 22 autosomes and the X chromosome,
while our own pipeline resulted in more unique calls on
the Y chromosome and additional unmapped contigs, the
latter of which were not included in the reference coor-
dinates for the conventional pipeline (Additional file 1:
Figure S10). This is consistent with the fact that the
conventional pipeline yielded far more pipeline-specific
variant positions overall.
In addition to differences in the location of variant calls

between the two call sets, we considered differences in
the frequency, novelty, and classification of variant calls
made exclusively by each pipeline. Of the variant calls
made by a single pipeline, a slightly higher proportion of
our calls were rare (minor allele frequency (MAF) <1 %
in our cohort), while a slightly higher proportion of calls
made by the conventional pipeline were low-frequency
(MAF 1–5 %). A similar proportion of calls made exclu-
sively by each pipeline were common (MAF >5 %
(Additional file 1: Figure S11). Furthermore, a larger frac-
tion of the calls made specifically by the conventional
pipeline were novel (not identified in dbSNP) than those

made only by our own pipeline. The same pattern holds
true when considering only variant calls outside of the
HLA region. In the HLA region, the majority of variant
calls made exclusively by our pipeline were known vari-
ants, while the majority of the relatively few calls made in
that region only by the conventional pipeline were novel
(Fig. 4b). Finally, calls made exclusively by our pipeline
had a transition to transversion (Ti/Tv) ratio much closer
to the 2.19 expected for a whole human genome than
did calls made by the conventional pipeline. The same
trend is true for variants in the non-HLA region of the
genome, and the difference is especially apparent for vari-
ants within the HLA region (Fig. 4c). These data suggest
that the variant calls made by our pipeline are generally
more consistent with what is expected than those made by
the conventional pipeline.

Impact
We further assessed the location of variant calls relative
to functional elements in the genome and the predicted
functional consequences of those variants. Excluding vari-
ants in the HLA region, we discovered that there were
more calls specific to the conventional pipeline in inter-

Fig. 4 Summary of pipeline-specific variant calls. Proportion of novel variant sites and Ti/Tv ratios for pipeline-specific calls. a Variants across the
genome. b Variants in HLA region. c Non-HLA variants
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genic, intronic, exonic, 3’ untranslated region (UTR), and
noncoding RNA (ncRNA) regions than calls made exclu-
sively by our pipeline. This effect was most striking for
3’ UTR regions, while our pipeline actually resulted in
slightly more calls in 5’ UTR regions (Fig. 5a,b). When
we normalize to the total number of variants uniquely
called by each pipeline, we see that our group calling
strategy resulted in a higher proportion of calls landing
in intergenic, exonic, 5’ UTR and ncRNA regions than
the conventional pipeline-specific calls (Additional file 1:
Figure S12A). In assessing the coding impact of the
pipeline-specific variants in non-HLA regions, we found
that the conventional pipeline made more calls predicted
to result in nonsynonymous amino acid changes, while
calls specific to our pipeline resulted in more synonymous
and nonsense variant calls (Fig. 5c). Spurious variant calls
would not be subject to real-world natural selection, so
one might expect to find an enrichment of deleterious

variants in a set of false-positive variant calls; however,
this would need to be validated with functional assays. It
should be noted that our group calling workflow-specific
calls contained a higher proportion of, albeit fewer, variant
calls in all three categories (Additional file 1: Figure S12B).
To further evaluate the accuracy of our variant calls

relative to those made by the conventional pipeline, we
performed principal component analysis (PCA) and com-
pared the clusters formed by plotting the first two PCs
against one another. These measures have been shown
to represent the geographical separation amongst differ-
ent populations, with individuals from similar ancestral
backgrounds clustering together.While variant calls made
by our pipeline result in clusters that recapitulate self-
reported race and ethnicity, calls made with the con-
ventional pipeline show a batch effect with no biological
interpretation. Two distinct European clusters are present
along with two distinct clusters of Asian and Hispanic

Fig. 5 Impact of variability between pipelines. a Number of intergenic and intronic pipeline-specific variants. b Pipeline-specific variants in exonic,
UTR, and non-coding RNA elements. c Functional impact of pipeline-specific protein-coding variants (blue = Conventional; green = HC;
light = Novel; dark = Known). d Principal components 1 and 2 calculated from genotypes (MAF >1 %) using variants calls from conventional (left) or
HC (right) pipelines. Individuals coded by self-reported Race (red = American Indian/Alaska Native; orange = Asian; yellow = Multiple; green = White;
blue = Black/African American; purple = Other) and Ethnicity (circle = Hispanic/Latino; triangle = Not Hispanic/Latino)
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individuals extending away from their respective Euro-
pean clusters (Fig. 5d). These results suggest that some
non-biological process is resulting in a large proportion of
genomic variation in this cohort when the variants from
the conventional pipeline are considered. Using variant
calls that do not reflect the biological reality of the patient
would lead to spurious results in an association study.
Our results speak to the importance of the sophistica-

tion of variant calling workflows in obtaining high-quality
data for use in association studies. Furthermore, we high-
light the importance of efficiency in large-scale sequenc-
ing studies and describe an approach that yields reliable
variant calls in a computationally efficient manner.

Discussion
While traditional chip-based, genome-wide association
studies (GWAS) have proven to be useful in biomedical
research settings, they have limited utility for discov-
ery of rare variant associations. Due to the high cost of
NGS technologies relative to targeted genotyping arrays,
whole-genome sequencing (WGS) has seen limited use
in GWAS. However, since the first human genome was
sequenced and assembled just over a decade ago, the cost
of sequencing has fallen dramatically [1, 10, 11]. As a
result, the amount of NGS data being produced is increas-
ing rapidly with hundreds of thousands of whole human
genomes likely to be sequenced over the next few years.
The ability to efficiently and reliably obtain an individual’s
genotype at any location in the genome via sequencing has
motivated genome-wide association studies that leverage
DNA sequence data rather than traditional chip-based,
targeted genotyping information [12]. The need for larger
studies that consider rare and de novo variants obtained
via NGS is especially apparent if one wishes to investi-
gate the contribution of such variants to complex disease.
This will result in extraordinary amounts of raw data in
need of storage, processing, and subsequent analysis and
interpretation.
NGS technology, with its inherent limitations in library

preparation and machine errors, results in errors and
biases in the sequence data generated. Furthermore, it
relies on relatively short reads that must be aligned to a
reference genome and processed before variants are called
and genotypes are assigned to individuals. Consequently,
the variant identification and genotyping results can vary
depending on the quality and complexity of the variant
calling workflow and algorithms used. Variant calling and
genotyping steps require computational resources beyond
the capabilities of a typical desktop system. For exam-
ple, more sophisticated variant calling workflows tend
to include additional recalibration and local realignment
steps that better account for sequencing errors and nat-
ural genetic variant and result in more reliable genotype
assignment, but require more computing resources than

simpler pipelines. Nevertheless, the quality of data is of
the utmost importance since unreliable genotyping can
lead to spurious disease associations. As associations are
identified, annotations made, and databases built, the
need for high-quality data to provide meaningful insight
into the genetic variants that are accurately linked to
phenotype cannot be stressed enough.
In this light, it is critical to improve the efficiency with

which NGS data are processed. Much of that processing
is likely to be accomplished using cloud-based services
such as those offered by Amazon, Microsoft, or Google.
Computational core hours are the effective currency of
most supercomputing platforms, and often have a direct
translation to actual costs (e.g., core hours run between
$0.05 and $0.11 per core-hour on commercial clouds,
though supercomputing platforms tend to be more cost-
effective). In addition, while computational inefficiencies
can be tolerated with smaller studies, as studies recruit
more patients to undergo WGS, such inefficiencies can
accumulate and cost tens of thousands of dollars in com-
puting time. As such, minimizing the number of core
hours used is critical to ensuring overall cost-effectiveness
of any large-scale study, especially population-based stud-
ies using WGS. Our experiences and results leveraging a
group calling approach to variant calling and genotyping
implemented on a supercomputer could provide further
motivation to evaluate costs and efficiencies in handling
NGS data at scale. By leveraging the Gordon computing
system at SDSC, we assembled a processing and vari-
ant calling pipeline that makes efficient use of Gordon’s
unique capabilities.
Several steps allow multi-threading of processes, but

performance often does not scale linearly with the num-
ber of cores used. As a result, utilizing fewer cores may
prove to be more cost-effective in some instances, as
demonstrated by our experimentation with BWA mem
and GATK’s PrintReads. Less parallelized approaches may
prove more computationally efficient, but increase wall-
time. Thus, one should find a balance between computa-
tional efficiency and speed depending on one’s immediate
goals. For example, identifying variants on a tumor in
order to guide treatment should focus on a quick turnover
of the data while a genome-wide study of large cohorts
should aim for computational efficiency.
Additionally, when single jobs could not be multi-

threaded, we packed several similar jobs onto a single
node in order to avoid being charged for idle cores. We
found that grouping together many logical tasks of the
same pipeline stage (e.g., marking duplicate reads) as a sin-
gle job submission resulted in significantly greater com-
putational efficiency than submitting all pipeline stages
as a single job. Given the fact that many large clusters
(with 10,000 cores or more) only accept jobs that request
resources in whole-node increments (e.g., 16 cores and 64
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GB RAM on the SDSC’s Gordon), grouping logical tasks
of the same pipeline stage offered two-fold benefit over
submitting a complete multi-stage pipeline as a job. First,
all tasks of a common pipeline stage exhibit generally uni-
form resource requirements in terms of wall time and
core and memory utilization, which ensures that one task
does not take significantly longer than all others within a
single job and leave the allocated node largely idle. Fur-
thermore, specifying more cores than are necessary for a
given step can lead to a tremendous increase in computing
costs. If this issue is not addressed, one could wastefully
consume hundreds of thousands of hours of computing
time when scaling up to large cohorts of whole human
genomes (Fig. 1c, Additional file 1: Figure S2). For jobs
that required more memory, the limiting factor was the 64
GB of memory per node. Thus, if a job required 8 GB of
memory to process a single file, we specified 2 cores for
each instance, limiting the number of instances that could
be run in that job while making our pipeline very reliable
and minimizing the number of failed jobs resulting from
memory allocation errors. Second, launching groups of
common tasks together allows these stages to reserve spe-
cialized resources such as BigFlash nodes or largememory
nodes only for the stages where they are essential. While
they promote computational efficiency, the use of these
specialized resources may prove to be a bottleneck in
processing large cohorts if they are not readily available.
This job packing approach that stresses similar computa-
tional requirements of each step saves tremendously on
computing costs. Processing a single genome from start
to finish on a single full node would result in idle cores
and result in a 16-fold over charging during certain steps
in the pipeline. Thus, we again emphasize that efficient
and balanced use of software and hardware resources on
advanced computing platforms is paramount.
When calling variants on 437 whole human genomes in

groups, we also considered group size and ancestral back-
ground. It has been previously suggested that all samples
should be considered in one large group during variant
calling; however, the computational cost of calling a large
cohort simultaneously makes this approach prohibitively
expensive. We found a quadratic increase in overall com-
puting time for variant calling as group size increased and
a linear increase in "per-sample" computing time when the
group is large. As a result, we predict that calling variants
on our entire cohort in one group would result in a com-
putational cost ~5× greater than our approach of calling
variants in groups of 20–25 individuals (Fig. 2b). Similarly,
calling variants on individuals would have been roughly
~40 % more expensive than our approach and would not
have taken advantage of the increased power of group
calling to detect variation in regions of low coverage.
To avoid the prohibitively long compute time, while

retaining the power associated with group-calling, we

explored approaches to grouping samples from a large,
admixed population. Our results suggest that calling vari-
ants in a group with genomes from a similar ancestral
background increased the sensitivity, but had no dis-
cernible effect on the specificity of variant calls. With this
in mind, we placed samples into groups of similar ances-
tral background and called variants in 19 separate groups.
When more efficient algorithms for variant calling are
developed and it is possible to identify variants on a large
cohort at a reasonable computational cost, one may con-
sider the advantages and disadvantages of using a single
large group, but at the moment that approach remains
computationally prohibitive.
The variant calls from our group-based pipeline dif-

fered significantly from those provided to us from a con-
ventional pipeline. As opposed to the the conventional
workflow used to initially call variants, we included recal-
ibration and realignment steps designed to increase the
accuracy of subsequent SNV and indel calls. Furthermore,
we employed the HaplotypeCaller command, which uti-
lizes a de novo assembly approach in assigning genotypes
to an individual’s genome. This feature is complemented
by a group-calling approach that considers haplotypes
from several ancestrally similar samples at once, thereby
increasing the power to detect variation in regions of low
coverage for a single genome. The differences between the
two pipelines could yield significantly different results in
association studies.

Conclusions
When comparing the calls made by our group calling
workflow and the previous workflow, we found that the
previous set of calls generated a dearth of variant calls
in the highly polymorphic HLA region of chromosome
6, while our own pipeline identified tens of thousands
of variants in that region. In assessing the reliability of
calls in this region and throughout the genome, we uti-
lized the Ti/Tv ratio as a measure of reliability. The variant
calls made by our pipeline had a Ti/Tv ratio closer to the
expected value of 2.19, supporting our claim of greater
reliability from our own pipeline. Furthermore, when
assessing the principal components and the distribu-
tions of the genotype assignments from the conventional
pipeline, we identified a large batch effect that is likely
an artifact from the workflow. When utilizing the same
raw data processed through our own pipeline, the batch
effect disappeared, and the principal component anal-
ysis accurately clustered samples by their self-reported
biogeographical ancestry.
As a result of our experiences, we have several rec-

ommendations for processing large numbers of genomes
(Table 1). First, consider parallelizing in a manner that
reduces computational cost rather than overall speed,
as demonstrated by mapping on 8 rather than 16 cores
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Table 1 Recommended job packing approach for best practices
pipeline. Assumes node with 16 processors and 64 GB of memory

Step Tool Memory per Cores per Commands
command (GB) command per node

Map BWA 32 8 2

Bam Samtools 4 1 16

Merge Samtools 4 1 16

Sort Samtools 4 1 16

MarkDuplicates PicardTools 7 2 8

TargetCreator GATK 7 2 8

IndelRealigner* GATK 12 3 5

BaseRecalibrator GATK 30 8 2

PrintReads* GATK 30 8 2

HaplotypeCaller GATK 60 16 1

*Smaller memory allocation and more samples per node may prove more
computationally efficient

(Fig. 1b). This may result in moderately slower turnover
of data, but can save money by reducing computing time.
Second, pack jobs by logical tasks rather than by individ-
ual in order to avoid by charged for idle cores during steps
that cannot be multi-threaded. Third, consider memory
allocation when submitting jobs in order to reduce the
number of errors and make your pipeline more reliable.
The number of commands submitted simultaneously to a
single node will, consequently, depend on the size of the
node and the memory allocated for each job. Finally, when
calling variants, group individuals in a way that promotes
efficiency and accuracy. We show that calling variants
on individuals in groups of 20–25 individuals of simi-
lar ancestral background is both computationally efficient
and produces reliable variant calls. Overall, our results
suggest that our group calling approach implemented on a
supercomputer yields high-quality variant calls and geno-
type assignments in an efficient manner and highlights
the need for sophisticated computational strategies in the
analysis of the large numbers of human genomes that will
be sequenced in the coming years.

Methods
Samples
Our sequencing study included 437 of the RA subjects
enrolled in GO-FURTHER clinical trial [13, 14]. Study
design and protocol were approved by local Institutional
Review Boards at each site. Trial patients who did not give
approval for use of tissue in sequencing study were omit-
ted from the sequencing study and all subjects included in
sequencing study provided informed consent upon enter-
ing the clinical trial. No additional approval for sequenc-
ing study was required. Whole blood samples were
collected according to approved trial protocol. Details can

be found at www.clinicaltrials.gov (ID: NCT00973479)
and previous publications [13, 14].

Whole-genome sequencing
Whole blood samples were processed at the Beijing
Genomic Institute (BGI) for DNA sequencing. Raw 90-
base pair (bp), paired-end read sequences were produced
using an Illumina HiSeq 2500 platform. The average depth
of haploid coverage by mapped reads was ~35×. The
average genome coverage is 99.4 %. Reads were initially
mapped using BWA aln algorithm and variants were
called on individuals using SOAPsnp with a conventional
pipeline that did not include recalibration or realignment
steps. Subsequent variant calling utilized the same reads
produced by BGI.

The Gordon supercomputing system
Gordon was designed to address data-intensive problems,
such as those that are prevalent in biomedical research
[9]. First, Gordon contains 1024 compute nodes, each
with 16 Intel Sandy Bridge cores and 64 gigabyte (GB)
of double data rate (DDR) dynamic random-access mem-
ory (DRAM) capable of an aggregate 64 GB/s memory
bandwidth. Second, two high-performance Lustre file sys-
tems are tightly integrated with Gordon; a 1.6-petabye
(PB) ‘scratch’ file system provides up to 100 GB/s aggre-
gate throughput from the compute nodes, while a second,
1.4 PB ‘projects’ file system is available for longer term
storage. Furthermore, 300 GB enterprise solid-state disks
available on each compute node are capable of delivering
220 MB/s of bandwidth and 37,000 IOPS each, aggre-
gated into 4.4 terabyte (TB) software redundant array
of independent disk (RAID) arrays capable of 1.6 GB/s
throughput and 319,000 IOPs. Finally, Gordon includes a
second quad data rate (QDR) InfiniBand fabric exclusively
used for storage communication [4]. For challenging data
intensive problems such as ours, we were able to lever-
age several “BigFlash” computing nodes, each consisting
of 4TB of SSD flash memory for ultra-fast reading and
writing of temporary data.

The group calling workflow
The input data set consisted of compressed fastq and vcf
files for the 437 individuals in our study with on average
100 GB per sample. As a result, the initial data storage
requirements for the approximately 2,100 pairs of files
containing compressed reads were almost 47 TB. Below
we outline computational details of the various steps in
our workflow.

Alignment and read processing
The reads for each read group were mapped to the refer-
ence human genome hg19 individually using the Burrows
Wheeler Aligner (bwa mem) [15, 16]. Each read group

www.clinicaltrials.gov
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was mapped using 8 or 16 cores concurrently, result-
ing in parallelization over 32–64 computing threads per
genome during the mapping phase. After the reads were
aligned to the reference genome, additional processing
steps were implemented to improve the reliability of sub-
sequent variant calls. First, mapped SAM files for each
read group were compressed using the Samtools sort com-
mand, producing binary alignment/map (BAM) files [17].
The Samtools merge command was subsequently used to
merge read groups from a single sample into one BAM
file per genome. Since the Samtools view and merge com-
mands cannot be multi-threaded and require relatively
little memory to execute, each file could be processed
using a single core. Thus, 16 commands were executed
simultaneously on a single node.
Next, the bam file for each sample was sorted by

genomic coordinate. The Samtools sort command simi-
larly requires relatively little memory and can be run with
a single core per sample; however, the writing of many
temporary files limits performance on a standard node.
We utilized two “BigFlash” nodes, each containing 4.4 TB
of local solid-state device (SSD) flash storage to which the
~800 temporary files per genome could be written. We
executed the sort command on 16 samples per “BigFlash”
node, writing all files to the SSD flash memory and then
copying the final, sorted BAM file into the long-term
storage space.
After the BAM files were sorted by genomic coordinate,

the Picard Tools MarkDuplicates command was used to
flag duplicate reads that resulted from PCR amplification
of the DNA which were subsequently discarded (http://
broadinstitute.github.io/picard). Because of the relatively
larger memory requirement, only 8 samples were pro-
cessed on a 64GB node, effectively allocating two cores
and 8GB of memory to each sample. Following exe-
cution of MarkDuplicates, local realignment steps were
implemented using GATK’s RealignerTargetCreator and
IndelRealigner tools in order to improve mapping quality,
reduce false-positive SNP calls, and increase true-positive
indel calls. The RealignerTargetCreator step, similar to
MarkDuplicates, required more memory than earlier pro-
cessing steps and was run with 8 samples per node,
while the IndelRealigner step was specified with a slightly
greater memory allocation still and was, consequently, run
with only 5 samples per 64 GB node.
Finally, the realigned BAM files were run through a base

recalibration step to account for systematic variation and
bias in the sequencing process. GATK’s BaseRecalibrator
tool modifies base quality scores for each read by con-
sidering the original quality score, read group, machine
cycle, base-position within the read, and flanking bases
in the read. This step can be parallelized, using mul-
tiple computing threads for each sample; however, the
recalibration step should be implemented on the entire

genome rather than a portion of it (i.e., separate recalibra-
tion calculations for each chromosome). Therefore, each
whole genomewasmulti-threaded to 8 cores. Using Print-
Reads, each sample was output to 4 separate BAM files
(chr1–3, 4–8, 9–14, 15-End) to facilitate parallelized vari-
ant calling and to decrease the wall time for outputting
the final BAM files. Thus, each sample was output using 4
separate instances of PrintReads, each specifying 8 or 16
cores.

Group variant calling and variant filtering
To perform variant calling on the 437 genomes, we used
GATK’s HaplotypeCaller algorithm leveraging a group
calling approach in which aligned reads from multiple
samples are considered together and genotypes are gener-
ated for the individual genomes in the group simultane-
ously. To determine the grouping strategy that achieved
optimal computational efficiency and accuracy, we called
variants in many test groups of varying size and ances-
tral background. To assess the computational burden of
calling variants in groups of different sizes, we randomly
selected patients from our cohort of 437 individuals,
placed them in groups of varying sizes (1, 5, 10, 15, 20,
25, 30, 40, 50, 100, 200, 300, 400, 437), called variants
on chromosome 21 using GATK’s HaplotypeCaller, and
tracked their progress over time. Variant calling on these
test groups was parallelized to 16 computing threads for
each group.
To assess the influence of admixture within a group

on variant calls, we estimated the degree of admixture of
each sample from 6 biogeographical groups using vari-
ant calls from the conventional pipeline at ancestrally
informative positions [18] (Additional file 1: Figure S4A).
The required ancestry-informative variants could be sim-
ilarly identified at a relatively small computational cost
by implementing GATK’s UnifiedGenotyper algorithm at
pre-specified locations on all samples prior to calling vari-
ants on the entire genome. To determine the best way
to group samples for our cohort of 437 individuals, we
called variants on chromosomes 14, 17, 20, and 22 of the
European NA12878 genome in test groups with varying
ancestral backgrounds and compared calls to established
high-confidence variant and reference calls [7]. Admix-
ture estimates were used to place samples into test groups
of varying ancestry, including entirely European, entirely
Asian and Oceanic, admixed African and Native Ameri-
can, and highly admixed (Additional file 1: Figure S4B).
We determined the concordance and accuracy of variant
calls made on NA12878 under these differing ancestral
conditions for SNPs and indels. Because variants were
called on a single chromosome for each test group, we
implemented a variant filtration method utilizing hard
thresholds on various quality metrics rather than using
a more sophisticated variant recalibration approach. We

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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then calculated the sensitivity, specificity, accuracy, PPV,
and NPV of the variant calling process in each of the
ancestral test groups and regressed against the estimated
fraction of European admixture in each group, controlling
for chromosome on which the variant calls were made.
To perform group variant calling, we placed the 437

genomes into groups of individuals with similar biogeo-
graphical ancestry (Fig. 2c). Each group contained 20–24
individuals, which provided the increased power for vari-
ant detection, while avoiding the prohibitively long com-
pute time associated with large group variant calling.
SNVs and indels were called for each group using the
multi-sample feature of GATK’s HaplotypeCaller. Vari-
ants for each group were called in four parallel comput-
ing jobs, containing chromosomes 1–3, 4–8, 9–14, and
the remaining chromosomes and contigs. This approach,
along with multi-threading each job onto 16 computing
cores, decreased the wall time necessary to complete the
variant calling step.
Once raw variant calls for each group were obtained, the

files within a group were concatenated. Variants were then
subjected to GATK’s VariantRecalibrator and ApplyRe-
calibration steps for SNVs and indels, separately. This
approach, rather than drawing hard thresholds on quality
metrics, builds a sophisticated model that considers depth
of coverage at a variant site, the average quality per read
at a variant site, evidence of strand bias, mapping quality,
and position within the read. As expected, groups contain-
ing greater genetic diversity identified more variant posi-
tions relative to the reference genome (Additional file 1:
Figure 8). Finally, variants from each group were merged
into a single vcf file and any variant position designated
as "missing" was regenotyped as a homozygous reference
genotype.

Additional file

Additional file 1: Supplemental material. PDF file containing
supplemental figures and descriptions (PDF 5120 kb)
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