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Abstract

Background: Numerous methods are available to profile several epigenetic marks, providing data with different
genome coverage and resolution. Large epigenomic datasets are then generated, and often combined with other
high-throughput data, including RNA-seq, ChiP-seq for transcription factors (TFs) binding and DNase-seq experiments.
Despite the numerous computational tools covering specific steps in the analysis of large-scale epigenomics data,
comprehensive software solutions for their integrative analysis are still missing. Multiple tools must be identified and
combined to jointly analyze histone marks, TFs binding and other -omics data together with DNA methylation data,
complicating the analysis of these data and their integration with publicly available datasets.

Results: To overcome the burden of integrating various data types with multiple tools, we developed two companion
R/Bioconductor packages. The former, methylPipe, is tailored to the analysis of high- or low-resolution DNA
methylomes in several species, accommodating (hydroxy-)methyl-cytosines in both CpG and non-CpG sequence
context. The analysis of multiple whole-genome bisulfite sequencing experiments is supported, while maintaining the
ability of integrating targeted genomic data. The latter, compEpiTools, seamlessly incorporates the results obtained
with methylPipe and supports their integration with other epigenomics data. It provides a number of methods to
score these data in regions of interest, leading to the identification of enhancers, INcRNAs, and RNAPII stalling/
elongation dynamics. Moreover, it allows a fast and comprehensive annotation of the resulting genomic regions, and
the association of the corresponding genes with non-redundant GeneOntology terms. Finally, the package includes a
flexible method based on heatmaps for the integration of various data types, combining annotation tracks with
continuous or categorical data tracks.

Conclusions: methylPipe and compEpiTools provide a comprehensive Bioconductor-compliant solution for the
integrative analysis of heterogeneous epigenomics data. These packages are instrumental in providing biclogists with
minimal R skills a complete toolkit facilitating the analysis of their own data, or in accelerating the analyses performed
by more experienced bioinformaticians.
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Background

In recent years, a wealth of studies including large-
scale epigenomics data have been published. Unprece-
dented developments in DNA sequencing technology
have allowed individual research groups to profile mul-
tiple epigenetic marks in higher eukaryotes, such as
DNA methylation and histone post-translational modi-
fications. In addition, profiling of the components of
the regulatory machinery, including transcription fac-
tors, RNAPII and cofactors, and DNasel-sensitive re-
gions, often accompanies these epigenomics datasets.
As a consequence, a multitude of data types, generated
by different experimental methods and characterized
by specific biases and pitfalls are often combined in the
same study. Numerous computational tools have been
developed for the analysis of epigenomics data, typic-
ally focusing on specific analysis steps and data types
[1, 2]. Projects such as Galaxy and Bioconductor have
been instrumental for dealing with the complexity of
the analysis of these data [3, 4]. While the former is
very intuitive to use, it is dependent on a limited set of
embedded tools. On the other hand, Bioconductor cur-
rently offers more than 900 packages for the analysis of
high-throughput data; however, it requires greater
computational experience for the identification and use
of the available resources. Therefore, simple and compre-
hensive tools for an integrative analysis of these various
data types are missing, slowing down the construction of
pipelines by bioinformaticians, and leaving biologists gen-
erating high-throughput sequencing data dependent upon
the expertise of other computational scientists.

To fill this gap, we have developed two companion
software packages for the integrative analysis of the most
common epigenomics data types. These tools offer easy
access to features commonly requested by biologists,
providing a complete, user-friendly toolkit for the com-
prehensive analysis of the data they generate. Moreover,
these packages facilitate the execution of relevant tasks
and the construction of complex pipelines for bioinfor-
maticians. The former, methylPipe, is tailored to the
analysis of high- or low-resolution DNA methylomes
in multiple species, accommodating (hydroxy-)methyl-
cytosines in both CpG and non-CpG sequence context.
The analysis of multiple whole-genome bisulfite sequen-
cing experiments is supported, while maintaining the abil-
ity of integrating targeted genomic data. The latter,
compEpiTools, seamlessly incorporates the results ob-
tained with methylPipe and supports their integration
with other epigenomics data. It provides a number of
methods to score these data in regions of interest, leading
to the identification of enhancers, IncRNAs, and RNAPII
stalling/elongation dynamics. Moreover, it allows a fast
and comprehensive annotation of the resulting genomic
regions, and the association of the corresponding genes
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with non-redundant GeneOntology terms. Finally, the
package includes a flexible method based on heatmaps for
the integration of various data types, combining annota-
tion tracks with continuous or categorical data tracks.

Methods and functions available in the methylPipe
and compEpiTools packages will be indicated in italic
throughout the text and described in the following
sections.

Implementation

The methylPipe and compEpiTools R packages were
developed in compliance with the most common Bio-
conductor infrastructures. Specifically, classes inherit-
ing from the SummarizedExperiments and the GRanges
classes are used to represent DNA methylation and
other epigenomics data, respectively [5]. The TxDB and
BSgenome classes (available for an extensive set of or-
ganisms) are adopted as a reference for genome se-
quences and gene models, respectively. Therefore,
methods and functions within these packages can easily
be combined with tools available in other Bioconductor
packages for up- or down-stream analysis steps.

Some of these datasets can be particularly large: for ex-
ample, data resulting from whole-genome bisulfite (WGBS)
experiments in human cells. In order to accommodate
studies including multiple WGBS without affecting per-
formance (in terms of speed and required memory), in the
packages we developed, the data are maintained on the disk
as indexed and compressed flat files [6]. The code is paral-
lelized in order to minimize the computational time for the
most demanding tasks, as in the case of the identification
of differentially methylated regions. Figure 1 illustrates the
overall design along with the main input and output of the
methylPipe and compEpiTools packages.

As required in Bioconductor, each individual method
and function is accompanied by specific documentation
and working examples. Moreover, each package con-
tains a vignette to interactively demonstrate the soft-
ware key functionalities and a typical workflow. In
addition, a supplemental vignette is provided (see on-
line Additional file 1) illustrating a workflow built on
publicly available DNA methylation and epigenomics
data, where a number of the provided features from
both packages are exemplified.

Results and discussion

methylPipe features

The base-resolution DNA methylation data used as in-
put can be provided as tabular text files containing, for
each profiled cytosine, the genomic positions and the
number of reads with C or T (depending whether the
cytosine was protected or converted by the action of so-
dium bisulfite treatment [7], respectively). Alternatively,
these data can be generated providing the path to SAM
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Fig. 1 Diagram describing input and output for the methylPipe and compEpiTools R packages. Most typical input data and output are listed for
both packages. Regions of interest (ROls) might be both input and output for these tools. For example, input ROIs can be generated in R based
on the UCSC table browser or can be based on Bioconductor gene models or reference genome-sequence packages. Output ROIs are generated
by methylPipe and compEpiTools and can typically feedback on the same tools as a new set of genomic regions to be investigated, often associated
with scores or more complex data. Abbreviations: differentially methylated regions (DMRs); methyl-cytosine (mC); CpG Islands (CGls); GeneOntology
(GO); long non-coding RNASs (IncRNAs); transcription factors (7Fs). The dashed arrow identifies a computational step that can be covered with additional

files of aligned reads such as, but not limited to, the
alignment files obtained with the popular Bismark
aligner [8]. Data are stored as Tabix-indexed compressed
files [6] enabling compact representation and fast access
to post-alignment processed DNA methylation data
(BSprepare function). For example, the size of a com-
pressed WGBS experiment for IMR90 and H1 human
cell lines is 269 MB and 380 MB, respectively. Not only
the limited size of this file results in a reduced disk space
requirements (the size of the uncompressed flat files is
372 MB and 554 MB, respectively): these data can also
be directly accessed from the disk, thanks to the Tabix
indexing, further saving on the memory usage. Through
this strategy methylPipe can easily accommodate data
from multiple WGBS experiments or any combination of
WGBS and targeted base-resolution datasets. In addition
to the methylPipe package, the complete set of mCs
mapped in the IMR90 and H1 cell lines in the first human
base-resolution DNA methylomes profiled by Lister and
colleagues [9] are included in the ListerEtAlBSseq Biocon-
ductor metadata package. The WGBS data available in this
package were processed, compressed and indexed with
Tabix through methylPipe and can directly be accessed
using the package functionalities (see below for details).

When post-alignment tabular DNA methylation data
are processed in methylPipe through the BSprepare func-
tion, the confidence of calling a mC is determined for each
C through a binomial test [9]. Briefly, sodium bisulfite
treatment of DNA specifically converts unmethylated C to
U (ultimately read as T) without affecting methylated C.
For a given cytosine in the reference genome, the more se-
quencing reads have a C, the higher is the likelihood of
that C being methylated. The binomial test is performed
taking into account both the bisulfite conversion rate,
which is typically calculated by sequencing of an unmethy-
lated spike-in, and the sequencing error rate. The resulting
multiple-testing corrected p-values are stored on the disk
in the Tabix compressed and indexed file, and are available
in methylPipe through the BSdata class. This class has
methods to easily access and filter the base-resolution data
based on sequencing depth and statistical significance of
the mC call. While using the binomial test to measure the
confidence of a methylation event is straightforward in
case of cell lines or very pure cell populations, its inter-
pretation could be less direct in case contaminants or sub-
populations with mixed epigenetic states are present in
the sample. In those cases, the number of reads with C
(#C, supporting the methylation call at a given cytosine),
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the number of reads with T (#T, not supporting the
methylation call), and the combined methylation level
summary #C/(#C + #T) are available in the BSdata class
and should be used for evaluating this heterogeneity. Fur-
ther methods are being developed to resolve distinct epi-
genomes in mixed population [10, 11].

DNA methylation data are typically profiled over a set
of regions of interest (ROIs) such as CpG Islands or gene
promoters. A class inheriting from the Bioconductor Sum-
marizedExperiment class was defined for this task (GEcol-
lection class). This class has data slots specific for the
absolute and relative density of DNA methylation events,
which can be populated with the profileDNAmetBin
method. The absolute methylation level of a genomic re-
gion (or bins thereof) is determined as the number of
mCs per base-pair, while the relative methylation level is
determined as the proportion of mCs over the total num-
ber of potential methylation sites in that region. While the
methylPipe GEcollection class is designed to profile DNA
methylation in a set of genomic regions for a single sam-
ple, the class GElist can be conveniently used to collect
the same information for a number of samples and pass it
on to other methylPipe or compEpiTools methods.

Particular attention was dedicated to the strategy used
for incorporating base-resolution information about
unmethylated and uncovered (unsequenced) cytosines.
While unmethylated Cs are the vast majority of the cy-
tosines in all profiled genomes [12], the amount of un-
covered Cs depends on the experimental technique
adopted. Different techniques are available for the ac-
quisition of base-resolution DNA methylation profiles.
These can target the whole genome (WGBS) or only a
subset of it, focussing on CpG-rich (Reduced Represen-
tation of Bisulfite Sequencing, RRBS [13]) or custom re-
gions (such as the approach based on padlock probes
[14]). In WGBS, most of the Cs are profiled, thus there
is a limited number of uncovered Cs, and a majority of
unmethylated Cs. On the other hand, RRBS or padlock
experiments only cover a limited portion of the gen-
ome, resulting in data where few unmethylated Cs are
vastly outnumbered by a large majority of uncovered
Cs. As a trade-off between these extremes, we decided
to include in the BSdata class only the cytosines where
at least one sequencing read has a C, supporting the
methylation call. In addition, we provide a function to
generate a GRanges including all the unmapped regions
(with no sequence data) based on a BAM file, as most
of the uncovered cytosines tend to occur in a limited
number of refractory regions in WGBS experiments or in
a relatively small number of regions complementary
to the RRBS or padlock targeted regions. In this way, (i)
considering Cs with #C >0 and (ii) having the list of the
regions containing uncovered Cs, we can exactly recover
the methylation status for each C in the genome as
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methylated (at a significant or not significant level),
unmethylated or unmapped. Importantly, this piece of in-
formation is critical for the identification of the differen-
tially methylated regions by methylPipe. Eventually, this
results in a compression of WGBS experiments in rela-
tively small files, while maintaining the ability of efficiently
accommodating and integrating experiments with any
level of genome targeting.

The findDMR function uses the Wilcoxon or Kruskal-
Wallis paired non-parametric tests for the identification of
differentially methylated regions (DMRs) by comparing the
mC methylation levels between either two groups of sam-
ples or multiple samples, respectively Briefly, the algorithm
adopts a dynamic sliding window approach that identifies
regions suitable for testing depending on mC density and
relative distance, and possibly excluding regions with no, or
negligible, variation between groups. Specifically:

(i) A cytosine identified as methylated by the binomial
test, having a minimum sequencing depth and a
minimum level of methylation difference among the
considered samples is identified as the seed (all these
cutoffs are user-defined).

(ii) Downstream Cs, satisfying the same criteria, within
a maximum distance (D) from the seed are then
considered. A minimum number of Cs (data points)
is required within that window, while the method
allows a maximum number of missing data
(unmapped Cs).

(ili) Next, the methylation level of the considered Cs is
compared between the samples using the statistical
tests described above.

(iv) The first mC call downstream of the position of
the first seed C incremented of D/2 bp is
considered as the seed of the next window and the
process is repeated from (i).

Alternatively, the findDMR function works with the aver-
age methylation levels in discrete genomic regions. This
could be useful in case of non-CpG methylation events,
which are more unevenly distributed in the genome with
respect to mCpGs. Importantly, it is possible to upload
GRanges with a list of Cs associated to known SNPs, which
could confound the DMR analysis; these Cs are discarded
from the analysis. Moreover, when comparing differentiated
to pluripotent cells, we suggest to include a GRanges object
defining the partially methylated domains (findPMDs), de-
fined as large regions of partial methylation that could
cover up to 30 % of their genome, typically found in differ-
entiated cells [9]. These regions are, by definition, differen-
tially methylated when compared to pluripotent cells, and
should be skipped in the DMR analysis presented here,
which is targeted to smaller differential regions. Eventually,
the consolidateDMRs function applies a multiple-testing
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correction to p-values, and significant genomic regions
closer than a user-adjustable threshold are merged (their
corresponding p-values are combined using the Fisher’s
method).

The find DMR method was proven useful for the identi-
fication of DMRs in a number of studies [15, 16], resulting
in the identification of genomic regions confirmed by
other independent studies [17-20]. In addition, the
method was successfully adopted for the simultaneous
analysis of hundreds of A. thaliana WGBS methylomes
[21, 22], which are characterized by mosaic DNA methyla-
tion patterns [23]. Thus, methylPipe has already been
shown to be effective not only in the analysis of very large
datasets, but also in managing DNA methylomes of vari-
ous species, and in particular DNA methylomes with pe-
culiar mC patterning compared to mammals. We made a
comparison among several tools for the identification of
DMRs and the results are shown in the Additional file 2.

Recently, an additional type of cytosine methylation was
discovered, the 5-hydroxy-methylcytosine (hmC), which was
proven to be a critical intermediary in active de-methylation
pathways [24]. Bisulfite sequencing experiments do not dis-
tinguish hmC from mC. Specific experimental methods for
the identification of this mark at the base-resolution were
developed, and MLML is a popular computational method
for a first analysis of these data [25]. methylPipe includes the
process.hmc function to parse the MLML output and create
a BSdata object specific for the hmCs data, which can then
be combined with any other kind of DNA methylation data
using the package functionalities.

A wide array of alternative methods providing low-
resolution DNA methylation estimates are available, includ-
ing MeDIP- or MBD-seq; these assays are based on the
binding of mCs by a specific antibody or methyl-binding
protein, respectively. Computational methods are available
to convert these low-resolution data into high-resolution
estimates [26-28], which can be imported in methylPipe
as if they were native high-resolution bisulfite data. Alter-
natively, low-resolution data describing the methylation of
genomic regions can be incorporated in methylPipe at the
level of GEcollection and GElist objects, which were de-
signed to summarize mC density in genomic regions.

Finally, the plotMeth method was developed to visualize
DNA methylation base-resolution data, as well as their
summary over genomic regions (or low-resolution DNA
methylation data) along with gene models and other -omics
data or annotation tracks. This method takes advantage of
the Gviz Bioconductor library and allows a genome-
browser like visualization of a specific genomic region.

compEpiTools features

compEpiTools functionalities can be grouped in three
main categories: (i) computing several read counts met-
rics in genomic regions, (ii) performing functional/
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genomic annotation, and (iii) integrated visualizing of
heterogeneous data-types.

The compEpiTools package facilitates several typical
operations related to the quantification of the sequen-
cing signal in a set of genomic regions. The base-level or
overall count of reads within a set of regions can be de-
termined starting from BAM files, using the GRbase-
Coverage and GRcoverage methods, respectively. The
resulting counts can be normalized by library size and/
or region length. In addition, specifically for ChIP-seq
experiments, the peak summit position and the overall
region enrichment given a matched input sample can be
determined, using the GRcoverageSummit and GRenrich-
ment method, respectively. For RNA Polymerase II
(RNAPII) ChIP-seq experiments, the stallinglndex and
plotStallingIndex functions are available to compute and
visualize the cumulative distribution of the stalling index
(SI), thus estimating the degree of RNA Polymerase stal-
ling [29]. The SI is defined as the ratio of the RNAPII
signal in the promoter and genebody region. When com-
paring different samples, the SI could increase signifi-
cantly because of either an increase at the level of
RNAPII in the promoter or a decrease of in the gene-
body, or because of differential dynamics of RNAPII in
these two regions. For this reason, to better dissect the
dynamics of differential SI, the cumulative SI distribu-
tion is integrated with the analysis of promoters and
genebody RNAPII read densities.

To ascertain the biological significance of a set of ROIs
(ChIP-seq peaks, DMRs etc.), it is essential to consider
their genomic context. With the GRannotate method,
compEpiTools allows an effortless, rich and fast annota-
tion of genomic regions based on Bioconductor standard
annotation libraries derived from the UCSC genome
database. Specifically, for each ROI, the distance from
the nearest transcription start site and its location are
determined; the region location is also annotated based
on its overlap with promoters, intragenic and intergenic
genomic regions, and the corresponding transcript and
gene id(s) and symbol(s) are reported. The resulting
GRanges conveniently embed the annotation for all the
isoforms that might occur in correspondence of a given
ROLI Notably, the user is provided the flexibility to sup-
ply additional sources of annotation, which could results
from other -omics analyses, such as lists of ROIs taken
from the literature, or obtained within R using the ucsc-
TableQuery function from the rtracklayer package to ac-
cess UCSC Tables (e.g. the list of CpG Islands).

Genomic regions can also be annotated in a number
of epigenomic relevant states. The enhancers method
identifies enhancers based on promoter-distal H3K4mel
(indicative of enhancers that could be either active or
poised) or H3K27ac (indicative of active enhancers)
ChIP-seq peaks, possibly excluding CpG Islands regions.
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With the matchEnhancers method, enhancers can con-
veniently be matched to the most proximal genes, and
possibly stratified based on the association to transcription
factor (TF) binding events to study the TF-dependent ac-
tivity of enhancer regions and putative target regions.

Particularly relevant for DNA methylation is the con-
cept of promoter CpG-content, which is critical for the
epigenetic control on the downstream gene expression:
variation in the absolute or relative methylation at the
level of intermediate or high-CpG density promoters
was proven to be associated to differential expression of
the downstream gene, compared to low CpG content
promoters [30]. The promoter CpG context can be de-
termined with compEpiTools through a sliding window
scoring approach proposed by [31], implemented in the
getPromoterClass function.

The findLncRNA function in compEpiTools identifies
long non-coding RNAs (IncRNAs) based on their epigen-
etic signatures. Briefly, the function considers H3K4me3
peaks located far away from promoters and associated
with a lower H3K4mel read density (this requirement al-
lows to avoid enhancer regions) as seeds for the identifica-
tion of potential IncRNA promoters. Evidence for RNA
transcription in the regions downstream and upstream
these H3K4me3 peaks is evaluated by computing the read
density of RNA-seq, H3K79me2 and/or RNAPII experi-
ments. Random, size-matched genomic regions, (pro-
moters excluded) are used as a background to determine
the random expected density of these marks of transcrip-
tional activity. Regions with a signal for these marks
greater than the 95™ percentile of the background are
then selected as putative regions expressing IncRNAs.

Finally, a convenient wrapper (topGOres) is provided
to perform GeneOntology (GO) enrichment analysis
based on a set of Entrez gene ids (query), based on the
topGO Bioconductor package. Often, GO terms that are
very close in the considered ontology are redundant,
thus complicating the interpretation of the results of a
GO analysis. For this purpose, compEpiTools provides
the simplifyGOterms function for pruning poorly in-
formative and redundant enriched terms. The rationale
behind this pruning is that often parent and a child
enriched-terms point to very similar GO terms, associ-
ated to a very similar set of genes. Iteratively, for each
enriched term T, the parent of T is searched within the
set of enriched terms, based on the specified ontology. If
both a parent and a child terms were identified as
enriched and if they match to a set of genes overlapping
more than a user-adjustable threshold within the query,
the parent term is discarded in favour of the more spe-
cific child term.

The integration of heterogeneous data types remains a
challenging task, and explorative analyses based on the
generation of heatmaps are frequently used to highlight
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patterns in composite datasets. In our experience, the
creation of these heatmaps requires an extensive number
of processing steps, especially when applied to datasets
composed of heterogeneous data types and annotation
tracks, discouraging the repeated use of these tools.
Moreover, heatmaps are typically iteratively generated
until a satisfactory combination of data tracks, clustering
and normalization settings is identified. A powerful and
efficient visualization system based on heatmaps is pro-
vided in compEpiTools, based on the heatmapData and
heatmapPlot functions. Heatmap rows represent ROIs
and columns represent data tracks. Every track can be
assigned to any of the supported data types: GRanges,
GRanges metadata, BAM files, and GElist and GEcol-
lection objects generated by methylPipe. Thus, any
combination of base-resolution or low-resolution DNA
methylation data, histone marks, TF binding, RNA-seq
expression and genomic annotations, including gene
models, is accommodated. Quantile or thresholding-
based normalization methods can be independently ac-
tivated for each track to emphasize patterns in the
combined dataset and adjust the signal range of the
track (for example to exclude outliers or underweight
data tracks that are overall poorly scoring in the ROIs).
Clustering of rows can be activated, including data
from all or selected tracks. The resolution of the dis-
played data can be controlled by dividing each ROI in a
user-defined number of uniformly-sized bins. Import-
antly, each track can be supplied with significance
scores, which can be used to progressively dim the
colour of low-scoring (less significant) hits, while main-
taining full brightness for the significant ones. The data
matrix underlying the heatmap is returned together
with the dendrogram structure, allowing further ana-
lysis of the clusters of interest (Fig. 2).

Computational performance and comparison with other
tools

Table 1 provides a comparison of the features offered by
methylPipe and compEpiTools with those offered by
other computational tools designed for the analysis of
epigenomics data. Most of these tools are implemented
as R packages, focusing only on the analysis of DNA
methylation data. Currently, 38 packages associated with
the DNA methylation assay domain are available in Bio-
conductor. The large majority of these packages were
developed for the analysis of data generated with the
450 K Illumina platform, which is able to profile only
about 1 % of the cytosines that are typically found in a
complete human DNA methylome. Only four of these
packages (BiSeq, M3D, bsseq and DSS) could manage
WGBS data. These packages provide a very limited sub-
set of the functionalities offered by the methylPipe/
compEpiTools packages; most of these tools were
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developed and tested for the identification of DMRs on
RRBS data (Table 1), and claim to be able to analyze
WGBS data. We tested whether they could perform
three specific tasks we consider necessary in the ana-
lysis of WGBS data: (i) uploading a single WGBS data-
set and profiling a set of ROIs, (ii) identifying DMRs
between 2 conditions, (iii) identifying DMRs between
multiple conditions. BiSeq [32] and M3D [33] are de-
signed to upload the entire dataset into memory, and

we failed with both in uploading an entire WGBS data-
set even when 80 GB of memory was provided (we
could only upload and work with data for chromosome
1). Consequently, we were unable to perform any of the
three proposed testing operations. Furthermore, bsseq
[34] only provides a smoothing-based method to iden-
tify DMRs, without offering additional functionalities,
and DSS [35] is not specific for DNA methylation data.
Neither of these tools delivered satisfactory results: DSS
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Table 1 Comparison of methylPipe and compEpiTools features with functionalities offered by other similar tools

BiSeq M3D

Bsseq DSS

methylKit methPipe radMeth methylSig WBSA DMAP Methy-
Pipe

methylPipe Supporting targeted + + + +

BS-seq data (e.g. RRBS)
Supporting WGBS data

+

Supporting multi-samples - - - -
WGBS data

Non-CpG mCs - - - -
hmCs - - - -

Supporting low-resolution - - - -
DNA methylation data

Computing absolute - - - -
methylation (mC/bp)

Computing relative
methylation (mC/C)

Supporting ROIs binning - - - -
Pairwise DMR analysis (45"
Multi-groups DMR analysis - - + -
Browser-like data plot - - -

compkEpiTools  Computing Promoter-CpG - - - -
content

Routines for reads - - - -
counting

Determining Signal - - - -
enrichment

ROIs Annotation + - - R
RNAPII stalling index - - - -

Non-redundant GO - - - -
enrichment enrichment

Enhancers identification - - - -
IncRNAs identification - - - -

Integrative heatmaps - - - -

Ref. [32] [33] [34] [35]

+ + + + + + +

[36] [41] [42] [37] 391 [40] [38]

The first column lists the key features offered by methylPipe and compEpiTools. Column headers report the tool name and reference. A “+” sign indicates that the
feature is provided by a given tool, while a “~“sign indicates that it is not available. The “Pairwise DMR analysis” row includes in parenthesis the time (in minutes
or days) needed for a complete WGBS differential analysis between two samples; NA is reported if this analysis is not supported for WGBS data. (a) WBSA is an
online web-service imposing a limitation or 2GB for the upload of fastq files, which is clearly insufficient for the analysis of a WGBS dataset; the software can be
installed locally although this requires significant effort (requiring Perl, R, MySQL, Java and C compiler) and it is only available for Linux; the analysis of the H1 and IMR90
WGBS was reported by the Authors to be completed in one week. (b) We could not use DMAP (no version details were provided for the code available) at the time of
this comparison for the analysis of WGBS data, since an error was returned; a new version was provided to us, which was still requiring details on the restriction
enzymes, necessary for the analysis of targeted DNA methylation datasets; eventually it remains unclear to us whether DMAP is able to analyse WGBS data

completed the DMR identification in a 2-group com-
parison in about 3 days, while after the same amount of
time bsseq returned an error. Additional packages were
included in the comparison (Table 1), while they do not
support the analysis of WGBS data (methylKit, Methyl-
Sig and Methy-pipe [36-38]), or we encountered the
issues descried in Fig 3 legend (WBSA and DMAP
[39, 40]). In addition to these Bioconductor packages,
few additional stand-alone tools or web-services are avail-
able to manage base-resolution DNA methylation data.
Among these, only methPipe and radMeth, both devel-
oped by the Smith Lab [41, 42], can analyze WGBS

datasets and perform DMR analyses. The time needed by
these two tools for the identification of DMRs (36 and
90 min, using 1 and 10 cores respectively) is similar or
slightly higher than methylPipe (45 min using 10 cores)
(Table 1). To our knowledge, the examined tools do not
provide an extensive set of supplemental functionalities
beyond to those listed in the Table 1. In this regard, meth-
Pipe is the only exception, providing additional routines
that are complimentary to those offered by methylPipe
[41]. In summary, only methPipe and radMeth were able
to efficiently complete the proposed tasks with standard
resources. Importantly, neither these tools nor the other
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software packages, limited on the analysis of targeted
DNA methylation data, could match the complete set of
functionalities offered by methylPipe and compEpiTools
(Table 1).

On the performance side, methylPipe was optimized
for the analysis of multiple WGBS datasets. TABIX com-
pression, indexing and computation of binomial tests,
which are the steps necessary to create a new BSdata
object in methylPipe, took 30 min with 1 core (max 4GB
RAM peak usage) for the human H1 stem cells [9]. After
this data processing step, access to the data is fast: with
one core, it can profile 100 human promoters in a sam-
ple in about 50 s (max 1GB RAM peak usage). DMRs
identification between 2 WGBS samples took 20 min
with 1 core on chromosome 1 (max 4GB RAM peak
usage), and 45 min with 10 cores for a genome-wide
analysis (max 28GB RAM peak usage on a cluster). Fi-
nally, the most computationally intense task, ie. the
identification of DMRs among 8 WGBS methylomes
[15], took 40 min on chromosome 1 with a single core
(max 4.9GB RAM peak usage), proving to be manage-
able even on a laptop computer. Parallelization is imple-
mented in the package, and it automatically adjusts to
the available number of cores and RAM. The same DMR
analysis of 8 WGBS methylomes could in fact be com-
pleted in a similar time on a cluster by assigning 10 cores.

Most of the functionalities offered by compEpiTools
can be run on the order of minutes or less. For example,
profiling the normalized number of reads from a
GRanges of 40.000 ROIs and a typical BAM ChIP-seq
file takes less than 40 s. Dividing each region in a num-
ber of bins does not require much additional time, be-
cause the binning is performed after the initial count,
which is the most time consuming step. Building heat-
maps with a dozen of tracks is typically performed in a
few minutes, mostly depending on the number of ROIs
to be clustered. To achieve maximum efficiency, opti-
mized clustering routines, as implemented in the fas-
tcluster R package, are adopted [43]. The only tool
which to our knowledge is comparable in functionality
with compEpiTools is the Bioconductor RepiTools pack-
age [44]. While RepiTools provides a useful set of tools
for the integrative analysis of epigenomics data, mostly
focused on statistical testing, integration with gene ex-
pression data and visualization, it is tailored to
enrichment-based epigenomics data only, and it is un-
able to provide most of the compEpiTools functional-
ities listed in Table 1.

Conclusions

The methylPipe and compEpiTools companion libraries
offer a comprehensive system for the integrative analysis
of heterogeneous epigenomics data types. methylPipe pro-
vides a set of classes, methods and functions that are
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tailored to DNA methylation high-throughput data, while
accommodating data highly different in terms of reso-
lution and genome coverage. To our knowledge, methyl-
Pipe is the first software package allowing the analysis and
manipulation of multiple WGBS experiments while also
being compatible with targeted or low-resolution DNA
methylation experiments. Furthermore, compEpiTools in-
cludes a series of methods and functions that are com-
monly used in the integrative analysis of epigenomics,
genomics and regulatory datasets. Importantly, compEpi-
Tools is compatible with methylPipe classes, thus allowing
an effortless integration of the two packages. Lower-level
versions of few of these functionalities are already available
albeit dispersed in various Bioconductor packages, such as
the routines for counting reads. For these tasks methyl-
Pipe and compEpiTools provide simplified and more
homogeneous access to lower-level routines, adding an
extensive number of new functionalities for DNA methy-
lation and other epigenomics and regulatory data types.
Altogether, this suite of packages provides a clear refer-
ence entry-point for scientists focusing on the analysis of
epigenomics data. This set of tools is currently being suc-
cessfully used to build pipelines for the most common
-omics data types. Even more importantly, in our hands
this approach is proving to be an excellent resource to ef-
fectively provide to experimental scientists with very basic
R skills a complete toolkit for the comprehensive analysis
of their own generated data.

In conclusion, the Bioconductor-compliant methylPipe
and compEpiTools packages provide a comprehensive
suite of tools for the integrative analysis of epigenomics
data, covering most of the functionalities commonly re-
quired in the joint analysis of DNA methylation and epi-
genomics data.

Availability and requirements
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