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Abstract

Background: Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to
describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set
of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The
reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon
transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which
becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account.
This advanced reconstruction technique is called diffraction tomography. While many implementations of projection
tomography are available today, there is no publicly available implementation of diffraction tomography so far.

Results: We present a Python library that implements the backpropagation algorithm for diffraction tomography in
3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the
superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how
measurment parameters influence the reconstructed refractive index distribution and we also give insights into the
applicability of diffraction tomography to biological cells.

Conclusion: The present software library contains a robust implementation of the backpropagation algorithm. The
algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in
replacement for the classical backprojection algorithm and is made available to the large user community of the
Python programming language.

Keywords: Refractive index, Single-cell analysis, Diffraction tomography, Backprojection, Backpropagation, Rytov,
Born, Radon

Background
The measurement of the refractive index of a biological
cell is always connected to the observable phase change
of light as it passes through the cell. For example, phase
contrast microscopy in combination with refractive index
matching is used to obtain an average value for the refrac-
tive index of a cell population [1]. Accuracy and flexibility
of this approach are greatly improved with quantitative
phase imaging techniques, such as digital holographic
microscopy (DHM) [2]. Nevertheless, the reconstruction
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of the refractive index with sub-cellular resolution and in
three dimensions requires a tomographic approach.

Optical projection tomography
Optical projection tomography (OPT) is a well-studied
technique that is used to reconstruct and quantify
volumetric data of biological specimens [3, 4]. What
distinguishes OPT from conventional 3D imaging tech-
niques in biology, such as e.g. confocal microscopy or
selective plane illumination microscopy (SPIM), is the
type of measurement data that is acquired and the way
it is processed to reconstruct the 3D measurement vol-
ume. Tomographic data sets (sinograms) consist of mul-
tiple angular projections of the 3D specimen, whereas
the techniques mentioned above directly acquire sclices
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of the reconstruction volume. In OPT-based refractive
indexmeasurements, the projections frommultiple angles
are quantitative phase images. From these phase pro-
jections, the 3D refractive index can be reconstructed
by means of the filtered backprojection algorithm [5, 6],
an efficient algorithm that computes the inverse Radon
transform. In the context of this paper, we refer to the
filtered backprojection algorithm as the Radon approxi-
mation, because it assumes that light travels along straight
lines. The Radon approximation is only valid for small
wavelengths (e.g. x-ray radiation). Thus, when light with
wavelengths in the visible spectrum (e.g. 400–600 nm)
propagates through a biological cell, with structures on
similar length scales, diffraction takes place and signifi-
cant interference effects emerge.

Optical diffraction tomography
Optical diffraction tomography (ODT) takes this wave
nature of light into account. The diffraction of waves at
objects is described by the Helmholtz equation. To sim-
plify the complex description of waves by the Helmholtz
equation, two known approximations are commonly
applied; the Born and Rytov approximations. While the
Born approximation assumes that only a small fraction
of the wave is diffracted by the cell, the Rytov approxi-
mation assumes that the local refractive index variation
inside the cell is small. The Rytov approximation is known
to be superior to the Born approximation in ODT [7], but
its implementation requires a phase unwrapping step that
is not present in the implementation of the Born approx-
imation. Note that OPT with the Radon approximation
requires a similar phase unwrapping step. Furthermore,
OPT operates on the measured phase data only, whereas
ODT additionally incorporates the amplitude data in the
reconstruction process. The principles of ODT were first
introduced in [8] and a backpropagation algorithm was
then described in [9]. The theoretical basis of ODTbrain,
as well as a derivation of the full 3D backpropagation
algorithm in the Rytov approximation are given in [6].

Our contribution
We present what to our knowledge is the first pub-
licly available software implementation of the 3D back-
propagation algorithm. The algorithm can be used to
reconstruct 3D refractive index maps from projections
of biological or artificial phase objects. We showcase
our implementation by reconstructing simulated cells and
comparing the reconstruction qualities of OPT (Radon)
and ODT (Born, Rytov). Furthermore, we investigate the
contribution of several physical parameters to the over-
all reconstruction quality, complement previously con-
ducted two-dimensional (2D) studies [7, 10, 11] with 3D
data, and draw conclusions concerning the validity of the
backpropagation algorithm in three dimensions.

Implementation
The ODTbrain library is implemented in the Python pro-
gramming language. To make the reconstruction process
more transparent and to allow user-defined modifications
of the reconstruction, we split the reconstruction process
into three steps: a) apply a filter to the complex wave
sinogram that corresponds to the required approxima-
tion (Born, Radon, or Rytov), b) reconstruct the object
data from the sinogram (backproject or backpropagate),
c) compute the refractive index distribution from the
obtained object data. A full documentation, including a
method reference and multiple examples, is available at
the project home page.
The filtering step (a) is necessary for the application of

the Radon and Rytov approximations. For 3D data sets, we
rely on the 2D phase-unwrapping algorithm described in
[12]. Step (b) is the main part of the reconstruction algo-
rithm. To speed up the computation of Fourier transforms
for the 3D reconstruction, ODTbrain employs the FFTW
library [13].
In practice, for a successfull reconstruction a pre-

processing step is required: the presented implementation
requires a sinogram whose projections are distributed
equally from 0 to 360° and a rotational axis that is located
at the center of each projection. Phase retrieval and image
alignment are not part of the reconstruction process and
therefore not discussed in this paper.

Results and discussion
Finite-difference time-domain simulations
In order to test the ODTbrain library, we created tomo-
graphic data sets from artificial cell phantoms. We per-
formed 2D and 3D finite-difference time-domain (FDTD)
simulations with the softwareMEEP [14] to obtain in silico
sinograms containing phase and amplitude of the scat-
tered wave field. We decided to use the FDTD technique,
because it describes the vectorial propagation of light
according to the Maxwell equations, allowing us to test
the approximations against the most realistic in silico data
sets for optical tomography. The MEEP implementation
of FDTD is also very robust, easy to use, and thus more
practical than simulations based on the exact generalized
Lorenz-Mie theory [15, 16]. In order to obtain an image
as it would be seen through a microscope, we numerically
autofocus the measured field from one wavelength (1 λ)
behind the phantom to the center of the phantom by min-
imizing the gradient of the field amplitude [17–19]. Note
that the resulting field at the detector is effectively mea-
sured with a numerical aperture of NA = 1. Thus, the
FDTD simulation technique is ideal for the investigation
of arbitrary cell phantom geometries.
An exemplary 2D FDTD simulation is shown in Fig. 1.

The figure depicts the 2D cell phantom (Fig. 1a) and
the phase of the sinogram which was computed using
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Fig. 1 Refractive index reconstruction from 2D FDTD simulations. a False color image of the cell phantomwith refractive index values of the medium
(blue, 1.333), the cytoplasm (orange, 1.365), the nucleus (yellow, 1.360), and the nucleolus (red, 1.387). b As the cell phantom is rotated through the
angle φ, from 0 to 360 degrees, the projections of a plane wave (sinogram) are computed with FDTD simulations. Displayed is the phase of the
background-corrected and numerically refocused field that is used for the reconstruction. Red values indicate high phase retardation and blue
values indicate low phase retardation. c, d, e Reconstruction of the cell phantom with the Born (c), Radon (d), and Rytov (e) approximations. f Line
plots through the reconstructed cell phantom along the lines indicated in (c), (d), and (e). A total of 200 projections were used for the reconstruction

FDTD simulations (Fig. 1b). The values of the refractive
index for cytoplasm, nucleus, and nucleolus were taken
from [20]. A detailed description of the 2D cell phan-
tom is given in Additional file 1. The 2D reconstructions
shown in Fig. 1c, d, e and the corresponding line plots
in Fig. 1f illustrate the superiority of the Rytov approx-
imation over the Born and Radon approximations. The
Born approximation entirely fails to reproduce absolute
refractive index values [7, 10, 11] and the Radon approx-
imation produces smeared-out refractive index distribu-
tions, which becomes visible when comparing the shape
of the nucleolus (red) in Fig. 1d and e with a. The
reconstruction with the Rytov and Born approximations
were performed with ODTbrain, while the reonstruction
with the Radon approximation was performed with the
backprojection algorithm as implemented in [21]. The
Rytov approximation yields the best reproduction of the
initial phantom.

The 3D analog to Fig. 1 is shown in Fig. 2. The cell
phantom is rotated about the y-axis and the resulting
3D sinogram consists of 2D projections for the differ-
ent rotational positions φ of the cell phantom. The line
plots through the nucleolus of the reconstructed volume
in Fig. 2g and h show the same trend as the 2D line plots
in Fig. 1f. A visualization of the 3D cell phantom is given
in the Additional file 2. The reconstructed slice shown in
Fig. 2f exhibits a directional blur that is visible at the upper
and lower perimeter of the cell. This directional blur is the
result of an incomplete data coverage in the object spec-
trum commonly referred to asmissing apple-core artifacts
[22]. Furthermore, it is known that the values at the center
of the reconstruction volume along the axis of rotation are
error-prone due to coherent noise in the measured sino-
gram [17]. We documented the artifacts resulting from
the incomplete object spectrum and from the noise intro-
duced during simulation and reconstruction in Additional
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Fig. 2 Refractive index reconstruction from 3D FDTD simulations. a, d Cross-sectional slices of the 3D cell phantom through the nucleolus located at
x = y = z = 2 λ from the center of the volume. The color scale is identical to that used in Fig. 1. b, e Sinogram slices matching the cross-sectional
position of (a) and (d) for rotational position of φ ranging from 0 to 360 degrees; computed with FDTD simulations. c, f Cross-sectional slices of the
reconstruction with the Rytov approximation at the same coordinates as in (a) and (d). g, h Line plots through the reconstructed cell phantom with
the Born, Radon, and Rytov approximations. The positions of the line plots are shown in (c) and (f). A total of 200 projections were used for the
reconstruction

file 3. As in the 2D case, the Rytov approximation yields
the best reconstruction in the 3D case.

Reconstruction quality measures
In order to obtain a measure for the reconstruction qual-
ity, we introduce two metrics; the normalized root-mean-
square (RMS) error and the normalized total-variation
(TV) error. We compute the normalized RMS error ERMS
according to

ERMS =
√√√√

∑
vol

(
nph − nrec

)2
∑

vol
(
nph − 1

)2 (1)

where nrec is the real-valued refractive index distribution
of the reconstruction and nph that of the phantom. The

summation
∑

vol runs over all points that are within the
circular (2D) or spherical (3D) reconstruction volume.
Points that are outside of this reconstruction volume do
not have contributions from all projections and are thus
not considered. The RMS error quantifies the error in the
refractive index at each point of the reconstruction.
As briefly mentioned in the previous section, the recon-

struction with the Radon approximation leads to a blurred
reconstruction. Furthermore, the Born approximation
cannot reconstruct the correct magnitude of the refrac-
tive index values, but produces less blurry images than
the Radon approximation. We quantify this blurriness
by introducing the TV norm of the differences between
phantom nph and reconstruction nrec. We compute the
normalized TV error ETV according to
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ETV =

√√√√√
∑

vol

(
TVND

avg
(
nph − nrec

))

∑
vol

(
nph − 1

)2 (2)

with an averaged TV norm computed for N = 2 or
N = 3 dimensions according to the dimensionality of the
simulation

TV2D
avg(n) = 1

2
[|gradx(n)| + |gradz(n)|] (3)

TV3D
avg(n) = 1

3
[|gradx(n)| + |grady(n)|+|gradz(n)|].(4)

The normalization
∑

vol
(
nph − 1

)2 implies a normal-
ized RMS error of 100%, when the reconstruction nrec

deviates from the phantom nph at magnitudes that are
comparable to the difference between the phantom nph
and a refractive index value of 1. In the same manner, the
normalized TV error becomes 100% if the averaged TV
norm is equal to the squared difference between phantom
nph and 1. The chosen RMS and TV metrics lead to error
values that allow a direct comparison between the 2D and
3D reconstruction algorithms (see below).

Quality dependence on total number of projections
In order to determine the number of projections that are
necessary for full-view and dense diffraction tomogra-
phy, we performed 2D and 3D simulations with varying
total numbers of projections, equally distributed between

Fig. 3 Dependence of reconstruction quality on the total number of projections. a Normalized root mean square (RMS) error in dependence of the
total number of projections used for the reconstruction. The 2D (lines) and 3D (marker symbols) reconstructions were performed with the Born
(blue), Radon (black), and Rytov (red) approximations. b Normalized total variation (TV) error in dependence of the total number of projections. c, d,
e Slices through the 3D reconstruction volume for 20 (c), 60 (d), and 240 (e) projections. The corresponding slice for 200 total projections is shown
in Fig. 2f. The diameter (2a = 17 λ) and the refractive index values of the cell phantom are unchanged for all simulations
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0 and 360°. The cell phantoms used for the 2D and 3D
simulations are those described above. The RMS and TV
error in dependence of the total number of projections
are shown in Fig. 3a and b. At about 160 projections,

both RMS and TV errors reach a plateau, which sug-
gests that above this point, the reconstruction cannot be
improved any further. For this reason, we set the number
of projections to 200 for all subsequent simulations.

Fig. 4 Dependence of reconstruction quality on the refractive index variation. a The refractive index values of the cell phantom range from 1.334 to
1.455 (cytoplasm), 1.435 (nucleus), and 1.543 (nucleolus) in a linear fashion. The approximate range of the refractive index for biological cells is
marked in green. The refractive index of the medium is 1.333. b Normalized root mean square (RMS) error in dependence of the refractive index
values shown in (a). c Normalized total variation (TV) error in dependence of the refractive index values shown in (a). d, e, f Cross sections of the 3D
refractive index reconstruction with the Rytov approximation. The three simulations are labeled in (c). The diameter (2a = 17 λ) of the cell phantom
and the total number of projections (200) are unchanged for all simulations
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Besides the determination of the required number of
projections, one can observe two other important facts in
Fig. 3. First, the Rytov approximation results in the best
reconstruction in 2D as well as in 3D. Second, the RMS
and TV errors for the 3D reconstruction follow the RMS
and TV errors of the 2D reconstruction. Apparently, the
choice of the two error metrics defined in Eqs. 1 (RMS)
and 2 (TV) results in similar error estimates for 2D and
3D reconstructions, independent of the number of projec-
tions. This similarity of the 2D and 3D errors suggests that
the error of a 3D reconstruction may be inferred from the

error of a 2D reconstruction. Even though no proof exists
for such a connection, this observation potentially saves
time or, in the case of limited computational resources,
allows to make error estimates in 3D possible at all
(see below).

Quality dependence on refractive index variation
In all the cases discussed above, we used fixed refractive
index values for the cell phantom. Here, we show how
the reconstruction quality varies with different refrac-
tive index values for cytoplasm, nucleus and nucleolus.

Fig. 5 Dependence of reconstruction quality on the size of the cell. a Normalized root mean square (RMS) error in dependence of the cell diameter
for two- and 3D reconstructions with the Born, Radon, and Rytov approximations. The extent of the simulation volume is 30 λ. b Same as in (a),
except that the extent of the simulation volume is 172 λ. Due to computational limitations, a corresponding 3D simulation was not feasible with the
FDTD method. c Normalized total variation (TV) error in dependence of the cell diameter corresponding to the values in (a). d Normalized TV error
for the 2D series as described in (b). At the position indicated by the arrow we observed a sudden break down of the one-dimensional phase
unwrapping algorithm. e, f, g 2D refractive index reconstructions with the Rytov approximation. The cell diameters are 7 λ (e), 52 λ (f), and 97 λ (g).
The refractive index values of the cell phantom and the total number of projections (200) are unchanged for all simulations
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Figure 4a shows the different combinations of intracel-
lular refractive index values (see figure caption). In the
first simulation, the refractive index values of cytoplasm,
nucleus, and nucleolus were set to a fixed value of just
above water. The resulting RMS and TV errors are very
small (Fig. 4b and c, first simulation) which results in
a good reconstruction of the homogeneous refractive
index distribution (Fig. 4d). The RMS and TV errors
both increase as the refractive index values of the cell
phantom increase. At refractive index values that are
above the values for biological cells (1.36 – 1.39 [20]),
the reconstruction of the cell phantom with the Rytov
approximation is still successful (Fig. 4e). At very large
refractive index values (cytoplasm 1.455, nucleus 1.435,
nucleolus 1.543), the reconstruction starts to show arti-
facts, as shown in Fig. 4f. Quantitative line plots through
the nucleolus are shown in Additional file 4. In compar-
ison to Fig. 3, we again observe that the Rytov approx-
imation yields the lowest reconstruction error and that
the 3D error follows the 2D error. Furthermore, the
Rytov approximation is valid across a large range of
refractive index values, even outside of the regime of
biological cells.

Quality dependence on object size
The size of the cell phantom influences the reconstruction
quality. For fixed resolution and detector size, small cells
are more reliably reconstructed than large cells, because
less pixel or voxel values have to be reconstructed. To
illustrate this fact, we conducted simulations for differ-
ent diameters of the cell phantom. In order to be able to
compare the different reconstructions in terms of RMS
and TV errors, the size of the simulation volume was kept
constant. Due to limited computational power, a 3D sim-
ulation for cell diameters above 20 wavelengths was not
feasible. Figure 5 shows the dependence of the reconstruc-
tion quality on the size of the cell. As noted in the previous
sections, the RMS and TV errors of the 3D reconstruc-
tion follow that of the 2D reconstruction for the number
of projections (Fig. 3) and for different refractive index
distributions (Fig. 4). We make the same observation for
different cell sizes (Fig. 5a, c) when the simulation vol-
ume is small (30 λ). Therefore, we assume that the 2D
errors depicted in Fig. 5b and d may serve as an approx-
imation for the 3D errors that we would observe for very
large cells or small cell clusters. The graphs show that
up until a cell diameter of 60 wavelengths the recon-
struction with the Rytov approximation is very accurate
(see also Additional file 5). Above this critical size, phase
unwrapping errors lead to reconstruction artifacts. In
summary, the correct reconstruction below object sizes
of 60 wavelengths justifies the application of the Rytov
approximation to 3D arrangements like biological cell
clusters.

Conclusions
The presented algorithm is an extension to optical
projection tomography that takes into account diffraction
of light due to the refractive index of the sample. We
verified previous reports of the superiority of the Rytov
approximation over the Born and Radon approximations
in 2D for the 3D case. As predicted by the theory, the
Born approximation breaks down quickly for large cells
and for large RI changes [6]. We have shown that full-
view, dense data sets must contain at least 160 projections
to achieve the best possible reconstruction of a biological
cell with a diameter of 17 wavelengths or less. In con-
trast, few-view and sparse data sets usually require some
form of regularization (see [23, 24]). To improve recon-
struction quality, the presented implementation in ODT-
brain can be extended by regularization methods such as
missing-angle artifact minimization, artifact removal by
total variation minimization, and iterative reconstruction
algorithms [24, 25].
The refractive index range covered successfully by the

Rytov approximation is large and includes the range
of values found in most biological cells (up to 1.40).
Furthermore, the Rytov approximation yields good results
for large objects (diameter ≈ 50 λ). This versatile validity
makes the Rytov approximation interesting for the inves-
tigation of complex biological samples like cell clusters
or even small embryos but also non-biological structures
such as optical fibers.

Availability and requirements
Project name:ODTbrain
Project home page: http://odtbrain.craban.de
Operating system: Platform independent
Programming language: Python
Other requirements: Python 2.7 or Python 3.4
License: BSD (3 clause)
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Description of cell phantom for 2D FDTD
simulations. The schematic drawing shows the 2D refractive index
phantom for the FDTD simulations. The cytoplasm with a refractive index
of 1.365 (orange) is centered in the simulation volume (P1 = (0, 0)) and has
major and minor axis of a1 = 8.5 λ and b1 = 7.0 λ. The nucleus with a
refractive index of 1.360 is positioned off-center at P2 = (2 λ, 1 λ) with
a2 = 4.5 λ and b2 = 3.5 λ. The nucleus is rotated with respect to the
coordinate system at a fixed angle of θ = 0.5 rad. The nucleolus with a
refractive index of 1.387 is positioned at P3 = (2 λ, 2 λ) with a radius of
r3 = 1 λ. (PNG 774 kb)

Additional file 2: Description of cell phantom for 3D FDTD
simulations. The video is a visualization of the 3D refractive index
phantom for the FDTD simulations. The values for the refractive indices,
sizes, and positions for the 3D phantom are identical to that of the 2D
phantom. The cytoplasm and nucleus of the 3D version of the phantom
are prolate ellipsoids. (AVI 5140 kb)

http://odtbrain.craban.de
http://dx.doi.org/10.1186/s12859-015-0764-0
http://dx.doi.org/10.1186/s12859-015-0764-0
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Additional file 3: Central cross-sections of 3D reconstruction with the
Rytov approximation. This figure supplements Fig. 2 with cross-sections
and line plots through the center of the 3D volume. Along the axis of
rotation (highlighted by two white lines), the reconstruction exhibits
strong variations. (PNG 1003 kb)

Additional file 4: Line plots of the 3D reconstruction for different
magnitudes of the refractive index variation. The figure is a
quantitative representation of the three distributions of refractive index
highlighted in (Fig. 4d, e, f) with line plots through the nucleolus parallel to
the minor (a, c, e) and the major axis (b, d, f). The reconstruction with the
Born, Radon, and Rytov approximations are plotted. (PNG 1280 kb)

Additional file 5: Line plots of the 2D reconstruction for different cell
sizes. The figure is a quantitative representation of the three distributions
of refractive index highlighted in (Fig. 5e, f, g) with line plots through the
nucleolus as indicated in (Fig. 1c, d, e). The reconstruction with the Born,
Radon, and Rytov approximations are plotted. (PNG 1065 kb)
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2D: Two-dimensional; 3D: Three-dimensional; DHM: Digital holographic
microscopy (quantitative phase imaging technique); FDTD: Finite-difference
time-domain (simulation technique used for forward process); ODT: Optical
diffraction tomography (e.g. backpropagation); OPT: Optical projection
tomography (e.g. backprojection); RMS: Root-mean-square (used for error
estimation); TV: Total variation (used for error estimation).
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