
Nettling et al. BMC Bioinformatics  (2015) 16:387 
DOI 10.1186/s12859-015-0767-x

SOFTWARE Open Access

DiffLogo: a comparative visualization of
sequence motifs
Martin Nettling1*†, Hendrik Treutler2†, Jan Grau1, Jens Keilwagen3, Stefan Posch1 and Ivo Grosse1,4

Abstract

Background: For three decades, sequence logos are the de facto standard for the visualization of sequence motifs in
biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and
published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and
more important to perceive differences between motifs. However, motif differences are hard to detect from individual
sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different
transcription factors, or multiple motifs for one protein domain.

Results: Here, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif
differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise
manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing
pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored
for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of
three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains
from three different families as example for comparison of protein motifs.

Conclusions: DiffLogo provides an intuitive visualization of motif differences. It enables the illustration and
investigation of differences between highly similar motifs such as binding patterns of transcription factors for different
cell types, treatments, and algorithmic approaches.
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Background
Biological polymer sequences encode information by the
order of their monomers, i.e., bases or amino acids. Often
specific parts of the polymer sequence are of particular
interest, as they encode, for instance, the binding of tran-
scription factors to specific binding sites [1, 2], the binding
to micro-RNA-targets in mRNAs, splice donor sites and
splice acceptor sites in pre-mRNAs [3, 4], the presence
of phosphorylation sites in proteins, or the folding of
specific protein domains [5]. The set of subsequences of
one specific biological process are often represented as a
sequence motif.
A sequence motif is a model, that represents the pref-

erence for the monomers based on a set of aligned
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biopolymer sequences. Sequence motifs are the result of
pipelines comprising wet-lab experiments and motif pre-
diction algorithms, and are frequently used as the basis of
in silico predictions [6]. Thus, sequence motif are critical
for research of a wide range of problems in biology and
bioinformatics.
Considering a particular transcription factor, there are

many pipelines that combine wet-lab experiments such as
HT-SELEX [7, 8], ChIP-Seq [9] or DNase-Seq footprinting
[10] with motif prediction algorithms such as MEME
[2, 11], ChIPMunk [12], POSMO [13], or Dimont [14].
Wet-lab experiments differ in their experimental setup,
e.g., ecotypes, cell types, developmental stage, time
points, or treatment, and motif prediction algorithms
differ in their mathematical theory and implementation
details.
Visualizing the results of motif discovery is nowa-

days accomplished by sequence logos [15], the de facto
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standard for visualizing motifs in biology and bioinfor-
matics. Sequence logos emerged as an essential tool for
researchers to interpret findings, document work, share
knowledge, and present results.
However, comparing multiple sequence logos by visual

inspection is sometimes tricky. Differences between
sequence logos of two unrelated transcription factors are
usually obvious, whereas differences between sequence
logos of the same transcription factor are often less
obvious and rather hard to perceive as depicted in
Fig. 1. Moreover, the results of motif discovery algorithms
need to be compared against huge reference databases
such as JASPAR [16] or UniProbe [17] or motifs from
literature.
For this reason, the comparison of motifs is of primary

interest. Several numerical measures including variants
of Euclidean distance, Pearson correlation, and Jensen-
Shannon divergence have been used to compare motifs
[18–21]. These measures express the difference of motifs
as a single number that can be easily utilized subsequently,
e.g., for rankings or clustering algorithms. However, these
measures lose the information of what exactly makes
the difference between the motifs of interest. Hence, the
comparison ofmultiple pairs of motifs can result in similar
measures.
There are various tools for the analysis and visualiza-

tion of motifs as summarized in Table 1. The R package
seqLogo [22] is an implementation of sequence logos. In
the context of motif comparison, sequence logos may be
interpreted as a comparison of the input motif with a
uniformly distributed motif. The web application iceL-
ogo [23] extends this approach by comparing the input
motif with a motif that follows the same background
distribution at each motif position. Basically, seqLogo and
iceLogo are designed for the presentation of single motifs.
In contrast, the R package MotifStack [24] and the web
application STAMP [25] are designed for the presentation
of multiple motifs. Here, the input motifs are clustered
and presented as sequence logos. Thus, the approach of

both tools may be interpreted as multiple comparisons
with a uniformly distributed motif. The web application
Two Sample Logo [26] is capable of comparing two input
motifs on the basis of probability theory. This compari-
son is performed for each motif position individually and
results in a sophisticatedmotif comparison. Depending on
the focus of each tool, the input format is a set of aligned
sequences and/or a position frequency matrix or position
weight matrix. In addition, some tools focus exclusively
on DNA motifs, while others cover DNA, RNA, and pro-
tein motifs or even allow arbitrary alphabets. Table 1
summarizes tools and their capabilities. In section 4 of
Additional file 1, we additionally provide comparative
example plots generated by seqLogo, iceLogo, STAMP, Two
Sample Logo, and DiffLogo.
We intend the pair-wise comparison of motifs and

extend this idea towards the comparison of multiple
motifs as follows.
We focus on the comparison of position-specific sym-

bol distributions of two motifs. We neglect dependencies
between different motif positions to reduce complexity.
As suggested by the sequence logo approach, we intend
to represent the characteristics of each motif position by
the two properties stack height and symbol height within
a stack. The stack height is to be proportional to the
degree of distribution dissimilarity. The symbol height is
to be proportional to the degree of differential symbol
abundance.
We intend to compare three or more motifs on the

basis of pair-wise motif comparisons. This comparison
is to take into account all pair-wise motif comparisons,
suggesting an arrangement in a grid with one row and
one column for each motif and one cell for each motif
comparison. Similar motifs are to be placed in nearby
rows and columns, and the degree of similarity between
all motifs is to become obvious at a glance analogous
to heatmaps. The grid is to be complemented with
a display of the individual sequence logos for further
comparisons.

Fig. 1 Sequence logos of CTCF motifs from cell lines H1-hESC and HUVEC. The two sequence logos are highly similar in their conservation profile
(height of stacks) and nucleotide preference at the individual motif positions
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Table 1 Comparison of related tools. We compare six publicly available tools on the basis of five criteria

Features

Tools Alphabet Input format Comparison Clustering Extensible

seqLogo DNA matrix uniform - -

iceLogo DNA/RNA, proteins sequences average - -

MotifStack any matrix uniform hclust -

STAMP DNA sequences, matrix uniform UPGMA/SOTA -

Two Sample Logo DNA/RNA, proteins sequences position-specific - -

DiffLogo any sequences, matrix position-specific hclust, optimal leaf ordering �
In the first and second column, we examine the kind of supported input, in the third and forth column we examine the mode of action, and in the fifth column we examine
whether the tool is extensible. For the criterion “alphabets” we summarize the supported biopolymers out of DNA, RNA, and proteins or arbitrary alphabets in case of “any”.
For the criterion “input format” we discriminate a set of “sequences” versus “matrix”, which addresses at least one out of the formats position weight matrix (PWM), position
frequency matrix (PFM), and position count matrix (PCM). For the criterion “comparison” we characterize the kind of distribution that is used for motif comparison (“uniform” is
the uniform distribution, “average” is the average base distribution in a set of sequences, and “position-specific” is a position-specific distribution). For the criterion “clustering”
we point out whether there is a clustering of motifs and which cluster-algorithm is used. For the criterion “extensible” we note whether the tool is extensible by the user

Implementation
In this section, we first define the used notation. We then
briefly describe the classical sequence logo. Subsequently,
we introduce the difference logo for the visualization of
pair-wise motif differences. We discuss this new method
and explore potential biological interpretations. Finally,
we propose an approach for employing difference logos
for the joint comparison of multiple motifs.

Basic notation and sequence logo
Consider a motif as an abstract description of a given
set of aligned sequences of common length L from the
alphabet A. The relative frequency of symbol a ∈ A at
position � ∈ [1, L] corresponds to the (estimated) proba-
bility p�,a. In case of two motifs, we use p�,a for the first
motif and analogously q�,a for the second motif.
The well-known sequence logo visualizes a motif with a

symbol stack for each position. We denote the height of
the stack at position � by H� and the height of symbol a
within this stack by H�,a. In the traditional sequence logo,
H� and H�,a are defined by

H� = log2(|A|) −
∑
a∈A

p�,a · log2(p�,a) (1)

H�,a = p�,a · H�, (2)

which states that the height of a stack at position � reflects
the degree of conservation at position � quantified by the
information content and that the height of each symbol at
position � is proportional to its frequency at position �.
Hence, the traditional sequence logo is an intuitive visu-
alization of both (i) conserved motif positions and (ii)
abundant bases.

The approach of DiffLogo
As specified earlier, we compare motifs per position. Sim-
ilar to the sequence logo, we show a symbol stack for each

position. We redefine the calculation of H� and use this
measure as the total height of position � reflecting the dif-
ference of the symbol distribution of both motifs at this
position. We redefine the calculation of H�,a and use this
measure as the height of a symbol within the stack at
position �. In the following, H�,a can be positive or nega-
tive. Symbols with positive valuesH�,a are plotted upward.
Symbols with negative values H�,a are plotted downward.
Generally, there is a plethora of well-understood mathe-

matical criteria that can be combined to define the height
of a symbol stack and the relative heights of symbols
within the stack such as probability differences, informa-
tion divergences, distance measures, or entropies [27]. In
the following, we present DiffLogo with the example of
the Jensen-Shannon divergence for the calculation of H�

and normalized probability differences for the calculation
ofH�,a. We denote the combination of these twomeasures
as weighted difference of probabilities.

Weighted difference of probabilities
We calculate the stack height for each motif posi-
tion using the Jensen-Shannon divergence. The Jensen-
Shannon divergence is a measure for the dissimilarity of
two probability distributions based on information the-
ory [28] (see Fig. 2). In contrast to other measures, the
Jensen-Shannon divergence shows a comparable behavior
when evaluating dissimilarities of distributions near the
uniform distribution. The Jensen-Shannon divergence of
two motifs at position � is given by

H� = 1
2

∑
a∈A

p�,a log2
p�,a
m�,a

+ 1
2

∑
a∈A

q�,a log2
q�,a
m�,a

, (3)

wherem�,a = p�,a+q�,a
2 .

We define the height of each symbol by

H�,a = r�,a · H�, (4)
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Fig. 2 Exemplary comparison of four DNA motifs of length one using the Jensen-Shannon divergence. Motif 1 and motif 2 are depicted as
sequence logos. For each column, we compare the motif in the first row with the motif in the second row using the Jensen-Shannon divergence
listed in the third row. In the first example we depict the case with only one base in each motif resulting in a maximal Jensen-Shannon divergence
of 1 bit. In the second example we depict the case with two equally abundant bases both in motif 1 and motif 2 (both different) resulting again in a
maximal Jensen-Shannon divergence of 1 bit. In the third example we depict the case with two equally abundant bases both in motif 1 and motif 2
(one equal and one different) resulting in a Jensen-Shannon divergence of 0.5 bit. In the fourth example we depict the case with two bases both in
motif 1 and motif 2 (differentially abundant) resulting in a Jensen-Shannon divergence of 0.25 bit

where we define the weight r�,a as

r�,a =
{ p�,a−q�,a∑

a′∈A |p�,a′−q�,a′ | if p� �= q�

0 otherwise.
(5)

r�,a is the probability difference of symbol a at position �

between two motifs normalized by the sum of absolute
probability differences at this position. We use normal-
ized probability differences as these are indicators for the
gain or loss of symbol abundance and provide a view on
the symbol distribution differences of both motifs. As a
consequence, symbols less abundant in the second motif
compared to the first motif are plotted upward, and sym-
bols more abundant in the second motif compared to the
first motif are plotted downward.
This representation emphasizes a high gain or loss of

probability in co–occurrence with a high gain or loss of
information content. The sum of the heights of symbols
with a gain of probability and the sum of the heights
of symbols with a loss of probability are equal at every
position, because each gain of probability of one symbol
implies a loss of probability of the remaining symbols. The
advantage of this approach is that we are capable of see-
ing differences of position-specific symbol distributions
and of seeing those symbols that are responsible for these
differences by gaining or losing abundance.

Comparison of multiple motifs
According to the requirements formulated above, we pro-
pose a visualization for the joint comparison of N ≥ 3
motifs given the measure H� as follows.
We plot the difference logos of all N × (N − 1)

motif pairs with a common ordinate scaling. We define
a scalar dissimilarity value D for a pair of motifs as the

sum of all stack heights in the corresponding difference
logos,

D =
L∑

�=1
H�. (6)

We compute amotif order to group similar motifs. Here,
we take the optimal leaf order of a hierarchical clustering
of the motifs based on D (function hclust in R package
stats and function order.optimal in R package cba). We
arrange the difference logos ordered in anN×N grid with
an empty diagonal. Difference logos opposing each other
across the diagonal of the grid correspond to each other
by an inversion of the ordinate. We visualize D with the
background color of the corresponding difference logo
using a color gradient from green (most similar among
all pairwise comparisons) to red (most dissimilar). We
outline the motif names above each column and left of
each row. In addition, we allow the possibility of drawing
the classic sequence logos and the cluster tree above the
columns as auxiliary information.
The advantage of this approach is that we are capable

of surveying the overall similarities and dissimilarities
in the resulting difference logo grid. Greenish regions
indicate similar motif groups and reddish rows and
columns indicate less similar motifs. Given a region of
interest, it is furthermore possible to comprehend the
origins of dissimilarities from the individual difference
logos and optionally the sequence logos.

R package
DiffLogo is written in R [29]. We provide the implemen-
tation as a ready-to-use R package. For symbol draw-
ing, DiffLogo uses adapted methods from the package
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seqLogo [22] in the software suite bioconductor [30].
DiffLogo allows the analysis of sequence motifs defined
over arbitrary alphabets.
The core functions can be parameterized with func-

tions for H� and r�,a. Hence, the user is capable of com-
bining different formulae for H� and r�,a. We provide
implementations of the Jensen-Shannon divergence and
the normalized probability difference used for the dif-
ference logos presented in this manuscript. In addition,
DiffLogo provides other implementations for H� and r�,a
as alternatives. Exemplarily, we show the result of eight
different combinations of measures for stack height and
symbol height in Additional file 1: Tables S1 and S2. The
DiffLogo package comprises example data, example code,
and further documentation.

Results and discussion
In this section, we present three examples demonstrat-
ing the utility of DiffLogo in different applications. First,
we examine differences in motifs of DNA binding sites of
the same transcription factor from five different cell lines.
Second, we examine differences in motifs of DNA binding
sites of three different transcription factors with similar

binding motifs. Third, we examine differences in motifs of
a protein domain.

DNAmotifs of same transcription factor
We consider sequence logos and difference logos of bind-
ing sites of the human insulator CTCF in different cell
lines as obtained by motif discovery from ChIP-seq data
[31] based on preprocessed ChIP-seq data from the
ENCODE project. For CTCF motif inference, sequences
with p-values smaller than 10-6 were selected. All data
are freely available as Additional File of the original pub-
lication [31]. Since CTCF is a DNA-binding protein, the
alphabet corresponds to the four nucleotides in this case.
In Fig. 1, we plot the sequence logos for two of these

cell types, namely H1-hESC and HUVEC. Considering
the sequence logos, both motifs look highly similar with
regard to the conservation as well as the nucleotide
preference of individual motif positions, and differences
between both motifs are hard to perceive. Considering the
corresponding difference logo in Fig. 3 (row 1, column 5
or row 5 column 1), however, we instantly see that indeed
a large number of motif positions exhibits differences in
nucleotide composition. We find the largest difference

Fig. 3 Comparison of five DNA motifs using DiffLogo. Comparison of five CTCF motifs from cell lines H1-hESC, MCF7, HeLa-S3, HepG2, and HUVEC.
We plot all pair-wise sequence logos and display the distance between each motif using the background color from green (similar) to red
(dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered cluster tree above. The motifs of H1-hESC and MCF7 are highly
similar and substantially different from the other motifs, while the motifs of HeLe-S3, HepG2, and HUVEC are similar to each other as well. Due to leaf
ordering, the difference between compared motifs increases with increasing distance from the main diagonal in the difference logo grid
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according to the difference logo at position 8 of the motifs,
where nucleotide C is more prevalent in cell type H1-
hESC compared to HUVEC, whereas the opposite holds
for nucleotide T. This difference is less visible in the
sequence logos, even with hindsight from the difference
logo, due to the low conservation at this position. Specif-
ically, the probability of C increases from 0.35 (HUVEC)
to 0.58 (H1-hESC), whereas the probability of T drops
by a factor of 2 from 0.44 (HUVEC) to 0.21 (H1-hESC).
Depending on the application, this difference at position
8 might have a decisive influence on the outcome of, e.g.,
in silico binding site prediction.
In the literature, several positions with substantial motif

differences uncovered byDiffLogo are known to be related
to CTCF binding affinity. For instance [32] show that “low
occupancy” CTCF binding sites are enriched for C or G at
position 18 compared to “high occupancy” sites, which in
our case might indicate that the H1-hESC ChIP-seq data
set contains a larger number of such “low occupancy” sites
than the HUVEC data set.
In a large-scale study [33], CTCF core motifs are parti-

tioned by the presence or absence of additional upstream
and downstream motifs, where the greatest variations in
the core motifs between partitions can be found at posi-
tions 1-3, 6, 8, 11, 12, 18, and 20, which cover those
positions varying in the difference logo. Again, these par-
titions are related to binding affinity and occupancy of
CTCF.
In summary, DiffLogo helps to identify several motif

positions with substantial variation between cell types,
known to be related to CTCF binding affinity and binding
site occupancy.
In real-world applications, motifs for more than two cell

types are often studied, which might render the pairwise
comparison of difference logos a tedious task. We support
such an evaluation across multiple cell types by a struc-
tured visualization of multiple difference logos as shown
in Fig. 3. Here, we compare the pairwise difference logos
of CTCF motifs from five cell types, namely H1-hESC,
MCF7, HeLa-S3, HepG2, and HUVEC. The cluster tree
and background color of the cells are based on numeri-
cal measures of motif differences (cf. Implementation) and
guide us to the most notable differences between pairs of
motifs. For instance, we observe from the tree and back-
ground colors that the motifs of H1-hESC and MCF7 are
highly similar. The same holds true for themotifs of HeLa-
S3, HepG2, and HUVEC, whereas motifs show substantial
differences between these two groups. To further facilitate
the visual comparison of multiple motifs, we leaf-order
the cluster tree such that neighboring motifs are as similar
as possible. Due to this ordering, the difference between
motif pairs increases with increasing distance from the
main diagonal of the difference logo grid. For instance,
the topology of the clustering would allow to invert the

order of the three leaves under the right sub-tree in Fig. 3,
which, however, would bring the quite dissimilar motifs of
HUVEC and MCF7 in direct neighborhood. From Fig. 3,
we also observe that the two motifs of H1-hESC and
HUVEC are the most dissimilar ones among the motifs
studied. A visualization of all nine available motifs can be
found in Additional file 1: Figure S1.

DNAmotifs of different transcription factors
We demonstrate the utility of DiffLogo for motifs derived
from binding assays for the human transcription factors
Max, Myc, and Mad (Mxi1) from Mordelet et al. [34].
These three basic helix-loop-helix transcription factors
are members of a regulatory network of transcription fac-
tors that controls cell proliferation, differentiation, and
cell death. Each transcription factor binds to different
sets of target sites, regulates different sets of genes, and
thus plays a distinct role in human cells. However, Myc,
Max, and Mad have almost identical PWMs, which all
correspond to an E-box motif with consensus sequence
CACGTG.
The PWMs considered here have been derived from

probe sequences and corresponding binding intensities
of in-vitro genomic context protein-binding microarrays
[34]. The exact binding sites within the probe sequences
are predicted by the de-novo motif discovery tool Dimont
[14] using Slim models [35]. For each of the three tran-
scription factors, the top 1,000 predicted binding sites are
used to generate the corresponding PWM.
In Fig. 4, we plot the sequence logos and difference logos

of Myc, Max, and Mad. We observe from the sequence
logos that the binding motifs are almost identical. Con-
sidering the difference logos, we observe that the six core
nucleotides are conserved in the motifs of all three tran-
scription factors. We find the largest differences between
the motif of Max and the motifs of Myc and Mad. In case
of Max and Myc, we find a Jensen-Shannon divergence
greater than 0.01 bit at positions 11, 12, 22, and 26. In
case of Max and Mad, we find a Jensen-Shannon diver-
gence greater than 0.01 bit at positions 3, 12, 22, and 25.
In both cases, we mainly find more purine (adenine and
guanine) in the motif of Max than in the motifs of Myc
and Mad.

Protein motifs
As a third example, we demonstrate the utility of Diff-
Logo using the F-box domain, which plays a role in
protein-protein binding. The complete F-box domain in
this example is 48 amino acids long [36]. Here, we inves-
tigate the middle section from the 12th to the 35th amino
acid.
In Fig. 5, we plot the sequence logos and difference

logos of F-box domains from the three kingdoms meta-
zoa, fungi, and viridiplantae. We observe from the cluster
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Fig. 4 Comparison of E-Box motifs of Max, Myc, and Mad using DiffLogo. We plot all pair-wise difference logos and display the distance between
each motif using the background color from green (similar) to red (dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered
cluster tree above. The motifs of the transcription factors Myc and Mad are more similar to each other than to the motif Max. The six core nucleotides
with consensus sequence CACGTG are conserved in the motifs of all three transcription factors and, hence, are not visible in the difference logos

tree and the background colors that the motifs of meta-
zoa and fungi are highly similar, whereas motifs of this
group show substantial differences to viridiplantae. The
largest difference can be seen between motifs of metazoa
and viridiplantae.
When comparing metazoa and fungi with viridiplantae,

DiffLogo identifies positions 6, 17, and 22 with high val-
ues of the Jensen-Shannon divergence. The differences at
positions 6 and 22 could be expected from the differences
of the sequence logos, whereas the differences at position
17 are not immediately obvious from them. At position 6
the abundance of arginine (R) in viridiplantae is 0.54 and
thus more than 10 times higher than in fungi and 12 times
higher than inmetazoa. At position 22 tryptophane (W) is
highly abundant in viridiplantae and 4 and 3.4 times more
abundant than in metazoa and fungi. At position 17 the
most noticeable differences in viridiplantae to fungi and
metazoa can be seen for amino acid cysteine (C), valine
(V), alanine (A), and serine (S). The overall abundance
increases from 0.13 in metazoa and 0.12 in fungi to 0.64 in
viridiplantae. In contrast, the abundance of arginine (R),
glutamine (Q), and lysine (K) is only 0.044 in viridiplantae
and 0.44 in metazoa and fungi. A visualization of the

full F-Box domain from four kingdoms can be found in
Additional file 1: Figure S2.

Conclusion
We present DiffLogo, an easy-to-use tool for a fast
and efficient comparison of motifs. DiffLogo may be
applied by users with only basic knowledge in R and
is highly configurable and extensible for advanced
users. We introduce weighted differences of probabili-
ties to emphasize large differences in position-specific
symbol distributions. We present visual comparisons
of multiple motifs stemming from motifs of one
transcription factor in different cell types, different
transcription factors with similar binding motifs,
and species-specific protein domains. Figures gener-
ated by DiffLogo enable the identification of overall
motif groups and of sources of dissimilarity. Using
DiffLogo, it is easily possible to compare motifs from
different sources, so DiffLogo facilitates decision making,
knowledge sharing, and the presentation of results. We
make DiffLogo freely available in an extensible, ready-to-
use R package including examples and documentation.
DiffLogo is part of Bioconductor.
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Fig. 5 Comparison of three F-box domain motifs using DiffLogo. We compare the F-box domains from the kingdoms metazoa, fungi, and
viridiplantae and plot all pair-wise difference logos and display the distance between each motif using the background color from green (similar) to
red (dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered cluster tree above. The motifs of metazoa and fungi are highly
similar. All other pairwise comparisons show substantial differences

Availability and requirements
Project name: DiffLogo
Project home page: http://github.com/mgledi/DiffLogo
Availability: http://bioconductor.org/packages/DiffLogo
Operating system(s): Platform independent
Programming language: R
Other requirements: Installation of R 1.8.0 or higher
License: LGPL (≥ 2)
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary Methods, Results, Figures, and
Examples. This file is structured in four sections. Section 1, Additional
examples, contains Figures S1 and S2. Figure S1 shows a DiffLogo grid for
nine CTCF motifs. Figure S2 shows a DiffLogo grid for four F-box domain
motifs. In section 2, CTCF with and without clustering, we show in detail the
impact of clustering and optimal leaf ordering for a DiffLogo grid of nine
CTCF motifs. In section 3, Alternative combinations of stack heights and
symbol weights, we first describe the mathematical background of four
implementations of H� and two implementations of r�,a . Afterwards, we
show the result of the eight possible combinations in Tables S1 and S2 on
two sequence motifs. In section 4, Tool comparison, we compare DiffLogo
with the five tools seqLogo, iceLogo,MotifStack, STAMP, and Two Sample
Logo.

From the set of nine CTCF motifs we selected the pair of motifs with the
highest similarity according to the Jensen-Shannon divergence (GM12878
and K562) and the pair of motifs with the lowest similarity according to the
Jensen-Shannon divergence (H1-hESC and HUVEC) for the comparison of
the five different tools. (PDF 8775 kb)
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