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Abstract

Background: Pathway analysis methods, in which differentially expressed genes are mapped to databases of
reference pathways and relative enrichment is assessed, help investigators to propose biologically relevant
hypotheses. The last generation of pathway analysis methods takes into account the topological structure of a
pathway, which helps to increase both specificity and sensitivity of the findings. Simultaneously, the RNA-Seq
technology is gaining popularity and becomes widely used for gene expression profiling. Unfortunately, majority of
topological pathway analysis methods remains without implementation and if an implementation exists, it is limited
in various factors.

Results: We developed a new R/Bioconductor package ToPASeq offering uniform interface to seven distinct
topology-based pathway analysis methods, of which three we implemented de-novo and four were adjusted from
existing implementations. Apart this, ToPASeq offers a set of tailored visualization functions and functions for
importing and manipulating pathways and their topologies, facilitating the application of the methods on different
species. The package can be used to compare the differential expression of pathways between two conditions on
both gene expression microarray and RNA-Seq data. The package is written in R and is available from Bioconductor 3.2
using AGPL-3 license.

Conclusion: ToPASeq is a novel package that offers seven distinct methods for topology-based pathway analysis,
which are easily applicable on microarray as well as RNA-Seq data, both in human and other species. At the same
time, it provides specific tools for visualization of the results.
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Background
High-throughput gene expression technologies (such as
microarray or RNA-Seq) are used to estimate expression
levels of thousands of genes in one experiment. Often the
aim of such experiments is to find pathways and biologi-
cal processes altered between two conditions, which helps
investigators to propose biologically relevant hypotheses
for further research. Achieving this aim implies inte-
gration of a priori known pathway information into the
data analysis. Most often, a set of genes with similar
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biological function or participating in a regulatory pro-
cess is employed as a set of entities in enrichment-based
methods [1]. This approach, however, ignores known
interactions between particular genes reflected in the
topological structure. Thus, if a change in interactions
occurs, this is not reflected in the results. The last gener-
ation of pathway analysis methods takes into account the
topological structure of a pathway, which helps to increase
both specificity and sensitivity of the findings.
Several types of methods for topology-based pathway

analysis were proposed in the recent years (for review
see [2]) - in all of them, the topological structure of a
pathway is represented as graph with nodes (genes, pro-
teins) and edges (interactions between genes/proteins).
The methods test one of the two types of null hypothe-
ses as proposed in [3] for gene set enrichment analysis.
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Independently on the hypothesis tested, we can further
distinguish multivariable and univariable methods. For
more detailed description of differences between multi-
variable vs univariable methods, we refer the reader to
Additonal file 1.
Here, we focus on methods that (i) aim to identify

pathways affected between two conditions based on dif-
ferential expression of genes in the pathway - the most
frequent aim of high-throughput genomic data studies, (ii)
use the a priori known pathway topologies and (iii) use the
pathway topologies separately.
The vast majority of existing topology pathway analy-

sis methods were designed for continuous gene expression
measures as obtained from microarray experiments. In
order to apply them to discrete count data - a typical out-
put from RNA-Seq experiment (number of reads mapped
to a particular gene) - one must use a suitable transforma-
tion. Poisson or Negative binomial distribution are used
as model distributions in differential expression analysis
at gene-level for RNA-Seq data and a wide range of both
transformation methods and statistical tests for this pur-
pose exists. Performance of these methods is only recently
being compared in extensive simulation studies [4–7].
The publishedmethods are only rarely implemented as a

publicly available software tool or package, and sometimes
the existing implementation is not available anymore (e.g
TAPPA [8]). The existing implementations can be divided
into three categories: (i) commercial products (e.g. Meta-
Core [9]); (ii) R-packages (e.g. SPIA [10]) (iii) standalone
applications (e.g. PWEA [11] or PRS [12]) and (iv) web-
based applications (e.g. iPathwayGuide [13]). All of these
tools usually offer embedded pathway topologies with a
limited battery of methods (typically only one) and simple
visualization (if any) of the results. Simultaneous applica-
tion of different methods and comparison of their results
is therefore very time-consuming, cumbersome and prone
to clerical errors due to need for repeated data conversion
and transfer. Additionally, the results may not be directly
comparable, since some of the implementations use either
built-in pathway topologies or their own pathway topol-
ogy processing algorithm that leads to different topologi-
cal structures. One of the best existing tools offering com-
mon interface to four topology-based pathway analysis
methods (TopologyGSA [14], clipper [15], DEGraph [16]
and SPIA [17]) is the R/Bioconductor package graphite

[18]. The user can also access lists of parsed pathway
topologies for some of the most common experimen-
tal organisms (14 in version 1.14.1) from several distinct
databases (up to 6 for H. Sapiens, same version) stored as
objects of class PathwayList where individual pathways
are represented as instances of class Pathway. Although
more pathways can be obtained from public databases
or specialized websites and parsed to the R environment
with available CRAN/Bioconductor packages, there is no

transformation function from other pathway classes to
the PathwayList or Pathway. The current graphite

implementation has no uniform way of calling methods
or specification of their parameters, making simultaneous
application of different methods unhandy. Additionally,
SPIA is limited only to data with EntrezGene identi-
fiers and the signs of the interactions are neglected in
DEGraph.
Here, we present ToPASeq (Topology-based Pathway

Analysis of microarray and RNA-Seq data) - a Biocon-
ductor package that adjusts the set of methods available
through graphite and extends them by addition of three
moremethods. The package offers their unifiedmanipula-
tion and provides tools for their easy application on RNA-
Seq count data. In addition, it provides special functions
for conversion of user-imported pathways into Pathway

class and a set of tools for coercing graphs between dif-
ferent formats and manipulation and visualization of the
results.
In section Implementation, we describe the software

implementation and available functions. Concrete exam-
ples of package usage and its comparison to other tools are
given section Results and Discussion.

Implementation
ToPASeq was implemented using statistical programming
language R and the package is available through the open-
source Bioconductor project [19].
In order to apply a topology-based pathway analysis

method we need (i) gene expression measurements (a
gene expression data matrix in which rows refer to genes
and columns to samples), (ii) a vector with sample class
labels and (iii) a list of pathways of interest together with
their topologies in a specific format. The gene expression
measurements and sample class information are usually
available from the experiment.

Pathway topologies and their manipulation
Pathway topologies are necessary for topology-based
pathway analysis and can be created manually, or - even
better - obtained from public databases or R packages,
where they are typically stored in one of the standard-
ized formats (KGML, BioPax, specific R classes). These
formats, however, need to be parsed (downloaded and
converted to specific format) to be used within the meth-
ods’ particular implementations. Within R framework,
multiple ways exist for pathway topology/graph represen-
tation. More detailed description of some of them in the
context of biological pathways can be found in Additional
file 1.
Our package requires the pathway topologies in for-

mat defined as S4 class PathwayList where individual
pathways are of class Pathway, which allows combina-
tion of oriented and not-oriented edges as well as multiple
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edges between nodes.We have especially designed several
transformation functions that convert the most common
formats into Pathway.
The users might be interested in manual editing of

topology of the parsed pathways. We added group of
methods such as (i) adding/removing of the nodes and
edges, (ii) changing the type of interaction/directionality,
(iii) merging two pathways into one, (iv) obtaining the
induced subgraph. Additionally, the user may need to
select only a subset of pathways based on their topologi-
cal properties (e.g. number of edges related to a particular
node, number of nodes, number of edges, number of con-
nected components etc.). These can be easily obtained
with other set of available functions.
Moreover, we especially designed a new function

reduceGraph which merges the user defined named
sets of nodes into a single node. The members of
the sets must form either a gene family or a pro-
tein complex. The another function estimateCF esti-
mates the maximal list of the sets of the nodes that
can be merged. Finally, we provide a general function
convertIdentifiersByVector which requires user
specified information. For the detailed desctiption of the
functionalities mentioned above we refer the reader to
Additional file 1.

Methods for topology-based pathway analysis
The package offers seven different methods covering
various approaches in topological pathway analysis (see
Table 1 for details). For detailed description of each
method the reader is referred to cited references. We will
focus on those aspects that are relevant to methods’ new
implementation. All methods are implemented as a single
function that applies the method over the list of pathways.
More detailed description of differences between previous
implementations of methods to our implementation can
be found in Additional file 1.
We imported and adjusted the implemetation of the

following methods: TopologyGSA, DEGraph, SPIA and
Clipper. We found that the original implementation of

the TopologyGSA method is extremely computationally
intense for some of the pathways as the authors employ
function that implements the exact branch-and-bound
algorithm [20] to detect all of the cliques (subsets of nodes
where every two nodes are connected by an edge) in
a pathway topology. In our implementation, we substi-
tuted this function with getCliques which implements
more efficient Bron-Kerbosch algorithm [21]. For the
DEGraph method we have created a new wrapper func-
tion that preserves the possibility to consider interaction
types (activation and inhibiton) and transforms the results
into more user-friendly format - a data frame. The pre-
vious implementations of the SPIA method were limited
to Entrez identificators. In our package we have bypassed
this limitation by incorporating a more general converting
function. Additionally, the user can also obtain a gene-
level net perturbation accumulation — a measure of the
importance of a gene in the topology. The Clipper method
constists of two steps: (i) first, the differential expression
of a pathway is assessed, (ii) then, the pathway topology is
transformed into a junction tree and the portions of the
tree which are mostly associated with phenotype are iden-
tified. We designed a new function that performs both
steps of the algorithm in a single call.
In all of the imported and adjusted implementations

we also added, when appropriate, an additional parameter
specifying how should be the undirected interactions ori-
ented. The user can choose whether an edge is oriented
in both directions or only in one according to the order of
the nodes.
We de-novo implemented three methods: TAPPA,

PWEA, PRS, for which there was no implementation
available within R framework. The PRS and PWEA are
implemented inMATLAB and C++ respectively and these
tools are discussed in the section Comparison with other
Tools. Our de-novo implementations are settled for path-
way topologies from graphite package where one node
is represented by only one gene or protein. Both PWEA
and PRSmethods incorporate a permutation-based test in
order to assess the statistical significance of the pathway

Table 1 Methods included in the package

Method Ref. Typea Hypothesis A/Ib Primary Graph Implementation Input datac

TopologyGSA [14] M self-contained No DAG adjusted GEDM

DEGraph [16] M self-contained Yes DAG adjusted GEDM

clipper [15] M self-contained No DAG adjusted GEDM

SPIA [17], U competitive Yes directed adjusted DEG and their log fold-change

[25]

PRS [26] U competitive No directed de novo DEG and their log-fold change

PWEA [27] U competitve No undirected de novo gene-level statistics

TAPPA [8] U self-contained No undirected de novo GEDM

a - M - multivariable, U - univariable b - A - Activation, I - Inhibition c - the data related to the pathway topology
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score. Considering the computational complexity of this
approach we parallelized the crucial step of the PWEA
method (repeated application of the differential expres-
sion analysis). In addition, the function for obtaining the
number of the differentially expressed genes in PRS algo-
rithm was implemented in C++ via Rcpp package.
While several methods (TopologyGSA, DEGraph,

Clipper and TAPPA) work directly with normalized
gene expression values, others (SPIA, PRS and PWEA)
use the result of differential gene-expression analysis
with or without application of significance thresholds to
obtain the list of differentially expressed genes (Fig. 1).
With respect to this, all the methods were adapted
also for a simple use of RNA-Seq count data. First, we
employed pre-processing step for RNA-Seq normaliza-
tion, with a selection of two best performing methods
TMM [22], DESeq [23], as compared in Dillies et al. [4]
and regularized log transformation from DESeq2 package
which effectively removes the mean-variance relation-
ship known in RNA-Seq data. Second, we added methods
for RNA-Seq differential gene expression analysis (from
limma and DESeq2 packages).

Usage and visualization
Each method is implemented as a single wrapper func-
tion which allows the user to call a method in a single
command. The wrapper function offers: (i) normaliza-
tion of count data; (ii) differential gene expression analysis
and (iii) pathway analysis. The data input types were uni-
fied for all the methods. Expression data can be supplied
both as matrix or as ExpressionSet. The functions’
outputs have uniform format defined as a new S3 class
topResult with specified output of generic functions

(print, plot, summary) and methods for accessing indi-
vidual slots of the resulting object. The users can specify
which method should be used for normalization or dif-
ferential expression analysis of the RNA-Seq data, with
respect to their own preferences. This data pre-processing
step can be completely omitted and users can submit
already normalized data or, if appropriate, the results of
the differential expression analysis (a table containing log
fold-changes, statistics and p-values). Note, that PWEA
method requires also so called Topology Influence Factors
(TIFs), which need to be calculated from normalized gene
expression data matrix.
When the generic function plot() is applied to a

topResult class, together with a name of the path-
way or position in the list of pathways identifying the
pathway to be plotted, a visualization of the pathway
with three gene-level statistics is produced (Fig. 1 in
Additional file 1. The user can specify a threshold by
which an agreement between the expression status of the
nodes and the interaction type between them is examined
(Fig. 2 in Additional file 1).
The topology can be reduced by user specified list of

nodes that are to be merged into one node. In this sit-
uation a pie chart is used as a representation of a node
and the number of slices equals to the number of nodes
merged. The filling colour and the radius is preserved
from the separated nodes (Fig. 2). By default a mean
change of the gene expression is used as a representative
of the values when the agreement between gene expres-
sion and the interaction type is examined, but the user can
specify another aggregation function. A slightly modified
graph is plotted for TopologyGSA and Clipper, which per-
form differential expression analysis of the cliques. Since

Fig. 1 Schema of a processing pipeline. The red boxes refer to the outputs from regular analysis of differentially expressed genes and possible
inputs for topology-based pathway analysis. Arrows indicate the processing pipeline of each of the methods implemented in the package
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Fig. 2 Visualization of the results after merging some of the gene families into one node. Some of the genes families present in the pathway were
merged into single nodes. Those nodes are drawn as pie-chart, in which the number of slices equals to the number of gene merged. The colour,
border and radius are preserved from the complete graph (Fig. 2 in Additional file 1). Average log fold-change is used as representative value, when
the agreement between expression and interaction type is assessed

a single node can be a member of more than one clique,
the colour of edges is used for their visualization (Fig. 4 in
Additional file 1).

Results and Discussion
For a simple example of how to create and manipulate a
pathway, we refer the reader to Additional file 1.
We provide a simple application example of imple-

mentedmethods on a RNA-Seq dataset. Formore detailed
descriptions of all the functions we refer the reader to the
package manual.
The aim is to compare gene expression profiles

between wild-type and RNA-binding protein hnRNP C
(HNRNPC) knockdown HeLa cells [24]. The RNA-Seq
dataset came from gageData package. There are four
knockdown samples and four experimental samples in
this dataset containing the count data for 22932 genes.
We load the data and remove genes with count 0 in
all samples:

> library(ToPASeq)

> library(gageData)

> data(hnrnp.cnts)

> group<-c(rep("sample",4),

rep("control",4))

> hnrnp.cnts<-hnrnp.cnts[rowSums

(hnrnp.cnts)>0,]

... download the KEGG pathways and apply all seven
topology-based pathway methods:

> kegg<-pathways("hsapiens","kegg")

> top<-TopologyGSA(hnrnp.cnts, group, kegg,

type="RNASeq")

> deg<-DEGraph(hnrnp.cnts, group, kegg,

type="RNASeq")

> cli<-clipper(hnrnp.cnts, group, kegg,

type="RNASeq")

> spi<-SPIA(hnrnp.cnts, group, kegg,

type="RNASeq")
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Table 2 Known implementation of the methods provided in ToPASeq

Method Language Source Pathways Format Input data Methods Issusses
topologyGSA R Bioconductor one example graphNEL GEDM topologyGSA too computationaly intense
clipper R Bioconductor imported from

graphite

pathway GEDM clipper two separate steps neces-
sary

DEGraph R Bioconductor parsing function for
KGML

graphNEL GEDM DEGraph

SPIA R Bioconductor parsing function for
KGML, H. sapiens and
M. musculus pre-parsed

list of adjacency matrices DEG and log
fold-changes

SPIA Only for EntrezGene IDs

PRS tool MATLAB weba KEGG unknown GEDM PRS can not add or modify path-
ways, the data must have
manufacturer probeset IDs,
limited set of: possible plat-
forms, DE tests,

PWEA C++ webb human pathways from
KEGG

unknown GSD PWEA only for UNIX-like

TAPPA Java webc KEGG or PPI added to
a gene set

- - TAPPA not available

graphite R Bioconductor pathways for 14 species
from up to 6 databases

Pathway depends on
the method

topologyGSA,
clipper, SPIA,
DEGraph,

suboptimal import of the
methods

a - http://www.buckingham.ac.uk/research/clore-laboratory-diabetes-obesity-and-metabolic-research/staff/maysson-al-haj-ibrahim/prs-tool/
b - http://zlab.bu.edu/PWEA/index.php
c - http://watson.mcgee.mcw.edu:8080/~sgao, the page is down. (First accessed 4 Apr 2012) PPI - protein-protein interactions GEDM - gene expression data matrix, log2-transformed and normalized expression profiles

http://www.buckingham.ac.uk/research/clore-laboratory-diabetes-obesity-and-metabolic-research/staff/maysson-al-haj-ibrahim/prs-tool/
http://zlab.bu.edu/PWEA/index.php
http://watson.mcgee.mcw.edu:8080/~sgao
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> prs<-PRS(hnrnp.cnts, group, kegg,

type="RNASeq")

> pwea<-PWEA(hnrnp.cnts, group, kegg,

type="RNASeq")

> tap<-TAPPA(hnrnp.cnts, group, kegg,

type="RNASeq")

The arguments of all functions are as follows (from left
to the right): a count matrix (or gene expression data
matrix), a grouping vector, list of pathways with topolo-
gies and a type of the data). The TMM normalization and
the limma-based differential gene-expression analysis are
used by default. The pre-set thresholds for considering a
gene significant are p-value less than 0.05 and the abso-
lute log fold change above 2. Further, the gene identifiers
in pathways are automatically converted to the Entrez-
Gene identifiers and the non-oriented edges are oriented
in both directions, when required.
The results for an individual pathway can be visualized

as shown in Fig. 1 in Additional file 1:

> plot(spi,"Prolactin signaling pathway",

+ kegg, fontsize=50)

Comparison with other tools
The known previous implementations of the methods
(if any) offered in ToPASeq are summarized in Table 2.
We will further discuss only the methods implemented
de-novo in R/Bioconductor frame work. For TAPPA
there is no other available implementation known to
the authors. A C++ implementation of PWEA can be
downloaded from http://zlab.bu.edu/PWEA/download.
php. The expression data have to be in the GSD for-
mat from Gene Expression Omnibus, where the probe-
sets are named by both manufacturer IDs and the gene
symbols. It is coupled with python script for retrieving
and processing of KEGG .xml and .gene files. Beside the
limitation to KEGG pathways and the need for manual
downloading of non-human pathways or conversion to
KGML format, it can be run only on UNIX-like systems.
Recently, a standalone MATLAB-based implementation
of PRS was published [12]. The application requires nor-
malized microarray data in XLS file with manufacturer
identifiers of the probesets, together with specification
of the platform and the normalization method that was
applied to the data. The set of possible platforms is limited
to selection of Affymetrix HG and one Agilent platform.
The user has no control over the pathway topologies that
are used.
None of these tools allows for different method for

normalization (e.g normalization with custom CDF-files
from http://brainarray.mbni.med.umich.edu) or differen-
tial expression analysis; nor can it be used to analyse the
RNA-Seq data.

Some users may prefer Cytoscape for visualization of
pathways, since it provides user-friendly and interactive
interface, which can be achieved using the RCytoscape

package.Within this interface, however, the user can spec-
ify only the basic graphical parameters like size, shape
or colour of the nodes or the styles of edges. Advanced
graphical approaches provided through plug-ins can be
accessed only directly from Cytoscape. We are currently
working on the option of interactive graph visualization.

Conclusions
Topology-based pathway analysis comprises a new gener-
ation of methods in gene set analysis, with the potential
of generating more sensitive and more specific results.
Currently, high-throughput technologies producing gene
expression data that serve as input to these methods
are employed in almost every biological and biomedical
research with RNA-Seq being in the leader position. Tools
for comfortable and quick application of these methods
and visualization of their results are needed. Available
packages or standalone applications are usually limited to
one or few methods, readily applicable mainly to human
studies and rarely contain also a visualization tool. We
propose ToPASeq, a Bioconductor package providing a
set of easy-to-use and general tools for topology-based
pathway analysis within the R workspace. It offers seven
distinct topology-based pathway analysis methods that
cover wide range of approaches and can be easily applied
on both microarray and RNA-Seq data. It also offers a
visualization tool that is able to capture all the relevant
information about the expression of genes within one
pathway. Finally, the functions for pathway conversion
extend the application of topology-based pathway analysis
to experiments on species other than human.

Availability and requirements
Project name: ToPASeq
Project home page: http://www.bioconductor.org/
packages/release/bioc/html/ToPASeq.html
Operating system(s): Platform independent
Programming language: R
Other requirements: R version 3.2.1, CRAN and Biocon-
ductor packages: graphite (>= 1.14), graph, gRbase
License: AGPL-3
Any restrictions to use by non-academics: none
Availability of supporting data: EBI ArrayExpress Exper-
iment E-MTAB-1147: http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-1147/, also in gageData package

Additional file

Additional file 1: Supplementary material.pdf. The file contains
additional details on the following: i) common principles of the
multivariable and univariable topology-based methods; ii) the functions for

http://zlab.bu.edu/PWEA/download.php
http://zlab.bu.edu/PWEA/download.php
http://brainarray.mbni.med.umich.edu
http://www.bioconductor.org/packages/release/bioc/html/ToPASeq.html
http://www.bioconductor.org/packages/release/bioc/html/ToPASeq.html
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
http://dx.doi.org/10.1186/s12859-015-0763-1
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pathway creation and manipulation (desciption as well as demostration);
iii) comparison of ToPASeq with existing tools. (1013 Kb)
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