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Abstract

Background: Network query problem aligns a small query network with an arbitrarily large target network. The
complexity of this problem grows exponentially with the number of nodes in the query network if confidence in the
optimality of result is desired. Scaling this problem to large query and target networks remains to be a challenge.

Results: In this article, we develop a novel index structure that dramatically reduces the cost of the network query
problem. Our index structure maintains a small set of reference networks where each reference network is a small,
carefully chosen subnetwork from the target network. Along with each reference, we also store all of its
non-overlapping and statistically significant alignments with the target network. Given a query network, we first align
the query with the reference networks. If the alignment with a reference network yields a sufficiently large score, we
compute an upper-bound to the alignment score between the query and the target using the alignments of that
reference and the target (which is stored in our index). If the upper-bound is large enough, we employ a second
round of alignment between the query and the target by respecting the mapping found in the first alignment.
Our experiments on protein-protein interaction networks demonstrate that our index achieves a significant speed-up
in running time over the state-of-the-art methods such as ColT. The alignment subnetworks obtained by our method
are also statistically significant. Finally, we observe that our method finds biologically and statistically significant
alignments across multiple species.

Conclusions: We developed a reference network based indexing structure that accelerates network query and
produces functionally and statistically significant results.
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Background
Biological networks describe how different molecules
(such as proteins or gene products) interact with each
other to carry out various cellular functions. Depend-
ing on the interacting molecules and their interaction
types, biological networks are often classified into sev-
eral categories such as gene regulatory networks, signaling
networks or protein-protein interaction networks. One
commonway tomodel such networks is to represent them
as graphs, where nodes and edges denote the molecules
and interactions respectively.
Comparative analysis of biological networks is one of

the most fundamental techniques in understanding how
cells function [1]. The first step in such analysis is to
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identify the similarity between pairs of biological net-
works by aligning them. An alignment of two networks
maps the nodes and edges of one network to those of the
other. The similarity between two networks is often mod-
eled as a function of the similarity between the aligned
nodes, matching edges, and possible insertion or dele-
tion of nodes. We formally define the concept of similarity
later in this article. Network alignment has already been
successfully used in many applications including identifi-
cation of functional annotations [2], and reconstructing
biological networks from newly sequenced genome [3],
among many others.
We can categorize existing literature on network align-

ment into two classes: (i) alignment of the entire net-
works (known as global alignment) [4, 5], and (ii)
alignment of smaller subnetworks among the networks
being compared (known as local alignment) [6–8]. In the
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context of local alignment, when a small query network
is matched with a large target network, the problem is
known as the network query problem [9, 10]. In this article,
we focus on the network query problem. The complex-
ity of the network alignment problem stems from its close
relationship with graph and subgraph isomorphism prob-
lems, which are GI-Complete [11] and NP-Complete [12]
respectively. Thus, finding an accurate solution to this
problem remains to be impractical as the size of the given
networks grow. Existing solutions often follow one of the
following two approaches: (i) heuristic solutions find a
best-effort alignment network but provide no guarantee
about the optimality of the result [4, 5, 13]; (ii) approx-
imate solutions find an alignment subnetwork and pro-
vide provable confidence bound in the optimality of the
result [6, 10]. Heuristic methods are often faster, whereas
approximate methods often employ expensive dynamic
programming methods to get the result. In this article,
we focus only on approximate methods for network query
problem as they provide provably accurate results.
The effectiveness of the approximate methods is lim-

ited by the number of nodes in the query and target
networks, particularly with that of the query network.
The complexity of these methods increase exponentially
with the number of nodes in the query network. This
bottleneck becomes even more catastrophic as the target
networks are often as large as the entire biological net-
works and thus are very large in size. As a result, there is an
urgent need for efficient yet accurate method for querying
of large network databases. Indexing has been tradition-
ally used for accelerating query processing in relational
databases [14, 15]. It has also been applied to similarity
search in biological network databases. We discuss these
methods in Section ‘Related work’.

Contributions
In this article, we develop a new and scalable method to
solve the network query problem efficiently for large tar-
get networks. Our method is based on the observation
that biological networks often contain conserved sub-
networks also knows as motifs [16–18]. Following from
that observation, at the heart of our method lies a novel
reference-based index structure we develop here. Briefly,
we start by selecting a small set of representative sub-
networks, called reference networks or simply references,
sampled from the target biological network. We choose
these references in a way that ensures that they collec-
tively summarize the topology of the target network. We
store the non-overlapping, significant mappings of these
reference networks in the target network as our index
structure.
Figure 1 shows the overview of the proposed method

on a toy example. In this figure, we select three refer-
ence networks, namely R1, R2, and R3 that summarize the

target network T. Reference networks R1, R2, and R3 have
three, three and two significant mappings in the target
network respectively. Given a query network, we first align
the query to the references one by one. If a reference net-
work yields a statistically significant alignment with the
query, we compute an upper bound to the alignment score
between the query and the target network that can be
found using this reference network. If this upper bound is
large enough, we investigate the non-overlapping signif-
icant mappings of that reference. The index provides an
indirect mapping from the query to the target via the ref-
erence. We then compute a local alignment that respects
this indirect alignment to maximize the alignment score.
In Fig. 1, the query network Q aligns with the refer-

ence network R1. We can use the three non-overlapping,
significant mappings of R1 to find an indirect mapping
of Q with T using R1. Note that the proposed method
requires a pairwise network alignment algorithm to map
the query and reference networks. For this purpose, we
use ColT [10] as it is currently the fastest method that
finds alignment subnetworks with provable confidence
in the optimality of the result. That said, our indexing
scheme is independent of any specific underlying net-
work query algorithm. Thus, one can replace ColT with
any other alignment algorithm without altering the rest of
our indexing method. Our experiments on real protein-
protein interaction (PPI) networks demonstrate that the
proposed method is over 20 times faster than ColT. Fur-
thermore, our experiments show that the resulting align-
ments are statistically significant.
We organize the rest of this article as follows:

Section ‘Related work’ discusses existing works in
the literature. Section ‘Method’ describes our method.
Section ‘Results and discussion’ presents the experi-
ments and results. We conclude this article in Section
‘Conclusion’.

Related work
Network alignment problem can be considered into two
broad categories, namely local and global network align-
ment. Local network alignment finds similar subnetworks
among the networks being compared based on some sim-
ilarity criteria (i.e., defined by the topological similarity
among the subgraphs and the homological similarity of
the constituent nodes) [8, 9, 19]. The network query prob-
lem is a related problem in the context of local alignment
[9, 20]. It matches a small query network to a large tar-
get network to find a subnetwork in the target that is
similar to the query network. PathBLAST [7], TALE [21],
ABINET [22, 23] fit in this category. PathBLAST queries
a simple path against a target network and returns a
ranked list of matching paths and the overlaps among
them in the target. ABINET uses the well characterized
PPI network as a fingerprint (called ‘Master’) and guides
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Fig. 1 Overview of the reference-based indexing used in this article. We select three reference networks R1, R2, and R3 from the target network T,
and {R1, R2, R3} is the reference set. Reference networks R1, R2, and R3 have three, three and two non-overlapping and significant mappings in T
respectively. Given a query network Q, we align Q with all the references Ri respectively. Here, Q only aligns with R1 successfully. We use this
alignment to find an alignment of Q with T using the three mappings of R1 in T

the alignment to the second network (called ‘Slave’). The
resulting alignments also retain the structural character-
istics of the Master. Note that all these methods find the
matching subnetworks based on their similarity criteria;
but do not provide any provable confidence in the opti-
mality of the results. On the other hand, several existing
alignment methods provide confidence in the optimal-
ity of the matching subnetwork by employing expensive
dynamic programming. These methods perform the three
basic network edit operations, namely (i) matching a
query node to a node in the target network, (ii) insert-
ing a node in the alignment, and (iii) deleting a node from
the query network to maximize the alignment score of
the corresponding alignment subnetwork. This limits the
practicality of the alignment methods, since complexity
of these methods usually depend on the topology and the
size of the query network. More specifically, let us denote
the number of nodes in the query and the target with m
and n respectively. Even for simple query topologies such
as simple paths and cycles, the complexity of this prob-
lem is O(nm), where each potential sub-alignment should
maintain the potential list of already visited nodes. These
methods use a randomization technique called color-
coding [24]. This allows one to maintain the list of visited
colors at considerably lower complexity compared to the
list of visited nodes (i.e., O(nm)). It evaluates a subset
of subnetworks as potential alignment subnetwork, and
repeat the process multiple times to get the user specified
confidence in the optimality of the alignment subnetwork.
Due to the complexity of the alignment algorithm, existing

methods do not find the alignment for arbitrary query
network topology. For instance, QPath [25] finds the align-
ment of a linear pathway in a target network. QNet and
ColT extend the topology of the query network to be of
tree topology [6, 10]. These methods can act as building
block to any indexing technique that provides provable
confidence bound in the quality of the result.
In global network alignment problem, two networks are

compared as a whole to find the best matching between
the nodes of the networks in terms of some scoring func-
tion. IsoRank algorithms are among the earliest global
network alignment methods [4, 26]. They estimate node
similarity by recursively defining similarity among the
neighbors of the nodes. GRAAL series of network align-
ment methods use graphlet degree signatures for topo-
logical similarity [5, 27, 28]. In summary, all the align-
ment methods (both local and global) use topological and
homological information to score an alignment. How-
ever, these methods vary widely in the way they use these
information.
Sometimes, network alignment is sought for a query

network against a database of biological networks.We can
find the best match of the query in each of the database
networks. Alternatively, we can return only the database
networks with which the similarity of the query network
is over a user specified threshold. This problem is known
as the similarity search problem. Note that the similar-
ity search does not attempt to find the best alignment. It
rather seeks if the similarity score is above a threshold for
each database network.
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Building an index over the database can accelerate simi-
larity search.We can broadly classify the existing indexing
techniques for this problem into three groups as feature-
based, tree-based, and reference based index. Feature-
based indexing methods extract specific features (e.g.,
path, small subgraphs etc.) from the database networks
and index them. When a query is issued, they extract
features in the query and match those to features in the
index. Comparing features is a significantly cheaper task
than network alignment. Thus, this strategy is preferable
if it can filter a large number of database networks. Many
indexing techniques fit in this category [21, 29–31]. TALE
[21] matches large query networks against a database of
target networks. To tackle large query networks, TALE
introduces an index named theNeighborhood Index (NH-
Index) based on the induced subgraph of a node and it’s
neighbors. It computes the ‘important nodes’ in the query
and probes the index to find its matches in the targets. It
then extends the matching based on those ‘anchor points’ .
The notion of ‘important’ node stems from degree cen-
trality and the matching between the nodes are based
on the node/group labels. It ignores the sequence con-
tents of the nodes while matching nodes. Additionally,
the match-and-extend based matching tool does not pro-
vide confidence in the optimality of the result. SAGA
[29], on the other hand, provides a flexible approximate
graph matching tool for smaller query networks. It allows
nodes to match to orthologous groups only. However, the
corresponding matching algorithm is also inadequate to
provide confidence bound in the optimality of the result.
Closure-Tree(C-Tree) is a representative of tree-based
indexing technique [32]. C-Tree stores the index structure
as a tree. It places all the database networks at the leaf
level of this tree. Each internal node is a network that is
the union of all the networks at the leaf nodes of the sub-
tree rooted at that node. When a query is issued, it aligns
the query to the network stored at the root node of the
index. If the alignment score is large enough, it explores
the children nodes iteratively. Otherwise, it prunes the
entire subtree rooted at that node. This strategy has no
affect in reducing the cost of alignment in a single target.
It is identical to the pairwise network alignment prob-
lem. Reference-based indexing is similar to feature-based
indexing. It samples small, random subgraphs (knows as
references) from the database networks and index them.
When a query is issued, it aligns the query network with all
the references. It computes an upper and a lower bound to
the alignment score of each database network and filters
those with a lower upper bound than the user specified
threshold. RINQ [33] fits into this category. Functional
summary of a network can also be used as index. FUSE
[34] generates functional maps (clustering) of a PPI net-
work at different levels of granularity. It presents the
underlying PPI network as a functional summary graph

of interconnected functional modules. Recent works such
as DualAligner [35] incorporates functional annotation
(e.g., Gene Ontology (GO) terms) informations with the
interaction data to align networks in multiple granulari-
ties. DualAligner performs protein-to-protein alignments
when detailed protein-protein alignment can be ascer-
tained, and performs functional region-to-region align-
ment when data confidence is low. DualAligner also
does not provide confidence in the optimality of their
alignments.
Note that the similarity search problem is different than

the network query problem considered in this article, and
the above mentioned indexing techniques are not appli-
cable in this context. Here, we propose a novel reference
based indexing method that finds alignment in a target
network with high confidence in the optimality of the
result. We use ColT as the building block in our indexing
technique, hence, we find alignment of the query net-
works of tree topology. Having said that, our indexing
method is generic to be applied for any topology.

Method
Network query problem seeks the optimal alignment of
a query network in an arbitrarily large target network.
This is a nontrivial task as the complexity of the under-
lying problem grows exponentially with the size of the
query network (i.e., number of nodes). Here, we present
a new method that addresses this challenge. The core
idea behind our method is the novel index structure we
develop to summarize the target network. We start by
introducing the essential notation needed to describe our
method in Section ‘Preliminary notation’. We present an
overview of our method in Section ‘Overview of our
method’. We discuss how we construct the index struc-
ture in Section ‘Index creation’. We explain how we utilize
this index to align a given query to target network in
Section ‘Query processing’.

Preliminary notation
We denote the query network by Q = (VQ,EQ) and the
large target network by T = (VT ,ET ). An alignment of
Q with T maps the nodes of Q to those of a connected
subnetwork of T. An alignment can lead to insertion of
new nodes intoQ or deletion of some of the existing nodes
ofQ. Wemodel an alignment ofQwith T using a bijection
function α : VQ ∪ {∅} → VT ∪ {∅}, where ∅ represents
insertion/deletion (indel for short) of nodes. We say that
an interaction of Q denoted with the edge (uQ, vQ) ∈ EQ
is aligned with an interaction of T denoted with (uT , vT )

if α(uQ) = uT and α(vQ) = vT .
Following from the state-of-the-art methods in the lit-

erature [6, 10], we measure the quality of an alignment
based on three factors: (i) similarity between the match-
ing node pairs, (ii) weight of the aligned interactions, and
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(iii) penalty incurred due to insertion/deletion of nodes.
More specifically, let us denote the similarity between the
nodes u ∈ VQ and v ∈ VT with sim(u, v), and weight of
the aligned interaction (u, v) ∈ ET with w(u, v) if the tar-
get network is weighted. Also, let us denote the penalty
incurred for each node insertion and deletion with δi
and δd respectively. Using this notation, we compute the
score of an alignment α, that incurs ni insertions and nd
deletions as:

alignment-score(α) =
∑

u∈VQ
α(u)∈VT

sim(u,α(u))

+
∑

(u,v)∈EQ
(α(u),α(v))∈ET

w(α(u),α(v))

+ niδi + ndδd
The optimal alignment of Q and T is the map-

ping that results in the highest alignment score. Let
us denote the optimal alignment by α∗ (i.e., α∗ =
argmaxα{alignment-score(α)}). The alignment α∗ defines
a subnetwork T ′ = (VT ′ ,ET ′) of T, where VT ′ = {v| v ∈
VT and ∃u ∈ VQ such that α∗(u) = v} and ET ′ =
{(u, v)| u, v ∈ VT and (u, v) ∈ ET }. We call T ′ the
alignment subnetwork.

Overview of our method
In the literature, numerous index structures have been
developed to accelerate querying relational databases
[14, 15]. However, this strategy has almost never been uti-
lized for querying biological networks. This is mainly due
to the fact that the complexity of the network topologies,
which is not observed in relational databases, makes it
an extremely hard problem. This article introduces a new
angle to the network querying problem by building an
index structure over the target network T. With the help
of this index structure we dramatically reduce the com-
putational cost of the network query problem. In order
to describe our method, we first need to answer two key
questions:

(i) How do we build the index structure?
(ii) How do we use the index structure to align a given

query with the target network?

We summarize the answers to these questions next.
We elaborate on these answers in Sections ‘Index cre-
ation’ and ‘Query processing’ respectively. Table 1 lists the
notation we use in the rest of this article.

Index construction We use a set of small networks,
called reference networks (or simply references), to index
the given target network T. We choose reference networks
through repetitive application of random walks on T. Let
us denote the set of n such references obtained at the end

Table 1 Symbols used in this article

Symbol Meaning

Q Query network

T Target network

I Initial reference network set

F Final reference network set

Ri ith reference network

φij jth mapping of the reference Ri with T

�i {φij}, i.e.,set of the mappings of reference Ri with T

� {�i}, i.e., set of all mappings

of n random walks with I = {R1,R2, . . . ,Rn}. We call I
the initial reference set. For each reference Ri ∈ I , we
compute its alignment subnetwork T ′ = (VT ′ ,ET ′) in T.
We then update T by removing VT ′ from VT and find the
next alignment subnetwork of Ri in T. We repeat this pro-
cedure to find alternative alignments of Ri in T as long
as the score of the alignment subnetwork is statistically
significant. We defer the formal description of statistical
significance to Section ‘Results and discussion’. This strat-
egy ensures that the generated alignment subnetworks are
non-overlapping and statistically significant. The union of
the set of all the nodes in the alignment subnetworks of Ri
is the coverage of Ri on T, and we denote it by cover(Ri).
Notice that although the alignment subnetworks of a given
reference Ri are guaranteed to bemutually exclusive, those
of different references Ri and Rj may overlap with each
other. As we explain later in detail in Section ‘Index cre-
ation’, this overlap creates redundancy in the index. To
avoid redundancy, we select a smaller subset of references
from this set so that theymaximize the total coverage ofT.
We denote the resulting final reference set by F (F ⊆ I).

Querying Once the index is created for the target net-
work T, we are ready to query that network using the
index. Given a query network Q, we first align Q with
each reference network Ri ∈ F . This alignment is com-
putationally inexpensive since the number of nodes in
both query and reference networks are small. The align-
ment between Q and Ri leads to a mapping ψ (i.e., (ψ :
VQ∪{∅} → VRi ∪{∅})) between the nodes ofQ and Ri with
possible indels. Recall that for each reference network Ri,
our index stores its non-overlapping alignments with the
target network. Assume that such a mapping is denoted
by φ where (φ : VRi ∪{∅} → VT ∪{∅}). Using φ, we quickly
find a mapping between the query and the target network
as φ(ψ()) (details in Section ‘Query processing’). We then
compute an upper-bound to the alignment score between
Q and T using the resulting mapping. If the upper-bound
score is smaller than the current best alignment score, we
ignore this mapping. Otherwise, we further optimize this
mapping by carefully realigning the nodes of Q based on
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the current mapping φ(ψ()). We iterate over all the ref-
erence networks and their alignment subnetworks in the
index and report the best result among them.

Index creation
The set of reference networks ideally should possess two
desirable characteristics: (i) They should summarize the
target network well, and (ii) aligning a query network
with those in the reference set should be computationally
inexpensive. Here, the former characteristic aims at max-
imizing accuracy of the result while minimizing the cost
of query and target network alignment. The latter aims to
minimize the additional alignment cost introduced by the
references. We create such a reference set in two steps:
In the first step, we generate an initial set of reference
networks, denoted with I , which ensures that the first
characteristic holds while disregarding the second one. In
the next step, we filter a subset of the reference networks
from the initial set to ensure that the second characteristic
is also satisfied without violating the first one. We call the
resulting set of references the final reference network set,
and denote it withF . Algorithm 1 presents a pseudo-code
of these two steps. We elaborate on these steps next.

Algorithm 1: REFERENCE-SET-GENERATION

Input: Target network T, number of nodes in
each reference network n

Output: Reference set F
/* Initial reference set

generation */
1 I ← ∅
2 repeat
3 Generate a random reference network Ri of n

nodes and calculate �i
4 Compute cover(Ri) using �i
5 I ← I

⋃{Ri}
6 until Stopping criterion is satisfied
/* Final reference set generation

*/
7 F ← ∅
8 cover(F) ← ∅
9 repeat

10 Select Ri ∈ I such that |cover(F ∪ {Ri})| is
the maximum

11 I ← I \ {Ri}
12 F ← F

⋃{Ri}
13 until Stopping criterion is satisfied

Step I. Construction of initial reference set. (lines 2-6
of Algorithm 1) Let k be a user supplied positive integer
denoting the number of nodes in each reference network.
We create each reference network R ∈ I by performing

a random walk on the the target network T as follows:
We start by randomly selecting a node in T. This node is
the seed of the reference R. We then grow R by randomly
inserting one of the incident edges in T to a node in R
along with the node connected to that edge. We repeat
this process until R has k nodes.
Note that the choice of the value of the parameter k

is governed by several factors. First, the network align-
ment problem considered in this article is prohibitively
expensive. More specifically, the time and space complex-
ity rises exponentially with the number of nodes in the
query [6, 10]. For large confidence values (such as 90 % or
more), solving this problem becomes impractical beyond
query networks of eight or nine nodes [10]. This imposes
a practical limit on the size of the reference networks.
Second, we expect this value to be “close” (not necessar-
ily identical) to the size of the query networks. Thus the
underlying user needs also govern the value of k. There-
fore, we want the reference networks to represent the
future query networks well and want the alignment with
the query networks to be fast. If k is large, it has the pos-
sibility of finding more indirect matching with the query;
but the alignment will be expensive. On the other hand, if
k is much smaller, the alignment will be fast; but the qual-
ity of the indirect matching will suffer. These two points
set a range of values for the number of nodes k a reference
network should have. As long as the reference network
promises a good alignment and the size is manageable, the
reference is considered good.
Once a reference network Ri = (VRi ,ERi) is con-

structed, we compute its non-overlapping, significant
alignment subnetworks in T iteratively. Let us denote the
jth non-overlapping alignment between Ri and T with the
function φij() : Ri → T (i.e., φij(u) = vmeans that node u
of Ri is aligned with node v of T). Note that the mapping
φij() may introduce indels in the alignment. For example,
when a node u in Ri deleted in an alignment, φij(u) will be
set to ∅.
Now, we are ready to describe how we construct

the alignments φij() of the reference Ri. We use the
ColT algorithm [10] to align Ri with T optimally
with a high confidence (we set confidence parame-
ter to 99 %). We prefer this algorithm as it is cur-
rently the fastest method that ensures the optimality
of the result with a provable confidence. It is worth
noting that one can replace ColT with another algo-
rithm without changing the rest of our method. If
the resulting alignment between Ri and T is statis-
tically significant (see Section ‘Results and discussion’
for definition of statistical significance), we store the
resulting mapping φi1 as the first mapping function of Ri
with T. We then remove the nodes in the alignment sub-
network of φi1 from T along with the edges incident to
them. We iteratively align Ri with the reduced network T
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to find the next best alignment φi2. We repeat this process
of obtaining new alignments and reducing T until no new
statistically significant alignment can be found between Ri
and T. Let us denote the number of such alignments of Ri
with πi. We denote the set of non-overlapping significant
alignments with �i = {φi1,φi2, . . . ,φiπi}.
Once the first reference R1 along with its set of align-

ments �1 is constructed, we repeat the same procedure
to construct more references R2, R3, . . . along with their
sets of alignments �2, �3, . . . until the stopping crite-
rion is met. In order to describe the stopping criteria, we
first introduce the concept of coverage. Consider the initial
reference set I = {R1,R2, . . . ,Rn}. Briefly, the coverage
of I is the set of nodes of T that map to at least one
node of at least one reference in I through their statis-
tically significant alignments. Mathematically, we denote
the coverage of Ri as cover(Ri) = {v|∃φij ∈ �i and ∃u ∈
VRi such that φij(u) = v}. Similarly, we denote the cover-
age of I as cover(I) = ∪Ri∈Icover(Ri). We stop creating
new reference networks as soon as |cover(I)| reaches a
user supplied η % of the total number of nodes in T.
For instance, if T has 100 nodes and η = 60 %, we stop
inserting new reference network in I as soon as cover(I)

reaches to at least 60 nodes in the target network.

Step II. Construction of the final reference set. (lines
7-12 of Algorithm 1) We conjecture that as the number
of nodes in cover(I) increases, chances that it will lead
to the optimal alignment of a given query increases. We
defer discussion of the rationale behind this conjecture to
Section ‘Query processing’. Clearly, as the number of ref-
erences in set I grows, coverage of I monotonically grows
as well. On the other hand, each reference in I increases
the cost of aligning query with the target network as we
first align query with the references (see Section ‘Query
processing’). Thus, it is desirable to have a small refer-
ence set with a large coverage. In this step, we resolve this
conflict between accuracy and the running time perfor-
mance. More specifically, we would like to choose a subset
F of the candidate reference set I , such that the cover-
age of F on T is at least a given coverage cutoff and the
size of F , (i.e., |F |), is as small as possible. This is the
classic set cover problem which is NP-Complete [12]. We
use a greedy technique to solve this problem efficiently.
For each reference network Ri ∈ I , we construct the set
cover(Ri). We iteratively create the final reference set F
that yields the desired coverage as follows: We start by
initializing the final reference set F and cover(F) as the
empty set. At each iteration, we select the reference net-
work Ri ∈ I such that the value of cover(F ∪ {Ri}) is
the largest. We then remove Ri from I , insert it to F and
update cover(F). We repeat this iterative process to move
the next reference from I into F until |cover(F)| reaches
to at least η% of the target network size. This solution to

the set cover problem results in a O(ln(|I|)) approxima-
tion to the optimal solution of the problem which is the
best for a polynomial solution unless P = NP [36].

Query processing
Once the final reference network set F is generated along
with the set of mappings �, we use it to align Q with T.
Briefly, we first align Q with each reference Ri in F . We
then quickly get an initial indirect alignment of Q with T
with the help of each �i ∈ � . Next, we compute an upper
bound to the score of the best alignment we can obtain
through this indirect alignment. If this bound is less than
the score of the best alignment we observed so far, we
discard that indirect alignment. Otherwise, we improve
indirect alignment to minimize indels and maximize the
alignment score. Algorithm 2 presents a pseudo-code of
ourmethod. In the following, we elaborate on ourmethod.

Algorithm 2:QUERY-BY-INDEX

Input: Query network Q, target network T,
reference set F , mapping set �

Output: The optimal alignment α, usingF and �

1 α ← ∅
2 foreach Ri ∈ F do
3 Find a mapping ψi() : Q → Ri between Q and

Ri
4 if ψi() is a successful alignment then
5 foreach φij ∈ �i do
6 Compute an upper-bound UB(Q,φij)

of the alignment using φij(ψi())
7 if UB(Q,φij) ≥ alignment-score(α)

then
8 Compute a local alignment α′ that

respects φij(ψi())
9 if alignment-score(α′) >

alignment-score(α) then
10 α ← α′
11 end
12 end
13 end
14 end
15 end
16 return α

Given a query network Q, we first align it to each ref-
erence network Ri ∈ F optimally with 99 % confidence
using the ColT algorithm (Algorithm 2, line 3). As both
Q and Ri are small networks, this alignment has negli-
gible computational cost. Let us denote this mapping by
ψi() : Q → Ri. For instance, ψi(u) = w means that node
u of Q is matched with node w of Ri. If the alignment
score between Q and Ri is below a given threshold, we
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conclude that Ri does not represent Q well. In this case,
we ignore Ri and proceed to the next reference Ri+1 in F .
If the alignment score is at least the given threshold, we
study the resulting mapping from the nodes of Q to the
nodes of Ri (Algorithm 2, line 4). Having computed ψi,
we iterate over each of the previously stored mapping in
�i = {φi1,φi2, . . . ,φiπi} to construct mappings from Q to
T indirectly as follows (Algorithm 2, lines 5-12): Consider
the jth significant, non-overlapping mapping function of
Ri in T, φij() : Ri → T . For instance, φij(w) = vmeans that
nodew of Ri is matched with node v ofT. The composition
of these two mapping functions defines an indirect map-
ping between the nodes of Q and T, where φij(ψi(u))) = v
means that node u of Q is matched with node v of T indi-
rectly through nodew of Ri (Fig. 2 gives an overview of the
indirect alignment on a toy example). We denote the set
of such query nodes by S = {u|u ∈ VQ, and φij(ψi(u))) =
v such that v ∈ VT , and sim(u, v) ≥ 0}. Similarly, let us
denote the set of nodes in T which are indirectly aligned
with those in Q through mapping φij with S′ (i.e., S′ =
{v|∃u ∈ VQ such that φij(ψ(u)) = v}). Next, we com-
pute an upper-bound to the alignment score UB(Q,φij)
imposed by φij as follows (Algorithm 2, line 6). In the fol-
lowing, we describe our upper bound calculation strategy
in detail.

Upper bound calculation We compute an upper-bound
to the alignment score where the alignment subnetwork
respects the imposed indirect mapping φij(ψi()). Recall
that if a query node u is in set S, it must match with a tar-
get node v in T (i.e., φij(ψi(u)) = v). If all the query nodes
have an indirect mapping (i.e., S = VQ), we compute its

alignment score. Otherwise, there is at least one query
node u for which indirect mapping is undefined (i.e., u /∈
S). This leaves us with the following options: (i) We con-
sider the node u as a deleted node and incur a deletion
penalty, or, (ii) we find a potential target node v such that
sim(u, v) is large. Note that we may need to insert a node
in the alignment subnetwork in order to get to such a suit-
able target node v, which will incur an additional insertion
penalty. Since our goal is to compute an upper bound to
the alignment score, we drop the topology constraint to
calculate UB(Q,φij) to avoid indel penalty altogether as
follows.
We construct a weighted bipartite graph G = (VQ,

VT ,E). For each query node u ∈ S, we insert the edge (u, v)
in E, where φij(ψi(u)) = v. For each query node u /∈ S,
we insert an edge between v and all nodes in VT − S′. We
assign the weight of all the edges (u, v) in E as sim(u, v).
We then use a maximum weighted bipartite matching
algorithm to get the highest alignment score. We drop
the topological constraint to get the upper-bound score
UB(Q,φij) as high as possible when the alignment is lim-
ited to the indirect alignment φij(ψi()). Since the upper-
bound formula ignores the penalty incurred due to node
insertions and deletions, it is guaranteed to be a true
upper-bound for those set of nodes. Note however that
theremay be another subset of nodes in the target network
which produces a higher alignment score than this upper-
bound. To ensure that such alignments are not missed, we
have more than one references to index different subsets
of the target network.
Note that the gap between the upper-bound and the

actual alignment score when the alignment is constrained

Fig. 2 Overview of indirect alignment. At first, the query and reference networks Q and Ri are aligned. Let the matching function be ψi . For instance,
query node b is matched with the reference node f (i.e., ψi(b) = f ). In the reference generation phase, we stored the non-overlapping, significant
mappings of Ri in the target network T. Let φi1 be one of these stored mapping, and reference node f is matched with the target node g (i.e.,
φi1(f ) = g). Therefore, the indirect mapping of query node b is target node g (i.e., φi1(ψi(b)) = g)
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to the set of nodes indexed by the corresponding reference
can vary widely. The worst case scenario for our upper-
bound happens when all the edges are missing between
the nodes pairs in the target when they exist in the query.
For instance, consider two query nodes u1 and u2 which
have an edge between them. Also consider the two tar-
get nodes v1 and v2 which are aligned with u1 and u2
respectively by the upper-bound algorithm but there is no
edge between v1 and v2. This will introduce node inser-
tion penalty for all the nodes on the shortest path from
v1 to v2. Thus the gap between the upper bound and the
true alignment score depends on the target and query net-
work topologies. That said, the value of the upper-bound
score does not affect the correctness of our method. If the
upper-bound is smaller than the current best alignment
score, we skip this particular alignment since we already
generated a better alignment using another indirect map-
ping. Otherwise, it can only introduce false positives at
this stage. Our algorithm filters these false positives at
the end of the query processing step when we generate
an alignment subnetwork induced by the indirect align-
ment (Algorithm 2, lines 7 and 8).

Induced alignment If the upper bound is greater than
the current best alignment score, we find an alignment
subnetwork T ′ = (VT ′ ,ET ′) that conforms to the indi-
rect mapping. We call this induced alignment, since this
alignment is induced by the indirect mapping found in
the previous stage. Recall that in the dynamic program-
ming solution, we compute the score by invoking each
of match, insert and delete operation, and then choose
the operation that produces the highest score. The indi-
rect mapping governs which query and target network
nodes these operations are applied to. Following describes
how we extend the dynamic programming to take indi-
rect mapping into consideration. Any query node u ∈ S
aligns with node v of T if φij(ψi(u))) = v. For any other
node u′ ∈ VQ, we have two options, among which we
choose the one with the highest score: (i) Do not match
u′ with any node (i.e., deletion of node u′), (ii) Match u′
with an unmatched node in T. In a similar fashion, any
target node v ∈ S′ only matches with the correspond-
ing query node u ∈ S such that φij(ψi(u))) = v. For
any other node u′ ∈ VQ, we skip the match operation
between u′ and v. Similarly, we skip the insertion oper-
ation for any target node v ∈ S′ to respect the indirect
mapping. We further extend similar filtering conditions
for other query nodes as well. Assume that (u,w) ∈ EQ
where u ∈ S andw /∈ S. The indirectmapping φij(ψi(u)) =
v localizes the mapping of w with an adjacent node of
v in T ; or incurs an insertion. These extra conditions
successfully skip many future unsuccessful invocations of
dynamic programming and cuts down the running time
significantly.

Indirect alignment also affects the number of colors
needed in the color-coding algorithm. Since the query
nodes in S are already mapped, we ignore the color of the
corresponding target nodes. Thus, it suffices to use only
as many colors as the unmapped query nodes instead of
the total number of query nodes. This reduces the num-
ber of iterations needed to reach a certain confidence
level exponentially with the number unused colors. Thus
induced alignment improves the overall running time of
the query processing method by avoiding many unsuc-
cessful dynamic programming invocations and reducing
the number of iterations for a certain confidence value.

Results and discussion
In this section, we evaluate the performance of our
method through extensive experiments. We compare our
method to ColT [10] since ColT has the best running
time performance among existing methods which pro-
vide provable confidence level in the optimality of the
result. We set the confidence level of ColT to 99 % in our
experiments. We measure the running time and the align-
ment score of the alignment subnetworks. We describe the
experimental setup in detail below.

Target network We use real protein-protein interaction
networks (PPI) as target networks in our experiments.
More specifically, we use the PPI networks of Escherichia
coli, Helicobacter pylori, and Mus musculus from the
MINT [37] database. Among them, the mouse (Mus mus-
culus) PPI network is the largest with 1,346 proteins and
1,659 interactions. E. Coli network has the smallest num-
ber of proteins, but it has the highest interactions density
with 4.7 interactions per protein (i.e., 2×1460

701 ) on the aver-
age among the three networks.
Additionally, we use the PPI networks of Drosophila

melanogaster (fruit fly) and Saccharomyces cerevisiae
(yeast) for cross-species network query analysis. We use
the networks downloaded from DIP database [38]. We
further enriched the fly network by adding interactions
obtained from Stanyon et al. [39] and FlyGRID [25].
The fly PPI network contains 7,481 proteins and 26,201
interactions among them. The yeast PPI network con-
tains 4,738 proteins and 15,147 interactions among them.
Table 2 summarizes the number of nodes and interactions
of these networks.

Query network We create each query network by per-
forming randomwalk over the given target network.More
specifically, we first create a query set of 10 networks
for each target network where each query network has
six nodes (rationale for the size is discussed in Section
‘Index creation’). We also create additional query sets
from each of these query sets by randomly perturbing the
topological and homological characteristics of the query
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Table 2 Summary of the target networks

Organism Number of nodes Number of interactions

Escherichia coli 701 1,640

Helicobacter pylori 733 1,507

Musmusculus 1,346 1,659

Drosophila melanogaster 7,481 26,201

Saccharomyces cerevisiae 4,738 15, 147

in these sets.We describe the network perturbationmodel
we use below.

(i) (Topology) In order to alter the topology of a query
network, we either insert a new node into or remove
an existing node from that query network. In order to
insert a new node w, we either insert it as a leaf node
with the incident edge, or randomly pick an edge (u,
v) from the query network. In the former case, we
randomly choose a node v from Q and then insert
the new node w by adding edge (v,w). In the later
case, we replace the edge (u, v) with the edges (u, w)
and (w, v). Deleting a node from the query is tricky
since we must ensure that the network remains
connected after removal. To delete an existing node
w, we check the degree of w. If its degree is 1 (i.e., a
leaf node), we simply remove w along with the edge
incident to it. If its degree is two, then we remove w
along with its incident edges and insert a new edge
(u, v) between the pair of nodes u and v that were
connected to w. Thus, by inserting and removing a
node from the original query network, we create 10
additional query networks of seven nodes and 10
networks of five nodes for each target network.

(ii) (Homology) In order to alter the homological
similarity of the query network and the target
networks, we introduce a given amount of noise to
the amino acid sequences of the query nodes. More
specifically, given a mutation percentage μ%, we
iterate over each amino acid of each protein in the
given query network and replace the amino acid with
a different one with μ% probability. For each of the
query sets described above, we create homologically
mutant query networks for μ = 0 % (i.e., no sequence
mutation), 5 %, 10 % and 20 %. This way, for each
query network, we introduce four different query
networks with the same topology, but different
amino-acid sequences for the constituent proteins.

In summary, we create a total of three topological and
four homological variants of queries, leading to 3×4 = 12
query sets for each target network. With 10 queries in
each query set for each of the three datasets, we experi-
ment with totally 360 (i.e., 3 × 12 × 10) query networks

covering a broad spectrum of topological and homological
characteristics.
For cross-species network alignment query, we cre-

ate query networks from the mitogen-activated protein
kinase (MAPK) pathways of human, fly and yeast from the
KEGG database [40].

Index creation Recall from Section ‘Index creation’ that
in order to ensure that aligning a query and a reference
network is computationally cheap, reference networks
should be small and have similar (not necessary identical)
size as the query networks. Following from this observa-
tion and the limits in the query size, we generate reference
networks of six nodes (i.e., the same size as our original
query networks). For each target network, we create three
reference sets with coverage values equal to 60 %, 70 %,
and 80 %. The initial reference set generation time with
80 % coverage for H. pylori, E. coli and M. musculus are
2.6, 4.6, 5.4 hours, respectively. The running time to gen-
erate the final reference set from the initial reference set is
less than a second for each organism.

Statistical significance of an alignment subnetwork
We measure the significance of the score of an alignment
in terms of its z-score. We compute the z-score of an align-
ment between two networks Q and T as follows: let s be
the score of their alignment. We create a large number of
random alignments between Q and T by randomly map-
ping the topology ofQ over T. The scores of these random
alignments denote the null distribution of possible map-
pings ofQ and T while preserving alignment topology. Let
us denote the mean and the standard deviation of these
alignments with μ and σ respectively. We compute the z-
score of the alignment using as s−μ

σ
. In our experiments,

we construct 10,000 random alignments for this purpose
for each alignment.

Implementation details For each protein in the target
networks, we download the corresponding amino acid
sequence from the Uniprot [41] database.We use BLAST+
to compute the homological similarity between pairs of
nodes in the query and target networks using their cor-
responding protein sequences. We set the similarity score
between nodes as the normalized negative logarithm
of E-value returned by blastp. Note that, one can
replace this function with any other similarity function
such as the coherence of the GO terms between pairs of
nodes. We implement our method in C++. We fix the pos-
sible number of insertion nins and deletion ndel to at most
two as per Dost et al. [6].We implement maximumweight
bipartite matching using the Hungarian method [42].
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Environment We performed all experiments on a Linux
server that has 3 GB RAM and AMD Opteron dual core
processors running at 2.2 GHz.

Effect of index selection strategy
Recall that we create our index structure in two steps
where the first step aims to maximize network coverage
while the latter aims to minimize the index size. In our
first experiment, we evaluate the contribution of each of
these two steps in the performance of our method.
We first report how the coverages of the initial (Step I)

and final (Step 2) reference sets grow with increasing ref-
erence set size. Figure 3(a), (b) and (c) show the results for
the three target network datasets. First of all, we observe
that our index structure obtains very high coverage values
(up to 80 %) by using a very small number of references
(30 to 60). Our results also demonstrate that the final ref-
erence set requires much fewer reference networks than
the initial set to reach the same coverage of the target net-
work (coverage = 50 %, 60 %, and 70 % are highlighted).
For example, in E. Coli, the final reference set needs only
16 references to reach 70 % coverage, whereas the ini-
tial set requires 26 references to reach the same coverage.
The gap between the two sets reduces as the coverage of
the final set grows beyond 80 %. However, we were able
to generate the final reference set of E. Coli with 80 %
coverage using only 75 % references from the initial set.

Next, we measure the average query processing time for
different query sets and target networks using the initial
and final reference sets. Here, we report the results using
the original query networks (no insertion/deletion) and
vary the sequence mutation rate to 0 %, 5 %, 10 %, and
20 %. We perform the experiments using index structures
with different coverage values. In Fig. 3(d), (e) and (f), we
report the results by setting the coverage to 60 %. Results
for other coverage values have similar trends (figures not
shown). For each of the three target organisms, we observe
that the final reference set yields much faster query pro-
cessing time in almost all query sets. For example, with
20 % sequence mutation on the query set, final refer-
ence set processes the query 2.5 times faster than initial
reference set in E. coli. In some cases, initial reference
set performs better than the final reference set, possibly
due to finding a good alignment subnetwork in the early
phase of the processing. The gain in running time in those
cases is insignificant. These set of experiments suggest the
potency of the final reference set over the initial refer-
ence set. Following from these observations, in the rest of
our experiments, we only report the results using the final
reference set.

Comparison with the state-of-the-art method
Aligning a query with a target network is a computa-
tionally expensive task. Our indexing technique aims to

Fig. 3 Figures (a), (b), and (c) show the coverage values obtained for growing number of reference networks on H. pylori, E. Coli, andM.musculus
datasets respectively for initial and final reference sets. Figures (d), (e) and (f) report the average running time needed to query each of these three
networks using the initial and final reference sets
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reduce this cost. In this section, we evaluate our method’s
success and limitations towards that goal. To do that, we
compare the performance of ourmethod to that of ColT in
terms of running time and z-score of the alignment score.
We use the following metric to compare the running time
performance between the proposed method and ColT:
speed-up = running time of ColT

running time of the proposed method . Larger speed-
up values indicate better performance of the proposed
method.
Figure 4 shows the average speed-up in running time

obtained by our method for different query and index
structure parameter settings. We observe significant
speed-up in running time consistently for all target net-
work, query set combinations. It also shows a general
trend: the speed-up increases (i.e., the query processing
time decreases), as the coverage of the index decreases.
This is expected as the number of reference networks
(along with its non-overlapping, significant alignment

subnetworks) in the index increases with the expanding
coverage values. This results in additional indirect align-
ments between the query and the reference networks, and
invocation of expensive dynamic programming method.
For instance, if we set the homology mutation μ to 20 %
and use the query networks with seven nodes, we observe
that our method with 60 % coverage runs 25 times faster
than ColT in E. coli network. If we increase the coverage to
80 %, it runs eight times faster. In some cases, our method
obtains high speed-up values independent of the cover-
age size. For instance, if we set the homology mutation μ

to 20 % and use the query networks with seven nodes, we
observe that our method runs 27 and 24 times faster with
coverage set to 60 % and 80 % respectively in H. pylori
network.
The speed-up in query processing time is desirable only

if the resulting alignment score is significant. In our next
experiment, we evaluate whether our method can find

Fig. 4 The average speed-up of the proposed method over an existing method, ColT. Results are reported by varying the query set through both
topological and homological perturbations. Figures (a)-(c) show results for H. pylori network. Figures (d)-(f) show results for E. coli network. Figures
(g)-(i) show results forM.musculus network
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significant alignments despite filtering a massive portions
of the target network. Table 3 presents the average z-
scores of the alignments found by our method and ColT
for each dataset and parameter settings. We observe that
the obtained z-scores are very high in all settings. Even
in the worst case our z-score is above 8, and thus, it is
statistically very significant. Furthermore, the z-score of
the alignment obtained by our indexing strategy is very
close to the z-score obtained by ColT in many cases. For
instance, z-score obtained by ColT and the index with
80 % coverage is almost always the same for each of the
target network. In other cases, the obtained z-score of the
alignment subnetwork is so high that it makes little or no
difference to the quality of the alignment found by ColT.
We see that the z-score increases as the coverage of the
index increases. This is expected since additional cover-
age gives chance to explore further in the target network.
These results suggest that our index is a preferable alterna-
tive to the existing methods, including ColT method as it
finds statistically significant alignments with spectacular
speed-up.

Effect of method parameters
In this section, we discuss the effect of the method param-
eters on the performance of the proposed method. We
also evaluate the performance of the parameter values
that affect the index and query sets. We vary the cov-
erage of the index and measure the resulting running
time and z-score of the alignment using all the query
sets. We explain the effect of these parameters in detail
below.

Effect of coverage Figure 4 shows the effect of cover-
age on the query processing time. Coverage of the index
has a direct impact on the running time of our method.
We observe significant speed-up in running time by using
the index structure with different coverage values. More
specifically, as we lower the coverage value slightly, we
observe significant speed-up in query processing time
using the index. This suggests that using a lower coverage
value (around 60-70 %) leads to better running time per-
formance. Next, we evaluate the effect of coverage on the
z-score of the alignment. Table 3 shows that we find align-
ments with significant z-score using different coverage
values. We also observe that the z-score of the alignment
increases as the coverage increases. This is expected as
increased coverage allows to finding alternate alignments
at different parts of the target network. Therefore, using
a higher coverage value is a good choice for more accu-
rate results. We can find an easy balance between the
two seemingly contradictory trends using this fact: the
obtained z-score of the alignment remains very significant
even with decrease in the coverage. For instance, for all
possible parameter values in E. coli, z-score ranges from
20 and reaches above 30. We can choose a suitable value
for coverage as per the need of the user.

Effect of significance cut-off In this experiment, we
vary the significance cut-off values for index creation and
observe its effect on the quality of the result. Figure 5
presents the effect of different significant cut-off val-
ues (varies from six to three) on the z-score for H. pylori.

Table 3 Average z-score computed from the alignment score using different index coverage. We use cover(F ) = 60 %, 70 % and 80 %.
In all these cases, the alignment subnetworks are found to be statistically very significant

0 insert, 0 delete 1 insert, 0 delete 0 insert, 1 delete

Index Coverage

Sequence 60 % 70 % 80 % ColT 60 % 70 % 80 % ColT 60 % 70 % 80 % ColT
mutation

H. Pylori

0 % 28.99 28.99 28.99 28.99 24.92 25.18 27.49 28.32 26.16 26.16 26.80 26.80

5 % 28.77 29.05 29.56 29.56 25.57 25.59 26.20 28.62 24.89 24.89 26.62 26.62

10 % 25.49 28.82 30.15 30.15 22.53 26.43 27.90 29.22 25.26 25.73 27.42 27.42

20 % 25.14 28.24 29.78 29.78 22.41 26.43 28.43 30.61 26.81 26.81 28.03 28.04

E. coli

0 % 30.25 30.25 31.13 31.13 24.01 24.11 28.93 29.60 25.38 25.38 26.64 26.64

5 % 28.99 28.99 31.06 31.06 26.39 26.75 31.14 31.02 25.60 25.60 27.48 27.48

10 % 26.53 28.62 30.10 30.10 21.68 24.99 25.42 30.76 23.84 26.26 27.79 27.79

20 % 31.65 31.65 32.08 32.08 30.89 30.91 31.82 32.65 28.07 28.07 29.00 29.55

M.musculus

0 % 15.37 15.37 18.05 18.08 8.64 10.15 13.00 14.80 13.77 14.57 16.72 16.72

5 % 12.46 12.61 17.49 18.34 8.86 9.97 10.40 15.28 14.93 15.42 16.93 16.93

10 % 13.86 15.25 16.30 19.11 10.22 11.86 12.87 15.42 15.34 15.34 15.89 17.60

20 % 14.04 15.51 20.45 20.47 9.11 11.10 11.40 16.66 14.99 15.67 18.90 18.90
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Fig. 5 Average z-score of the alignments found by our method for query networks with varying homological perturbation parameters with different
significance cut-off in the H. pylori network. Figures (a), (b) and (c) show the results with no indel, one insertion and one deletion of node respectively

We observe similar results for the other two organisms
as well (results now shown). In all these experiments,
we obtain results with very high z-score values. We also
observe that the z-score increases monotonically, as we
decrease the significance cut-off values from six to three.
Recall that the significance cut-off is used to store sig-
nificant mappings of the reference networks. For smaller
values of cut-off, we store more mappings of the reference
networks in the index. As we process the given query net-
work using these stored mappings, chances of finding the
alignment subnetwork with high z-score value increases.
Similarly, with larger significance cut-off values, we store
fewer mappings in the index. As a result, it expedites the
query processing time.

Effect of query parameters We measure the effect of
query size and homological deviation of the query net-
work from the target network on the performance of our
method. To measure the effect of query size, we use all the
query sets (both original and perturbed) for this experi-
ment. Figure 6 reports the running time versus the size
of the query network when the coverage value is set to
60 %. We observe similar results for other coverage val-
ues as well. We observe that the running time increases
as the number of nodes in the query increases. This

is expected as the underlying dynamic programming is
exponential on the number of nodes in the query network.
So, it takes more time to compute the local alignments for
larger query networks, as we iterate over the list of non-
overlapping, significant mappings for a successful induced
alignment (Algorithm 2, line 8). We also vary the amount
of homological perturbation rate to 5 %, 10 % and 20 %
in the query set. As we can see from Fig. 6, the run-
ning time does not vary much based on the mutation
in the sequence of proteins. Since the mutation in the
amino acid sequence is random, it changes the similarity
score between the pair of query and target proteins arbi-
trarily. In short, topological mutation has more dramatic
effect on the running time than homological mutation.
Table 3 shows that the z-score of the alignment is very
high, and independent of the change in method or query
parameters (i.e., coverage, topological and homological
mutation). This is a very desirable characteristic of our
method. It shows that we can use our indexing structure
in many different parameter settings and it still produces
significant alignments.

Cross-species alignment
So far, we extracted the query networks from an organism
and employed our indexing method to find the alignment

Fig. 6 Average running time of our method to align the query networks with varying topological and homological perturbation parameters for the
three target networks. Figures (a), (b) and (c) show the results for H. pylori, E. coli andM.musculus target networks respectively
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subnetworks in that same organism. Our experiments
have demonstrated that our indexing method finds statis-
tically significant alignment subnetworks in much faster
running time. Now, we evaluate how well our indexing
structure works when we perform cross-species align-
ment. In this experiment, we query a known pathway
from one organism, and check if the alignment subnet-
work in another organism (found by our indexingmethod)
is meaningful. For this purpose, we extract query sub-
networks from MAPK (mitogen-activated protein kinase)
pathways in human, fly and yeast networks. We employ
our method to find the alignment subnetworks in fly and
yeast target networks and measure the statistical and bio-
logical significance of the results. We use the DAVID
[43, 44] tool for functional annotation purpose.
We start by creating three small query networks of six

nodes. We extract a small query network from classical
humanMAPK pathway that is responsible for cell prolifer-
ation and differentiation. We also extract a query network
from yeast MAPK pathway that is involved in nitrogen
starvation inducing filamentation. The third one is from
fly MAPK pathway and is responsible for R7 photorecep-
tor cells in fly eye development.
We first align human MAPK query network against

the fly PPI network using our indexing method. Figure 7
shows the query and the alignment subnetwork. The pro-
teins Ras85D and Egfr in the alignment subnetwork are
responsible for MAPK functions in particular. We use the
DAVID tool to generate the functional annotation chart
and in the ‘functional categories’, we find the term kinase
as the most enriched one with p-value = 4.2e−5 which
is significant. In the ‘Gene Ontology’ category, we find
the term GO:0004672 (protein kinase activity) as the most

Fig. 7 Cross species network query using index. Figure (a) shows a
query network extracted from human MAPK pathway and (b) shows
the corresponding alignment subnetwork in fly

significant one with p-value = 4.28e−4. We also query
the InterPro database [45] to functionally analyze these
proteins by classifying them into families and predict-
ing domains. We find that the term IPR000719 (Protein
kinase, core) is the most enriched one with the p-value =
9.09e−5. Additionally, we also measure the statistical sig-
nificance of the alignment subnetwork in terms of z-score.
The z-score value of 17.94 also shows that the map-
ping is very significant. This shows that the human query
network used in this experimentmaps to functionally con-
served regions in the fly network. We then align the yeast
query network against the fly network and use the DAVID
tool to analyze the result. In the ‘Gene Ontology’ category,
we find the term GO:0004672 (protein kinase activity)
appearing with p-value = 4.28e−4. In the ‘functional cat-
egories’, we find the term kinase with p-value = 2.6e−3.
Similarly, when we query the matching proteins in the
InterPro database for predicting families and domains, we
find the term IPR000719 (Protein kinase, core) as themost
enriched one with p-value = 9.09e−5. The z-score of the
alignment subnetwork is 15.0 which shows that the align-
ment subnetwork is also statistically meaningful. These
results demonstrate that query networks extracted from
human and yeast MAPK pathways match with function-
ally conserved regions in fly.
We then repeat the experiment with human and fly

query networks against the yeast network. Figure 8
shows the human query and its alignment subnetwork in
yeast. The protein CDC42 in the alignment subnetwork
is responsible for MAPK function in particular. We use
the DAVID tool to generate the functional annotation
chart and in the ‘functional categories’, we find the
terms serine-threonine-protein kinase and kinase as the
most enriched ones with p-value = 6.3e−5 and 2.9e−4

respectively. In the ‘Gene Ontology’ category, we find

Fig. 8 Cross species network query using index. Figure (a) shows a
query network extracted from human MAPK pathway and (b) shows
the corresponding alignment subnetwork in yeast
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the terms GO:0004674 (protein serine/threonine kinase
activity) and GO:0004672 (protein kinase activity) as
the most significant ones with p-value = 2.73e−4 and
3.12e−4 respectively. We also query the InterPro database
[45] to functionally analyze the proteins and find all
the top terms are kinase related (IPR002290, IPR017442,
IPR008271, IPR000719, IPR015750, IPR017441 etc.),
where IPR000719 (Protein kinase, core) appears with
the p-value = 6.00e−5. The z-score of the alignment
subnetwork is also 12.02. This shows that the human
query network used in this experiment maps to func-
tionally conserved regions in the yeast network. We then
align the fly query network with the yeast PPI net-
work. When we query the InterPro database to function-
ally analyze the proteins, we find the terms IPR017442,
IPR017441, IPR008271, IPR000719 as the most enriched
ones (all are kinase related). The term IPR000719 (Pro-
tein kinase, core) appears with the p-value = 8.00e−3.
Our method finds statistically significant alignment
subnetwork (i.e., z-score = 12.21). These experiments
show that our indexing method finds alignment subnet-
works that are statistically significant and functionally
coherent.

Conclusion
In this article, we proposed an indexing structure that
accelerates network queries on large target networks.
We developed a reference based indexing on the target
network. Our index consists of small networks named
‘references’ carefully chosen from the target, along with
their significant, non-overlapping mappings to the target
network. Given a query network, we first assess each ref-
erence network for its similarity with the query network.
If it has the potential to produce the alignment subnet-
work, we generate an indirect alignment from the query to
the target using the reference, and process its stored map-
pings to find the alignment subnetwork. Our experiments
suggest that the running time of our method is dramat-
ically better than the existing approximate methods. We
also observed that the alignment subnetworks found by
our method are statistically and functionally significant.
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