
SOFTWARE Open Access

An automated real-time integration and
interoperability framework for bioinformatics
Pedro Lopes1* and José Luís Oliveira1

Abstract

Background: In recent years data integration has become an everyday undertaking for life sciences researchers.
Aggregating and processing data from disparate sources, whether through specific developed software or via
manual processes, is a common task for scientists. However, the scope and usability of the majority of current
integration tools fail to deal with the fast growing and highly dynamic nature of biomedical data.

Results: In this work we introduce a reactive and event-driven framework that simplifies real-time data integration
and interoperability. This platform facilitates otherwise difficult tasks, such as connecting heterogeneous services,
indexing, linking and transferring data from distinct resources, or subscribing to notifications regarding the
timeliness of dynamic data. For developers, the framework automates the deployment of integrative and
interoperable bioinformatics applications, using atomic data storage for content change detection, and enabling
agent-based intelligent extract, transform and load tasks.

Conclusions: This work bridges the gap between the growing number of services, accessing specific data sources
or algorithms, and the growing number of users, performing simple integration tasks on a recurring basis, through
a streamlined workspace available to researchers and developers alike.

Keywords: Data integration, Interoperability, Publish/subscribe, Integration-as-a-service, Intelligent ETL, Workflow,
Cloud, Service-oriented architecture, Event-driven

Background
The scale of information available for life sciences re-
search is growing rapidly, bringing increasing challenges
in hardware and software [1, 2]. The value of these raw
data can only be proved if adequately exploited by end-
users. This reinforces the role of integration and inter-
operability at several service layers, allowing them to
focus on the most relevant data for their research ques-
tions [3].
Biomedical data are complex: heterogeneously struc-

tured, originating from several different sources, repre-
sented through various standards, provided via distinct
formats and with meaning changing over time [4, 5].
From next generation sequencing hardware [6] to the
growing availability of biomedical sensors, tapping this
on-going data stream is an unwieldy mission [7]. Acces-
sing, integrating and publishing data are essential

activities for success, common to commercial and scien-
tific research projects [8]. Many life science researchers
perform these tasks on a regular basis, whether through
the manual collection and curation of data, or the use of
specific software [9, 10].
In recent years, data integration and interoperability is

focused on three interdependent domains: cloud-based
strategies [11, 12], service-oriented architectures [13]
and semantic web technologies [14].
Cloud-based approaches are adequate for institutions

that want to delegate the solution for computational re-
quirements. Processing high throughput sequencing data
or executing intensive analysis algorithms involves a
technical layer that is greatly enhanced by using grid-
and cloud-based architectures [15]. This removes any
technological hardware concern from the researchers'
work. In addition, improved availability and ease-of-
access, to and from cloud-based resources, further pro-
motes the use of cloud-based strategies. However, for
the majority of researchers, their problems are much
smaller and focused, and, where the implementation of a

* Correspondence: pedrolopes@ua.pt
1DETI/IEETA, Universidade de Aveiro, Campus Universitario de Santiago,
Aveiro 3810-193, Portugal
Full list of author information is available at the end of the article

© 2015 Lopes and Oliveira. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328
DOI 10.1186/s12859-015-0761-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0761-3&domain=pdf
http://orcid.org/0000-0001-5330-6562
mailto:pedrolopes@ua.pt
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

full cloud-based stack is relevant, access to these re-
sources is difficult and expensive.
Workflow management tools represent a leap forward

for service interoperability in bioinformatics. The ability
to create comprehensive workflows eased researchers’
work [16]. Nowadays, connecting multiple services and
data sources is a recurring task. Yet, tools such as Yabi
[17], Galaxy [18] or Taverna [19] lack automation strat-
egies, essential for real-time features.
The Semantic Web paradigm has been promoted as a

perfect fit for the innate complexity of the life sciences.
The complex biological data relationships are better
expressed through semantic predicates than what is pos-
sible in relational models or tabular files [20]. Although
applications such as the semantic Diseasecard [21] or ar-
chitectures like Semantic Automated Discovery and In-
tegration (SADI) [22] already commoditize Semantic
Web technologies, this paradigm is not a “one size fits
all” solution.
In this work we introduce an open-source framework

to streamline data integration and web service interoper-
ability tasks. Our goals are two-fold: enabling the auto-
mated real-time, reactive or event-driven analysis of
data, and empowering the creation of state-of-the-art
applications.
Traditional integration approaches, in use by data

warehouses, rely on batch, off-line Extract-Transform-
Load (ETL) processes. These are manually triggered on
regular intervals of downtime, which can range from
weeks to months or even years. However, in the life sci-
ences domain, the demand for fresh data cannot be ig-
nored. Hence, we need to deploy new strategies that are
dynamic [23], reactive [24] and event-driven [25, 26].
Thus, today’s platforms must act intelligently, i.e., in
real-time and autonomously, to changes detected in in-
tegrated environments.
There is untapped potential in the real-time and

event-driven integration of data. Researchers want to ac-
cess the most up-to-date datasets; thus, ensuring that
data are synchronized across resources continues to be
an on-going challenge. Combining this need with the re-
sources’ heterogeneity and distribution, and we have a
major bottleneck for faster scientific progress.
Our approach is based on the creation and deploy-

ment of intelligent agents. Agents track data changes on
remote data sources, identifying new events based on
user-specified conditions. Next, events trigger the pro-
cessing of actions based on user-specified templates.
Agents monitor resources in CSV, JSON, XML or SQL
formats, which cover the majority of data sources and
services available. Templates handle integration actions,
interacting with files, databases, emails or URLs. As a re-
sult, there are endless combinations for customisable in-
tegration tasks, connecting events detected by the agents

with actions configured in templates. Among others, the
framework empowers live data integration and heteroge-
neous many-to-many interoperability. In addition to the
mentioned integration scenario, this platform is suitable
to several other research problems within and beyond
the life sciences.

Implementation
The framework’s current version includes two compo-
nents: server and distributed clients, both available to
use and download at https://bioinformatics.ua.pt/i2x/.
The server is the main platform component, powering

the framework’s core features. The distributed client
scripts enable deploying local agents, using an internal
packaged library.
The source code is available at GitHub (https://

bioinformatics.ua.pt/i2x/docs/install/index), under the
MIT free software license.

Architecture
Figure 1 details the framework’s architecture, including
its basic components, described next.
Original resources refer to the data sources being

monitored by the configured agents. In our initial ver-
sion these endpoints can provide data in SQL, CSV/
TSV, XML or JSON format.
Agents are intelligent distributed engines tracking re-

sources. Deployed agents form a multiple agent system
focused on extracting content for verification in format-
specific algorithms. Internally, each agent analyses re-
sources detecting changes in comparison to previous
states. Agents are modelled to include the configuration
properties required to setup automated real-time con-
tent change detection from heterogeneous resources.
This includes miscellaneous agent features such as
scheduling, endpoints, connection strings, data selectors
or caching definitions, among others.
Agents are executed in the main server or in remote

locations using the framework’s distributed client scripts.
This results in improved security as data exchanges be-
tween the original data sources and the server compo-
nent are reduced, and all transactions are performed via
HTTPS.
The agent’s monitoring scheduling is also flexible, as

available schedules are not hard-coded. The schedule list
is defined in the application settings and can change on
distinct server instances. More importantly, whereas the
basic modus operandi is reactive integration relying on
scheduled polling, content changes can also be pushed
directly to agents, enabling passive integration.
Within the agents we have detectors. These are the al-

gorithms that perform the actual resource tracking. Detec-
tion algorithms look for changes in the output content
from the origin resources. The detector connects to the

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 2 of 13

https://bioinformatics.ua.pt/i2x/
https://bioinformatics.ua.pt/i2x/docs/install/index
https://bioinformatics.ua.pt/i2x/docs/install/index

data store to analyse, retrieve and compare event metadata
obtained by the agents.
In the current implementation, detectors can identify

changes in four distinct formats: CSV/TSV files, SQL da-
tabases (MySQL or PostgreSQL), XML or JSON data.
These formats cover the output of the majority of data
sources and web services available. For instance, we can
write complex queries that fully explore SQL’s potential
to extract data for detection. Moreover, this open archi-
tecture makes it easy to build on these methods to ex-
pand the detection to extra formats.
Agents can be configured with one or more Seeds.

Seeds enable the dynamic population of values in the
agents’ configuration. Although agents are flexible
enough to cover the collection of data from disparate

sources, there are scenarios where we need to launch
agents for a very large number of targets with a similar
configuration (for example, to iterate over a list of iden-
tifiers such as genes, proteins or publications). This is
where Seeds are used. Seeds’ configuration is identical to
agents’ as the framework uses similar selectors to obtain
seed values that fill in the gaps in the associated agents’
configuration, enabling the dynamic creation of agents.
A sample scenario where seeds can be helpful revolves
around the extraction of data from XML content feeds.
The outcomes of agents’ monitoring process are Events.
Each content/state “change” detected by the agent cre-
ates a new event. This triggers the execution of actions
through delivery templates, enabling a controlled flow of
data within distinct resources. Events are atomic and

Fig. 1 Framework architecture highlighting the different system layers. a external Original Resources are accessed for data extraction; b local or
distributed Agents poll Original Resources; c the internal Data store uses a relational database (PostgreSQL or MySQL) to store data and an object
cache (Redis) for improved performance; d the application engine, is implemented in Ruby, with the Rails framework, and controls the entire
application and its API; e the Postman applies the data extracted by the Agents to the Templates and executes the final delivery; f the external
Destination Resources receive the data from the system.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 3 of 13

contain the metadata required for finalizing the integra-
tion task.
The internal data store combines a relational database

with a high-performance cache to persist application
data. The platform uses the relational database to store
all internal data, from agents’ configurations to user de-
tails. In addition to these, it stores all the required con-
tent verification elements. In addition, the system also
features a Redis cache for faster change detection and
event generation.
The FluxCapacitor is the main application controller,

registering and proxying everything. With all compo-
nents deployed independently, the FluxCapacitor con-
nects all components, acting as as a flow manager and
ensuring that all operations are performed smoothly,
from event detection to the final delivery. Moreover,
FluxCapacitor also enables the framework’s API, empow-
ering the various platform web services.
The Postman, as implied by its naming, performs the

delivery of each template. That is, it finalises the integra-
tion tasks, receiving event data and applying them to the
delivery template for execution.
Destination resources are the templates’ objects to

which the Postman will connect for the final delivery.
Delivery Templates define the actions executed for new
events. The current version contains templates for exe-
cuting SQL queries, sending emails, calling web services
(using URL routes) or managing files (in a private user
workspace or in an associated Dropbox account). Like
agents, the templates set can be extended with additional
plugins to connect custom services or delivery types.
To connect agents and templates we have Integrations.

That is, integrations define the data origin and destination.

Integrations match multiple agents with multiple tem-
plates, enabling a many-to-many data distribution.
At last, the log engine stores summary information for

all actions and flows. Each log entry contains the min-
imal set of information required to re-enact specific
transactions or errors. This includes timestamps, origin/
destination and the messages sent. For improved track-
ing and analysis, this backend uses the Sentry platform.
Agents, templates and integrations’ metadata are

stored in the internal database. We devised a flexible
and dynamic data model that allows the easy configur-
ation and update of these properties via the platform’s
web interface. Further details regarding the internal
framework architecture and model are available on the
documentation at https://bioinformatics.ua.pt/i2x/docs.

System workflows
Figure 2’s simplified sequence diagram features the
framework’s Extract-Transform-Load pipeline, from data
source polling to resource delivery. The sequence steps
are listed next.

1. Poll Content (Agent-Origin resource): the agent
connects to external data sources and loads content.

2. Return Content (Origin resource-Agent): the data
source returns the requested content.

3. Check Content (Agent-Detector): the agent sends
acquired data to Detector for content change
detection.

4. Check Changes (Detector-Data store): the Detector
imports the data into the internal Data store and
checks if there have been any changes since the last
update (new events).

Fig. 2 Framework monitoring and integration sequence diagram. In addition to the listed steps, all actions are logged internally for
auditing, error tracking and performance analysis. Two alternative pipelines can be executed: a distributed agents generate a different
sequence from step 3, where FluxCapacitor mediates all interactions; b events data can be pushed directly into the platform, generating
a new sequence starting at step 7.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 4 of 13

https://bioinformatics.ua.pt/i2x/docs

5. Return Data (Data store-Detector): the Data store
returns a dataset with the unique new content.

6. Return Events (Detector-Agent): the Detector generates
a set of events and returns them to the Agent.

7. Push event (Agent-FluxCapacitor): the Agent pushes
event data iteratively (one connection for each
event) to the FluxCapacitor

8. Forward data (Flux Capacitor-Postman): the
FluxCapacitor sends event data to the Postman for
delivery.

9. Load template Postman-Data store: the Postman
loads the configured templates from the Data store.

10.Return template Data store-Postman: the Data store
returns matching templates.

11.Deliver Postman-Destination resource: the Postman
performs the final delivery, transforming the
template with the event data, thus concluding the
ETL workflow.

There are two more pipelines enabled that imply min-
imal changes to the framework’s base pipeline: a) when
dealing with remote agents, and b) when event data are
pushed from external resources. The latter complements
the original reactive polling-based approach, which relies
on recurring data fetching from the original sources,
with a passive push-based strategy, where the original
sources must send the new data to an open endpoint in
our platform.
For the first alternative (Fig. 2a), there are a couple

additional steps on the content detection sequence. The
FluxCapacitor mediates the content change detection,
acting as a middleware layer between the remote agent
and the detection engine. This means that remote agents
only interact with the main application controller and
API, the FluxCapacitor.
On the second scenario (Fig. 2b), when external pro-

viders push events directly, the content detection sub-
sequence is ignored. This is where our platform achieves
optimal performance. As it is not necessary to fetch data
from the original sources, we can skip the change detec-
tion algorithm and start the event processing immedi-
ately. The internal pipeline starts on step 7 as data are
pushed directly from the external resources to the API.
In this case, the original data sources are responsible for
sending new data to the platform’s API. The drawback
of this approach is that it implies implementation
changes in the original data sources.

Agent distribution
This distributed architecture relies on the ability to de-
ploy intelligent remote agents. Agents can be executed
in the server-side, on the same machine as the server
component, or at the client-side, where there is direct
access to resources.

This feature is relevant when we consider the amount
of data available in legacy systems, such as relational da-
tabases or CSV files, which are not available through
public URLs or services, and also secure private environ-
ments. In these scenarios, client agents are configured
with the server details, and deployed on the resource
location.
A script controls local agent execution, loading all re-

quired code through a standalone library. The ETL
workflow for distributed agents is similar to what hap-
pens in the main server. The major change regards the
content change detection engine. Whereas with server-
side agents the cache verification occurs within the ser-
ver codebase, with client-side agents a web service call
to the server API performs the verification. Likewise,
with new events, the client agent initiates the delivery
through another web service call.

Dynamic content change detection
To ensure a reliable stream of changed data, this frame-
work relies on a set of content change detection services.
As we cannot pre-emptively identify what is new in the
original data sources, these services perform basic detec-
tion and filtering actions [27], specialised for each inte-
grated data format. This enables the rapid identification
of new events. The architecture adopts an atomic data
storage approach for content change detection. That is,
agents are configured to extract defined data elements
from the original sources, and each of these is independ-
ently stored, without dependencies to other resources,
datasets or agents. This verification process occurs in
four steps.

1. A new detector loads agent metadata according to
the resource data format. For instance, the CSV
detector implementation is different from the SQL
database detector one, although both share the same
interface.

2. The detector polls the resource for data, which
returns the requested dataset. Again, this process is
detector-based, requiring format-specific algorithms.

3. The detector validates the retrieved data in an
internal cache. The cache acts as the atomic data
storage component, storing each data element
uniquely.

4. If the retrieved data are not in the cache, i.e., data
are fresh, a new event is created, triggering the data
push to the main application controller for delivery
and storing the new data in the cache. If the data
are not new, the integration process stops.

By default, the platform resorts to a solution based on
the internal relational database to store events metadata
for verification. To improve detection performance, the

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 5 of 13

framework can use a Redis cache instead, making the con-
tent change detection process faster and more efficient.
The cache verification process can use two distinct

data elements. On the one hand, users can configure the
cache property for each agent specifying what variable
the change detection algorithm will monitor. This
should be set to track unique data properties, namely
identifiers. On the other hand, if there are no data ele-
ments that can identify integrated data unequivocally,
the framework creates and stores an MD5 hash of the
data elements’ content. As changing content results in a
new hash, we can detect new events without comprom-
ising the system performance.

Job processing
Scalability issues in automated real-time integration sys-
tems are a cause for concern. For example, in modern
data processing it is mandatory that information is proc-
essed as efficiently as possible. Hence, several challenges
surface at the integration and interoperability level. Scal-
ability, performance, processing time or computational
requirements are some of the bottlenecks we face. To
tackle them, we employ a queue-based approach to con-
trol the on-demand execution of monitoring jobs. Since
these are the more computationally intensive algorithms,
each monitoring task is placed on a homogeneous
queue, without priority ordering. During the predeter-
mined scheduling intervals, the framework launches the
respective agents.
In parallel with the application server, a queue tracking

service is continuously running, dequeuing jobs accord-
ing to the system’s resources load. For instance, if the
system can only execute two tasks simultaneously, and
there are four monitoring tasks on the queue, they will
be processed two at the time, in order of arrival. Tasks
start with the agent monitoring and proceed until the
final delivery. Moreover, the job execution daemon is
flexible enough to allow distributing the load through
multiple processing cores. As such, for computationally
intensive tasks we can fully explore multithreading cap-
abilities to optimize the overall system performance.
In spite of being a rather simplistic scaling method,

this strategy prevents system overloads without com-
promising the near real-time solution, i.e., introduced
delays are not significant to the application workflow.

Extracting, transforming and loading data
At a basic level, this proposal introduces an intelli-
gent ETL proxy. The framework simplifies the process
of extracting, transforming and loading data from dis-
tributed sources to heterogeneous destinations. The
data extraction for each resource is configured in the
agent, through selectors. Selectors are key-value pairs,
mapping a unique variable name, the key, with an

expression to extract data elements, the value. Where
keys are strings, values are specific to each data for-
mat. For example, with CSV data, values are column
numbers, but with XML data, values are XPath query
strings.
Delivery templates perform the transform and load

process. Their configuration can have several variables,
named within the %{<variable name>} expression. The
custom template engine identifies variables at runtime
that match the selector keys configured in the agent
(being transferred in the event data). A variable in
the template must have a corresponding selector in
the agent. Yet, variables can be used multiple times
throughout the template.
Additional features, such as data mapping in tem-

plates, can be achieved using a Ruby code script (with a
mapping matrix, a switch statement or multiple condi-
tion tests) within the ${code(<ruby script>)} function.
We do not impose any restrictions to possible mappings,
as long as the Ruby script is valid and outputs content
suitable to the delivery format.
For instance, an integration task that extracts data

from a CSV file to a SQL database has an agent with
a set of selectors matching CSV column numbers, the
selector value, with template variable names, the se-
lector key. During the transform and load process,
the Postman replaces SQL template variables (in the
INSERT INTO… statement) with values obtained for
each variable at each CSV row – Fig. 3.
Besides transforming static data for variables, templates

can call internal functions or execute custom transform-
ation code. Functions, named within ${<function name>},
provide quick access to programmatic operations. For ex-
ample, ${datetime} outputs the time of delivery in the
template.
As we cannot pre-emptively foresee all possible data

mapping and transformation operations, we enable
the execution of complex operations in Ruby code.
The ${code(<ruby script>)} function enables writing
scripts that are evaluated during the delivery. This en-
dows templates with a generic and flexible strategy
for performing complex data deliveries. Taking this
approach to the limit, we can perform a delivery that
is entirely based on the execution of custom Ruby
code. Code blocks can be of any size, as long as they
are valid and finish returning a value. This covers
both simple transformations such as numerical calcu-
lations, and complex operations such as matrix-based
translations or mappings. Hence, we enable templates
with conditional transformations, equations solving,
strings manipulation, or calls to system functions,
among many other operations. Further details are
available in the framework documentation, online at
https://bioinformatics.ua.pt/i2x/docs.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 6 of 13

https://bioinformatics.ua.pt/i2x/docs

Results
This framework brings a new perspective to the scien-
tific data integration landscape, summarised in three
main features, discussed in detail next.

� Automated real-time data integration is achieved
through the deployment of intelligent agents, which
can operate remotely, to monitor data sources.

� Improved data delivery to heterogeneous
destinations using a template-based approach,
allowing transmitting and transforming data.

� Advanced integration and interoperability, as we can
use the framework to empower multiple service-
oriented architectures, from publish/subscribe to
cloud-based integration-as-a-service.

Real-time content monitoring
Although the real-time paradigm is seldom applied to the
life sciences domain, there are relevant research opportun-
ities, besides genomics, open to exploration. For example,
in health care, real-time analysis [28] can be used to

improve patient data monitoring or, at an institutional
level, to enhance the collection of statistical data [29].
This framework ensures real-time reliable data trans-

mission and up-to-datedness. Real-time refers to the en-
tire integration process. After the initial test, we
heuristically decided that “every 5 minutes” represented
the best trade-off between the overall application per-
formance and researchers’ real-time demands to be the
smallest update interval. Nevertheless, the platform can
be setup to monitor data sources in any given interval,
from every second to every year.
Local (server-side) or remote (client-side) agents per-

form resource-monitoring tasks. While server-side mon-
itoring is enclosed within the server, remote monitoring
brings three key benefits: distribution, improved load
control and better security.
The ability to download, configure and execute moni-

toring tasks locally adds a unique distribution layer. At
the architecture level, we can deploy and configure any
number of remote agents, pushing data to the frame-
work’s main server.

Fig. 3 Applying data transformations. Data from Original Resources (in CSV/TSV, XML, JSON or SQL) can be easily translated and transformed (into
URL requests, files, SQL queries or emails) using the framework’s templates: a CSV data are automatically inserted into a SQL database; b data are
extracted from a SQL query into a CSV file; c XML elements are extracted (using XPath) and sent to a web service via POST request.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 7 of 13

Local agent execution moves the monitoring schedule
responsibility to the agent owners. As a result, agents’
scheduling is more flexible. Agents run as a standalone
script with an associated configuration file. Scheduled
tasks or manual ad-hoc execution (whenever data
owners want to integrate/publish new data) automate
the script execution.
At last, using client-side agents results in a more se-

cure ecosystem. All communications with the platform
are already secured through HTTPS. Yet, with client-
side agents, sensitive content, such as authentication
credentials or private API tokens, are not stored in the
server. All configurations are saved locally, in a private
JSON file. Moreover, user-based access tokens, unique
32 character strings, control the API data exchanges re-
quired for remote monitoring. Users can add one or
more tokens and revoke existing ones in the server’s
web interface. This token-based strategy also ensures
that client-side agents only access the user's integrations
and templates.

Template-based delivery
The use of template-based engines in software is com-
mon and the integration domain is not an exception.
From meta-programming [30] to service composition
[31], templates are used to simplify recurring tasks and
streamline processes.
Template-based integration strategies traditionally

refer to the data extraction activity of the ETL ware-
housing workflow [32]. However, as this proposal uses
intelligent agents for this task, templates' use fulfils the
transform and load requirements. As detailed in the
methods section, the framework includes a comprehen-
sive template mechanism, based on variables and func-
tions, to generate integration data for delivery to many
destinations. This comprehensive approach is simple, yet
flexible and powerful.
In summary, the framework allows four types of deliv-

eries for now. These are succinctly described next.

� SQL queries to MySQL or Postures databases. As
SQL is a powerful data manipulation language,
complex query delivery can be combined with the
agents’ detection output to perform advanced
transformation.

� Send emails. Emails can be sent to multiple
recipients (with CC and BCC also). All email
properties (to, CC, BCC, subject and message) are
available for customisation with the framework’s
templating engine.

� File manipulation. We can define deliveries as
writing files in the user platform workspace or in
the user’s associated Dropbox account. We can
create new files, or append or delete existing files.

By managing files in the users’ Dropbox account, we
ensure that they are always synchronised with
external changes.

� Requests to URLs. The framework allows contacting
miscellaneous services via HTTP GET or POST,
enabling data exchanges in text, JSON or XML. This
is the most powerful publishing method as it allows
the interaction with most modern REST web
services, which traditionally accept new data via
POST and make data available via GET.

Currently, building tools to call REST services or man-
age files brings distinct requirements and implies custom
ad hoc implementations. However, our template flexibil-
ity provides an abstraction on top of these methods.
Whether we want to append lines to a CSV file, send an
email or POST data to a REST service, users control the
entire process in the server’s simplified interface.

Advanced integration & interoperability
As previously mentioned, this proposal introduces an
open source framework that can act as the foundation
for distinct applications with distinct architectures.
Whether we are dealing with event-driven applications
or publish/subscribe environments, this framework can
be easily adapted to support these systems.

Event-driven architecture
Traditional service-oriented architectures follow a request-
response interaction model [33]. Although this basic oper-
ation principle sustains many systems, lack of support for
responses to events is a major drawback [34].
Event-driven architectures adopt a message-based ap-

proach to decouple service providers from consumers
[35]. In these service-oriented architectures, event detec-
tion is essential to get a reliable stream of changed data
[36]. Event-driven architectures are used for direct re-
sponses to various events and for coordination with
business process integration in ubiquitous scenarios.
Our framework enables this kind of reactive integra-

tion. Intelligent agents are configured to detect events,
with the server acting as a message broker and router.
For a truly event-driven environment, the framework
also supports receiving events via push mechanisms.
This means that we can deploy applications that fully
operate on an event-driven paradigm.

Publish/subscribe
This framework is also an enabler of publish-subscribe
software [37]. The basic principle behind this strategy re-
volves around a dynamic endpoint, the publisher, which
transmits data to a dynamic set of subscribers [38]. Pub-
lish/subscribe architectures decouple communicating cli-
ents and complement event-driven architectures with the

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 8 of 13

introduction of notifications. These can be a specialised
form of events and ensure that we can actively push the
desired data to subscribers in the shortest possible time.
Translating this basic principle to the framework’s

model, we can see the agents as a controlled set of pub-
lishers (local or remote), which can be configured, using
integrations, to interact with specific templates, the sub-
scribers. This framework encloses the necessary tools
and API that will allow applications to harvest the full
potential of this paradigm in a seamless way.
Adopting the proposed work, data owners now have

the tools to deliver custom notifications when new data
are generated. This further advances the state of the art,
namely on the life sciences [39], becoming vital when we
consider the amount of legacy systems used to store data
and the availability (or lack thereof) of interoperability
tools to connect these systems.
Likewise, we can perform asynchronous push-based

communication, broadcasting event data to any number
of assorted destinations.
From an interoperability perspective, agents can also

be on the subscriber end of the architecture. Events no-
tification data can be pushed into to the system, trigger-
ing the integration in real-time.

Integration-as-a-service
Cloud-based integration-as-a-service is currently a major
goal in service-oriented architectures [40]. Our frame-
work empowers that paradigm, moving one step closer
towards interoperable science data. This architectural
approach abstracts algorithms, features, data or even full
products as services [41], which should be available on-
line via HTTP/S.
The framework can operate on both ends of the inte-

gration and interoperability spectrum. Besides being a
service consumer, for data extraction and loading tasks,
it also provides services for miscellaneous real-world
problems.
As we embrace the Integration-as-a-Service notion,

the relevance of frameworks to ease the process of ex-
changing and translating data amongst multiple service
providers becomes clear. By combining the qualities of
service-oriented, event-driven, publish/subscribe and
cloud-based architectures, this framework endows users
and developers with the required toolkit to build future-
proof biomedical informatics software.

Discussion
The proposed framework’s flexibility makes it suitable
for miscellaneous integration use cases, connecting
private or public data sources with existing services.
More importantly, it allows researchers to create their
own scenarios, with agents and templates suitable to
their work.

The following discussion introduces a human variome
data integration scenario and details some current limi-
tations and future perspectives. This scenario can be
tested at https://bioinformatics.ua.pt/i2x. This is a fully
functional version of the platform, where everyone can
register an account to create agents, templates and
integrations.

Automating variome data integration
Our first application scenario is provided in the config-
uration samples list available on the platform’s web
interface. In it, we tackle a prime challenge for life sci-
ences researcher regards the integration of human var-
iome data: collecting unique mutations associated with a
specific locus. This feature is already available in several
systems. WAVe [42] or Cafe Variome [43] centralise data
from distributed locus-specific databases (LSDBs) and
make them available through web interfaces. The Leiden
Open-source Variation Database (LOVD) provides a
turnkey solution to launch new LSDBs, with web and
database management interfaces [44]. These features
make LOVD the de facto standard for LSDBs, with more
than 2 million unique variants stored throughout 78 dis-
tinct installations. LOVD has an API enabled by default,
which allows obtaining the full list of variants associated
with a gene. These are returned in Atom format, a feed
specification built in XML. In addition to LOVD, there
are several other LSDBs using legacy formats, such as
Excel or CSV files, or relational databases.
Despite the quality of available systems, data integra-

tion is limited by various constraints. For instance, the
adopted pipeline - extract and curate data, enrich data-
sets, deliver results - creates a time-based snapshot of
available human variome data. However, researchers re-
quire access to constantly updated datasets. To accom-
plish this we can use two distinct strategies: 1) we
repeatedly launch our integration pipeline, processing
everything from scratch or 2) we create an ad hoc inte-
gration solution tailored to this particular scenario. The
maintenance and development effort underlying any of
these strategies delays real progress.
For simplicity purposes, we considered extracting data

from the LOVD platform only. When curators submit
new variants to LOVD, their data becomes available in
the feed API. An agent is configured to monitor the feed
for a single gene or, through the definition of a seed, for
many genes based on a predefined list. After the initial
data population process, events are detected when new
variants are published. This starts a new integration task,
which can deliver data directly to a database (using a
SQL template) or send them to a URL-based service
(using a URL route template). Figure 4 displays the plat-
form prototype web interface showcasing the integra-
tion, agent and template configurations for this scenario.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 9 of 13

https://bioinformatics.ua.pt/i2x

This scenario is already in place in the data aggrega-
tion for WAVe’s backend (http://bioinformatics.ua.pt/
wave/), which highlights three key benefits of the frame-
work: autonomy, flexibility and data quality. First, the
data warehousing process is triggered autonomously,
without user intervention. Next, agents can track any
number of genes and deliver data for new variants to
any number of heterogeneous destinations. At last, var-
iome datasets in the centralised application are always
up-to-date with the latest discovered variants. Agent
scheduling can monitor LSDBs frequently, resulting in
improved database completeness.
Furthermore, in an ideal scenario, LSDBs owners can

deploy local agents to monitor their databases internally
or, using push, send events (with new variation data) dir-
ectly to the main server platform for integration.

Limitations and future perspectives
Although this open-source framework already supports ad-
vanced features for real-time content monitoring and data
delivery, it has some limitations. Integration scenarios
where the data acquisition involves combining data from
multiple data sources or the execution of multiple data ex-
traction steps require a more comprehensive integration

solution. Likewise, there are several data compression and
encryption methods that were not accounted for.
Hence, we are continually improving our solution,

namely with the inclusion of new detection formats and
delivery methods.
Data verification and rule processing are some of the

main targets for future improvements. Our goal is to
make a system that is completely independent from any
origin or destination resource. This means that the plat-
form should not rely on any external resources to ensure
that data are new, which implies storing processed
events in an internal database. As the platform needs to
know what is new to trigger the integration process, we
need to maintain a cache of everything the platform has
already processed. These metadata could be complemen-
ted with delivery verification information, where we
would store if and when the data were actually received
by the destination resources. Although this would be an-
other configuration burden for users, the overall integra-
tion algorithm will be improved with this feature.
We also plan to expand the framework’s data ware-

housing features by focusing on rule processing. The
goal is to detach the ETL transform task from the deliv-
ery task, enabling more complex data transformation

Fig. 4 Web interface for proposed platform prototype. This interface highlights the integration configuration for automating human variome
integration. This integration features one agent (LOVD XML Agent) and one template (SQL variant). The former configures how to extract
mutation data from LOVD API and the latter specifies the configuration for storing extracted data in a relational database.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 10 of 13

http://bioinformatics.ua.pt/wave/
http://bioinformatics.ua.pt/wave/

that obeys custom heuristics. In a simple use case, we want
to perform the delivery only for data above a given thresh-
old. Despite being able to perform these validations using
Ruby code variables, simplifying these processes with dedi-
cated methods will improve the framework’s usability.
In the long haul, we can further enhance rule processing

with the inclusion of semantics. Latest developments on
semantic web technologies and frameworks are respon-
sible for an increased adoption within the life sciences
field. As such, we plan to include support for LinkedData
and SPARQL agents and delivery templates, and new in-
ference and reasoning engines, allowing researchers to
perform more complex operations with their data.
The mandatory configuration of scheduling properties

for agents will also be the subject of future research
work. We assume a constant flow of information in and
out of the framework. In its current state, the framework
is already tailored to scenarios where the data sources’
content change quite often. Traditionally, they require
intensive manual effort to ensure the up-to-datedness of
integrated data. With our proposal’s automation features
and regular data monitoring, live data integration is en-
sured independently from the dataset update interval.
For instance, regularly updated datasets can be moni-
tored every 5 minutes or, in opposition, datasets that are
seldom updated can be monitored daily or weekly.
To further improve this, we plan to include algorithms

for the automatic identification of the best schedules for
each resource. For instance, when a monitored resource
generates events on a daily basis, the system should
automatically understand that it is not efficient to sched-
ule the resource for monitoring every 5 minutes. This
will enhance the handling or large volumes of data and
further improve the framework’s performance.
There are numerous high-quality data integration

platforms. Nevertheless, it is common for existing
solutions, such as Pentagon (http://www.pentaho.de/
explore/pentaho-data-integration/) or Talend Open Stu-
dio (https://www.talend.com/products/talend-open-studio),
among others, to have three major drawbacks: 1) they lack
distribution, enforcing local access; 2) they operate in
closed desktop environments; and 3) they lack auto-
mation features.
First, our approach enables the deployment of a dis-

tributed multi-agent architecture, where any number of
agents can be running autonomously, processing data in
any number of machines.
Moreover, monitoring agents can be deployed locally,

where some desktop application to be integrated is run-
ning, or online, where most public systems are available.
With this, we overcome traditional local-based integra-
tion problems. In our approach, a central web-based ser-
ver operates online to control agents’ distributed
execution and data delivery.

At last, current solutions require manual integration
triggers, from script execution to loading cumbersome
platforms, whereas our solution is fully automated, en-
suring real-time integration.

Conclusions
Nowadays, access to vast amounts of life sciences data is
a commodity. Hence, modern integration strategies have
arisen to better explore available information. In spite of
their quality, existing models lack built-in mechanisms
for handling change and time. That is, connecting data
and services is a manual task, whose only results are
time-limited snapshots.
With this research work we introduce a framework for

enhanced integration and interoperability. This system’s
innovative features - automation, real-time processing,
flexibility and extensibility - convey true added value to
biomedical data integration and interoperability.
Automation brings a new approach to the field, stimu-

lating reactive and event-driven integration tasks. Further-
more, live data integration brought by automated and
real-time intelligent agents ensure up-to-date information.
The proposed framework is non-obtrusive, requires no
changes in most original data sources, and can process
data to and from heterogeneous data sources, making it
an extremely flexible and adaptable framework.
This system is relevant for both researchers and devel-

opers: researchers can sign up to use the online platform
and developers can download and modify the source
code for local deployment. On the one hand, the plat-
form’s streamlined configuration process puts a powerful
integration and interoperability framework at the hands
of less technical experienced users. We believe that the
combination of the platform’s integration features with
its easy-to-use web interface make the creation of inte-
gration tasks much more straightforward. Although the
concept of integrations, agents and templates may be
difficult to understand, once the user grasps these no-
tions, deploying complex integration procedures be-
comes trivial. This enables anyone to create business-
level data and service integration tasks with reduced ef-
fort. On the other hand, developers can download and
use the framework open-source code. As the framework
supports dynamic real-time message translation, format-
ting and delivery to multiple resources, it can play a cen-
tral role in service-oriented architectures, from publish/
subscribe to event-driven up to cloud-based integration-
as-a-service environments.
This research work delivers a system that bridges

the gap between data and services through a new in-
telligent integration and interoperability layer, further
enabling the creation of next generation bioinformat-
ics applications.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 11 of 13

http://www.pentaho.de/explore/pentaho-data-integration/
http://www.pentaho.de/explore/pentaho-data-integration/
https://www.talend.com/products/talend-open-studio

Availability and requirements
Project name: i2x
Project home page: https://bioinformatics.ua.pt/i2x/
Operating system(s): Platform independent
Programming language: Ruby, JavaScript
Other requirements: Ruby web server, relational data-
base management system
License: MIT
Any restrictions to use by non-academics: not applicable

Abbreviations
API: Application programming interface; BCC: Blind carbon copy; CC: Carbon copy;
CSV: Comma-separated values; ETL: Extract-transform-load; HTTP: Hypertext
transfer protocol; HTTPS: HTTP secure; JSON: JavaScript object notation;
LOVD: Leiden open-source variation database; LSDB: Locus-specific databases;
MD5: Message digest algorithm 5; MIT: Massachusetts Institute of Technology;
REST: REpresentational state transfer; SPARQL: SPARQL protocol and RDF query
language; SQL: Structured query language; TSV: Tab-separated values;
URI: Uniform resource identifier; URL: Uniform resource locator; XML: eXtensible
Markup Language.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PL is responsible for creating and developing the i2x framework. JLO revised
the manuscript and supervised the work. All authors read and approved the
final manuscript.

Acknowledgements
The research leading to these results has received funding from the European
Community (FP7/2007-2013) under ref. no. 305444 – the RD-Connect project, and
from the QREN "MaisCentro" program, ref. CENTRO-07-ST24-FEDER-00203 – the
CloudThinking project.
We also thankfully acknowledge Luís Bastião and Joel P Arrais for their work
on the platform use cases, and Sérgio Matos and Carlos Costa for their
insightful advice.

Author details
1DETI/IEETA, Universidade de Aveiro, Campus Universitario de Santiago,
Aveiro 3810-193, Portugal. 2IEETA, Campus Universitario de Santiago, Aveiro
3810 – 193, Portugal.

Received: 23 March 2015 Accepted: 6 October 2015

References
1. Sascha S, Kurtz S. A New Efficient Data Structure for Storage and Retrieval of

Multiple Biosequences. IEEE/ACM Trans Comput Biol Bioinform.
2012;9(2):345–57.

2. Iskar M, Zeller G, Zhao X-M, van Noort V, Bork P. Drug discovery in the age
of systems biology: the rise of computational approaches for data
integration. Curr Opin Biotechnol. 2012;23(4):609–16.

3. Thiam Yui C, Liang L, Jik Soon W, Husain W. A Survey on Data Integration in
Bioinformatics. In: Abd Manaf A, Sahibuddin S, Ahmad R, Mohd Daud S,
El-Qawasmeh E, editors. Informatics Engineering and Information Science.
254th ed. Heidelberg: Springer Berlin; 2011. p. 16–28.

4. Darmont J, Boussaid O, Ralaivao J-C, Aouiche K. An architecture framework
for complex data warehouses. arXiv preprint 2007. http://arxiv.org/abs/
0707.1534.

5. Blankenberg D, Johnson JE, Team TG, Taylor J, Nekrutenko A. Wrangling
Galaxy’s reference data. Bioinformatics. 2014;30(13):1917–9.

6. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing
Program (GSP) [http://www.genome.gov/sequencingcosts]

7. Goble C, Stevens R. State of the nation in data integration for
bioinformatics. J Biomed Inform. 2008;41(5):687–93.

8. Mons B, van Haagen H, Chichester C, den Dunnen JT, van Ommen G, van
Mulligen E, et al. The value of data. Nat Genet. 2011;43(4):281–3.

9. Wong L. Technologies for integrating biological data. Brief Bioinform.
2002;3(4):389–404.

10. Alonso-Calvo R, Maojo V, Billhardt H, Martin-Sanchez F, García-Remesal M,
Pérez-Rey D. An agent- and ontology-based system for integrating public
gene, protein, and disease databases. J Biomed Inform. 2007;40(1):17–29.

11. Dudley JT, Butte AJ. Reproducible in silico research in the era of cloud
computing. Nat Biotechnol. 2010;28(11):1181.

12. Schönherr S, Forer L, Weißensteiner H, Kronenberg F, Specht G,
Kloss-Brandstätter A. Cloudgene: A graphical execution platform for
MapReduce programs on private and public clouds. BMC Bioinformatics.
2012;13(1):200.

13. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, et al.
Toward interoperable bioscience data. Nat Genet. 2012;44(2):121–6.

14. Lopes P, Oliveira JL. COEUS:“semantic web in a box” for biomedical
applications. Journal of Biomedical Semantics. 2012;3(1):1–19.

15. Ekanayake J, Gunarathne T, Qiu J. Cloud Technologies for Bioinformatics
Applications. IEEE Transactions on Parallel and Distributed Systems.
2011;22(6):998–1011.

16. Jamil HM. Designing Integrated Computational Biology Pipelines Visually.
IEEE/ACM Trans Comput Biol Bioinform. 2013;10(3):605–18.

17. Hunter A, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI. Yabi: An
online research environment for grid, high performance and cloud
computing. Source Code for Biology and Medicine. 2012;7(1):1.

18. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol. 2010;11(8):R86.

19. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al.
The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucl Acids Res. 2013. 41 (W1):
W557-W561. First published online May 2. doi:10.1093/nar/gkt328.

20. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, et al. The EBI
RDF platform: linked open data for the life sciences. Bioinformatics.
2014;30(9):1338–9.

21. Lopes P, Oliveira JL. An innovative portal for rare genetic diseases research:
The semantic Diseasecard. J Biomed Inform. 2013;46(6):1108–15.

22. Wilkinson MD, Vandervalk BP, McCarthy EL. The Semantic Automated
Discovery and Integration (SADI) Web service Design-Pattern, API and
Reference Implementation. Journal of Biomedical Semantics. 2011;2:8.

23. Salem R, Boussaïd O, Darmont J. Active XML-based Web data integration.
Inf Syst Front. 2013;15(3):371–98.

24. Tank DM. Reducing ETL Load Times by a New Data Integration Approach
for Real-time Business Intelligence. International Journal of Engineering
Innovation and Research. 2012;1(2):1–5.

25. Naeem MA, Dobbie G, Webber G. An Event-Based Near Real-Time Data
Integration Architecture. In: Enterprise Distributed Object Computing
Conference Workshops, 2008 12th: 16–16 Sept. 2008 2008. 401–404.

26. Mouttham A, Peyton L, Eze B, Saddik AE. Event-Driven Data Integration for
Personal Health Monitoring. Journal of Emerging Technologies in Web
Intelligence. 2009;1(2):110–8.

27. Gustafsson F. Adaptive filtering and change detection. 1st ed. New York:
Wiley; 2000.

28. Croushore D. Frontiers of Real-Time Data Analysis. J Econ Lit. 2011;49(1):72–100.
29. Lubell-Doughtie P, Pokharel P, Johnston M, Modi V. Improving data collection

and monitoring through real-time data analysis. In: 3rd ACM Symposium on
Computing for Development. 2442916th ed. Bangalore: ACM; 2013. p. 1–2.

30. Sheard T. Accomplishments and Research Challenges in Meta-
programming. In: Taha W, editor. Semantics, Applications, and
Implementation of Program Generation. 2196th ed. Heidelberg: Springer
Berlin; 2001. p. 2–44.

31. Sirin E, Parsia B, Hendler J. Template-based composition of semantic web
services. Virginia: AAAI Fall Symposium on Agents and the Semantic Web;
2005. p. 85–92.

32. Sen A, Sinha AP. A comparison of data warehousing methodologies.
Commun ACM. 2005;48(3):79–84.

33. Papazoglou M, Heuvel W-J. Service oriented architectures: approaches,
technologies and research issues. VLDB J. 2007;16(3):389–415.

34. Kong J, Jung JY, Park J. Event-driven service coordination for business
process integration in ubiquitous enterprises. Comput Ind Eng.
2009;57(1):14–26.

35. Niblett P, Graham S. Events and service-oriented architecture: The oasis web
services notification specification. IBM Syst J. 2005;44(4):869–86.

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 12 of 13

https://bioinformatics.ua.pt/i2x/
http://arxiv.org/abs/0707.1534
http://arxiv.org/abs/0707.1534
http://www.genome.gov/sequencingcosts
http://dx.doi.org/10.1093/nar/gkt328

36. Etzion O, Niblett P. Event Processing in Action. Cambridge: Manning
Publications Co; 2010.

37. Fotiou N, Trossen D, Polyzos GC. Illustrating a publish-subscribe internet
architecture. Telecommun Syst. 2012;51(4):233–45.

38. Eugster PT, Felber PA, Guerraoui R, Kermarrec A-M. The many faces of
publish/subscribe. ACM Computing Surveys (CSUR). 2003;35(2):114–31.

39. Linlin L, Shizhong Y. XPath-Based Filter for Publish/Subscribe in Healthcare
Environments. In: 12th IEEE International Conference on Computer and
Information Technology (CIT): 27–29 Oct. 2012 2012. 1092–1096.

40. Erl T. Service-oriented architecture: a field guide to integrating XML and
web services. Prentice Hall PTR Upper Saddle River, NJ, USA: Prentice Hall
PTR; 2004.

41. Chang V, Walters R, Wills G. Business Integration as a Service. International
Journal of Cloud Applications and Computing. 2012;2(1):16–40.

42. Lopes P, Dalgleish R, Oliveira JL. WAVe: web analysis of the variome. Hum
Mutat. 2011;32(7):729–34.

43. Lancaster O, Hastings R, Dalgleish R, Atlan D, Thorisson G, Free R, et al. Cafe
Variome-gene mutation data clearinghouse. In: Journal Of Medical Genetics:
2011. BMJ;48:S40.

44. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT.
LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat.
2011;32(5):557–63.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Lopes and Oliveira BMC Bioinformatics (2015) 16:328 Page 13 of 13

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Architecture
	System workflows
	Agent distribution
	Dynamic content change detection
	Job processing
	Extracting, transforming and loading data

	Results
	Real-time content monitoring
	Template-based delivery
	Advanced integration & interoperability
	Event-driven architecture
	Publish/subscribe
	Integration-as-a-service

	Discussion
	Automating variome data integration
	Limitations and future perspectives

	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

