
RESEARCH ARTICLE Open Access

A Lattice-Boltzmann scheme for the simulation
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Liliana Angeles-Martinez and Constantinos Theodoropoulos*

Abstract

Background: The intracellular environment is a complex and crowded medium where the diffusion of proteins,
metabolites and other molecules can be decreased. One of the most popular methodologies for the simulation of
diffusion in crowding systems is the Monte Carlo algorithm (MC) which tracks the movement of each particle. This can,
however, be computationally expensive for a system comprising a large number of molecules. On the other hand, the
Lattice Boltzmann Method (LBM) tracks the movement of collections of molecules, which represents significant savings in
computational time. Nevertheless in the classical manifestation of such scheme the crowding conditions are neglected.

Methods: In this paper we use Scaled Particle Theory (SPT) to approximate the probability to find free space for the
displacement of hard-disk molecules and in this way to incorporate the crowding effect to the LBM. This new
methodology which couples SPT and LBM is validated using a kinetic Monte Carlo (kMC) algorithm, which is used here as
our "computational experiment".

Results: The results indicate that LBM over-predicts the diffusion in 2D crowded systems, while the proposed coupled
SPT-LBM predicts the same behaviour as the kinetic Monte Carlo (kMC) algorithm but with a significantly reduced
computational effort. Despite the fact that small deviations between the two methods were observed, in part due to the
mesoscopic and microscopic nature of each method, respectively, the agreement was satisfactory both from a qualitative
and a quantitative point of view.

Conclusions: A crowding-adaptation to LBM has been developed using SPT, allowing fast simulations of diffusion-systems
of different size hard-disk molecules in two-dimensional space. This methodology takes into account crowding conditions;
not only the space fraction occupied by the crowder molecules but also the influence of the size of the crowder which
can affect the displacement of molecules across the lattice system.
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Background
Several microorganisms are used in the conversion of raw
materials to added-value products, for example Actinobacil-
lus succinogenes has been used for the synthesis of succinic
acid from crude bio refinery glycerol [1, 2]. The analysis
and simulation of the factors affecting the metabolism of
these organisms allow the further identification of the strat-
egies needed for its manipulation in order to increase the for-
mation of the metabolite of interest over other by-products.
As it is known the environmental conditions and the

properties of the medium play an important role in the me-
tabolism. The intracellular processes are carried out in a

complex, heterogeneous, and crowded medium composed
by solid components (macromolecules, enzymes, etc.) in a
fluid phase called cytoplasm (in 3D) or in cell membranes
(2D) [3, 4], where for prokaryotes the diffusion is the pri-
mary mean of intracellular motion.
According to a drawing proposed by Goodsell [5], if the

cytoplasm of Escherichia coli is divided into 600 cubes of
(100 nm)3, an average of 130 glycolytic enzymes and 100
from the Krebbs cycle are present in each cube in addition
to the metabolites and other compounds, which all together
comprise a very large number of molecules for the simula-
tion of the intracellular environment. Henceforth, we will
use the terms molecule and particle interchangeably to refer
to the intracellular macromolecules, e.g., proteins.
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The solid components of the cell occupy about 40 % of
the total volume [6] and 25 % of the area of a typical mem-
brane [7]. Due to the impossibility that two molecules
occupy the same space at the same time (steric effects), these
crowding conditions affect the intracellular process in two
opposite ways: 1) decreasing the diffusion of the molecules
[8], and 2) increasing the thermodynamic activity of the me-
tabolites [6], and therefore enhancing the reaction rate, and
modifying the thermodynamic feasibility of some reactions.
A review of the crowding effects can be found in [9].
In particular the study and simulation of the diffusion

process can be carried out using several methodologies
at different levels of detail. One of the most popular is
the Monte Carlo (MC) algorithm [10–17] (microscopic
level) where each molecule is tracked during its journey
through the cell so the restriction of the impenetrability
of the molecules is satisfied in a straightforward way.
MC is a powerful technique and easy to implement,

however it is limited to short simulation times, restricted
lattice/domain sizes, and/or reduced number of molecules
because of the large computational costs. Besides, due to
the stochastic nature of MC, it requires several simula-
tions to smoothen the noise of the results by computing
average quantities. Moreover, in most cases the molecules
are considered to be of the same size, so the size effect
could be hidden [10, 11].
On the other hand, Lattice Boltzmann (LBM) [18] is a

mesoscopic method which allows the efficient simulation
of the dynamics of collections across a defined lattice
according to expressions that conserve mass and mo-
mentum [19]. Here, the solute transport is simulated ei-
ther 1) treating the solute as another fluid and solving a
multicomponent problem (active solute component) or
2) assuming that the molecules do not have velocity of
their own so they are advected by the fluid (passive sol-
ute component). In both cases the volume of the solute
is neglected. See Sukop and Thorne [20] for a review.
Alternatively, in particle suspensions simulations the mo-

tion of each molecule is described by a hard sphere model
(with the drawback of being computationally expensive for
large numbers of particles) while the fluid is described by
LBM [21, 22]. This is similar to other hybrid methods used
for example to follow the enzymes’ motion with MC, or the
tumour growth with Cellular Automata [23], while the pas-
sive transport of the metabolites and the fluid is simulated
by LBM.
Since LBM computes the evolution of the average mole-

cules’ density, it represents a good alternative to simulate
the diffusion of large number of intracellular macromole-
cules or even metabolites. However, since classical LBM
does not take into account the volume of the molecules,
and therefore the effect of obstacles on the molecules’ dif-
fusion, it may overestimate the degree of mixing of the
system analysed.

The displacement of a molecule depends on the prob-
ability P to find enough empty space to move at every step
of its journey. Scaled Particle Theory (SPT) is a method
that allows the estimation of this probability P which is a
function of the radii and concentration/number of mole-
cules present in the system. SPT also has been used to
investigate the effect of macromolecular crowding on solv-
ation [24], thermodynamic activity of proteins [25] and of
metabolites [26].
The aim of this paper is to incorporate the crowding

effect on the LBM simulation of the particles’ diffusion.
For this, a methodology is proposed for coupling SPT
and LBM, allowing in this way faster simulations for sys-
tems with a large number of molecules of different size
under crowded conditions, such as the intracellular en-
vironment. Here, we consider the diffusing molecules as
passive solute components assuming that the fluid phase is
at rest within the cell. In particular, this paper focuses on
2D simulations of macromolecules’ diffusion which are
relevant for the study and analysis of lateral diffusion of
proteins in membranes [27–29]. For validation purposes
the results are compared with those obtained from kinetic
Monte Carlo (kMC) algorithm [14, 15].

Methods
In the classical LBM [18], the system is represented by a
regular lattice, where the molecules located at the same
site or node at time t may interact with each other (colli-
sion step), and then according to a set of rules, some parti-
cles move to one of their neighbouring lattice sites
(known as the streaming step), where they will interact
with molecules from other nodes at time t +Δt and so on.
The methodology we propose here corrects the aver-

age number of molecules that enter a neighbouring lat-
tice site, taking into account crowding effects and it can
be summarised as follows:

(1) Solve the classical LBM to find the number of
molecules that will try to move into the d direction
at time t + Δt (Fd

LB).
(2) Use Fd

LB to estimate the corrected number of
molecules that actually enter the target site, Fd,
by solving the explicit formulation (see below)
constrained by the size and number of the
molecules, as well as the size of voxels or sites in
which the lattice is divided.

(3) Use the Fd values obtained in (2) for the streaming
step (in the same way as in the classical LBM), and
go back to point (1).

Here we use the term crowding-Lattice Boltzmann
Method (cLBM) to distinguish this proposed method-
ology from the classical LBM, which in principle con-
siders volumeless molecules.
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Crowding-Lattice Boltzmann Method (cLBM)
1. Lattice Boltzmann Method
For comparison purposes with the kMC algorithm, in this
paper the D2Q5 scheme [23] (Fig. 1b) is implemented,
consisting of 5 possible directions in which the molecules
can move, in a 2D lattice. The lattice is divided in squares
of Δx [nm] side, called “voxels”, whose position is identi-
fied by the index (i,j) (Fig. 1a).
The evolution of the distribution function of the spe-

cies sp, Fd,sp, in the diffusion system is given by the
discrete Boltzmann equation [19].

FLB
d;sp ðinext ; jnext ; t þ ΔtÞ ¼ Fd;sp ði; j; tÞ þΩdif f

d;sp ði; j; tÞ
ð1Þ

The superscript LB is used to distinguish Fd,sp
LB that is

calculated from the classical LBM from the crowding-
corrected value Fd,sp. Both Fd,sp

LB and Fd,sp represent the
concentration or number of molecules of the species sp in
a voxel that try to move to a neighbouring site, so they are
given in [molecules per voxel]. Other concentration units
e.g., [mol per voxel] can be used, but dimensional changes
in other variables are required for consistency.
We use the BGK approximation to estimate the non-

reactive collision term Ωd,sp
diff , which is given by [19].

Ωdiff
d;sp i; j; tð Þ ¼ ωsp Feq

d;sp i; j; tð Þ−Fd;sp i; j; tð Þ
h i

ð2Þ

Assuming that the fluid phase is at rest, the equilib-
rium distribution function Fd,sp

eq takes the form [23]

Feq
d;sp i; j; tð Þ ¼ ρsp i; j; tð Þ

msp
wd ð3Þ

where the weight factor wd is 0 for d = 0, and 1/4 for
d = 1,2,3,4, while msp is the mass of one single mol-
ecule of type sp. The macroscopic density of species
sp, ρsp, is expressed as:

ρsp i; j; tð Þ ¼ msp

X
d

Fd;sp i; j; tð Þ ð4Þ

The expression for the relaxation parameter ωsp (indicated
in Eq. (2)) can be deduced using the Enskog-Chapman pro-
cedure, and is given by [30]

ωsp ¼ 2

1þ 4D0
sp

Δt
Δx2

ð5Þ

Due to the fact that the BGK model was formulated for
non-crowded systems [19] Dsp

0 takes the value of the diffu-
sion coefficient for diluted solutions. Here, Dsp

0 is consid-
ered independent of the position (i,j).

2. Crowding-adaptation of LBM
According to Fick’s first law the diffusive flux of volumeless
molecules (J) from one region to another is proportional to
the gradient of the concentration. However, when the vol-
ume of the molecules is important and/or the solution is
not considered diluted, J should be proportional to gradient
of the activities [31].
Since the molecules in a defined system occupy a vol-

ume in space, not all the system’s volume is available to
the centre of mass of a test molecule [6].
The activity a is a term that describes the number of

molecules per available volume, while the concentration
C is the number of molecules per total volume [6]. Both
variables are related by Eq. (6), where the activity coeffi-
cient γ indicates deviations from an ideal solution.

asp ¼ γsp
Csp

Cst
sp

ð6Þ

Since asp is a dimensionless variable, for the purpose
of dimensional consistency in this paper the standard
concentration of the species sp (Csp

st ) is considered equal to
1 molecule per voxel, i.e., diluted solutions where there is

Fig. 1 a Lattice scheme and (b) D2Q5 scheme
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no crowding influence. Hence, the asp value is not affected
by Csp

st , therefore Eq. (6) is simplified to asp = γspCsp.
γ is defined as the ratio of the total volume (or area in

2D systems) divided by the available volume (or area in
2D), in other words, it is inversely proportional to the
probability to find free space in the system.
From the above and for the lattice-system analysed

here, the flux of the molecules (Jsp) of the species sp in
the x direction from voxel (i,j) to (i,j + 1) is defined in
Eq. (7). The reverse flux is Jsp(i,j + 1→ i,j) = − Jsp(i,j→ i,j + 1).

J sp i;j→i;jþ1ð Þ ¼
Dsp

Δx
asp i;j→i;jþ1ð Þ i; j; tð Þ−asp i;jþ1→i;jð Þ i; jþ 1; tð Þ� �

ð7Þ

where the concentration involved in the term asp(i,j→ i,j+ 1)

is proportional to the number of molecules (per voxel) try-
ing to move from (i,j) to (i,j + 1) at time t, i.e., F1,sp

LB (i, j, t),
while asp(i,j+ 1→ i,j) is proportional to F3,sp

LB (i, j + 1, t).
Substituting Eq. (1) in Eq. (2), and using as concentra-

tion the values F1,sp
LB (i, j, t) and F3,sp

LB (i, j + 1, t) yields:

J sp i;j→i;jþ1ð Þ ¼
Dsp

Δx
γsp i; j; tð ÞF LB

1;sp i; j; tð Þ
h

−γsp i; jþ 1; tð ÞF LB
3;sp i; jþ 1; tð Þ�

ð8Þ

The use of a constant Dsp independent of the concentra-
tion could be questionable for crowded and inhomogen-
eous systems since the presence of background/crowder
molecules hinders the movement of a test molecule.
Due to the steric effects, the presence of background

molecules leads to a reduction of the available space where
the test molecule can move due to Brownian motion.
Therefore the probability to find free space next to the test
molecule also decreases.
Considering that the rate of Brownian displacement (or

diffusion) is a function of the work required to free the tar-
get space from background molecules (ΔW), Muramatsu
and Minton [32] proposed the relation

ln
Dsp

D0
sp

 !
¼ −

ΔW
kBT

ð9Þ

where Dsp
0 is the diffusion coefficient of species sp in di-

luted solutions. ΔW depends on the size and shape of
the space required. The probability of observing the
spontaneous formation of such free space as result of a
fluctuation is [33, 34]

Psp ¼ exp−
ΔW
kBT ð10Þ

where kB is the Boltzmann constant, and T is the
temperature. Assuming a well-mixed system (or subsys-
tem), the probability Psp is defined as the available

volume divided by the total volume, i.e., the inverse of
the activity coefficient

Psp ¼ 1
γsp

ð11Þ

Because the diffusion coefficient Dsp is a function of
the available volume in the target voxel where the test
molecule is trying to move in (and therefore dependent
of the position (i,j)), Dsp cannot be factored as it is in
Eq. (8), so

J sp i;j→i;jþ1ð Þ ¼ 1
Δx

γsp i; j; tð ÞFLB
1;sp i; j; tð ÞDsp i; jþ 1; tð Þ

h
−γsp i; jþ 1; tð ÞFLB

3;sp i; jþ 1; tð ÞDsp i; j; tð Þ�
ð12Þ

Substituting Eq. (9) and (10) in Eq. (12), the flux
Jsp(i,j→ i,j + 1) can be rewritten as:

J sp i;j→i;jþ1ð Þ ¼
D0

sp

Δx
γsp i; j; tð ÞFLB

1;sp i; j; tð ÞPsp i; jþ 1; tð Þ
h

−γsp i; jþ 1; tð ÞFLB
3;sp i; jþ 1; tð ÞPsp i; j; tð Þ�

ð13Þ
where Psp is the probability of species sp to find available
space in the target voxel. Eq. (13) looks like the Teorell
formula for non-perfect systems [31].
In order to conserve the driving force, the corrected

values F1,sp(i,j,t) and F3,sp(i,j + 1,t) should also be related
to the flux Jsp(i,j→ i,j + 1), so that

J sp i;j→i;jþ1ð Þ ¼
D0

sp

Δx
γsp i; j; tð ÞF1;sp i; j; tð Þ
h

−γsp i; jþ 1; tð ÞF3;sp i; jþ 1; tð Þ�

ð14Þ

Comparing Eq. (13) and Eq. (14), the new F1,sp(i,j,t)
and F3,sp(i,j + 1,t) values are found as

F1;sp i; j; tð Þ ¼ FLB
1;sp i; j; tð ÞPsp i; jþ 1; tð Þ ð15Þ

F3;sp i; jþ 1; tð Þ ¼ FLB
3;sp i; jþ 1; tð ÞPsp i; j; tð Þ ð16Þ

Generalizing, the corrected values Fd,sp (d = 1,2,3,4) are
calculated as

Fd;sp ði; j; tÞ ¼ FLB
d;sp ði; j; tÞPsp ðinext ; jnext; tÞwhen d ¼ 1; 2; 3; 4

ð17ÞOr their equivalent:

Fd;spði; j; tÞ ¼
FLB
d;spði; j; tÞ

γspðinext ; jnext ; tÞ
ð18Þ

The molecules that could not move into their corre-
sponding target voxel (inext ,jnext), i.e., the voxel next to
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(i,j) in the direction d, will remain in the current (i,j).
Therefore in order to conserve mass F0,sp becomes

F0;sp i; j; tð Þ ¼ ρsp i; j; tð Þ
msp

−
X4
d¼1

Fd;sp i; j; tð Þ ð19Þ

The activity coefficient γsp (i,j,t) is a function of the size
and shape of the molecules present in the voxel/site (i,j,t).
In this paper, the Scale Particle Theory [33, 34] is used to

approximate γsp in a mixture of (non-overlapping) hard
disk-molecules (Eq. (20) and (21)) which could be of differ-
ent radii r [31]. For this we assume that the volume and
temperature of the subsystems/voxels are held constant. In
order to simplify the notation, the position-time depend-
ence (i,j,t) of the variables γsp and Sx has been dropped from
Eq. (20) and (21).

lnγsp ¼ − ln 1−S2ð Þ þ 2S1
1−S2

� �
rsp

þ S0
1−S2

þ S21
1−S2ð Þ2

" #
r2sp ð20Þ

where Sx (0 ≤ x ≤ 2) is given by

Sx ¼ π

Δx2
Xl
i¼1

ρi rið Þx ð21Þ

Note that if all the particles simulated are considered to
be point-like molecules (ri→ 0, where the space fraction
occupied by the molecules tends to zero S2→ 0), and/or

they are in a non-crowded system (
Xl
i¼1

ρi→0, hence Sx→

0), then ln(γsp)→ − ln(1) in Eq. (20) so that the probability
Psp (Eq. (11)) would be equal to 1, therefore Fd,sp becomes
equal to Fd,sp

LB (Eq. (17)).
The use of Psp (or its equivalent γsp

− 1) in Eq. (17) restricts
the maximum number of molecules in a voxel, and also
avoids the exchange of positions between molecules. When
two molecules moving in opposite directions are adjacent
and have volume (or area in 2D systems), one acts as an
obstacle for the other, so exchanging positions between
them should be prohibited. In other words the displace-
ment of a molecule is limited by the probability to find
empty space Psp.

3. Streaming step
The new Fd ,sp values are used in the streaming step in the
same way as in LBM (Eq. (22) − (26) below). Then the
scheme goes back to step 1 and the procedure is repeated
until the simulation end time is reached.

F1;sp i; jþ 1; t þ Δtð Þ ¼ F1;sp i; j; tð Þ ð22Þ
F2;sp i−1; j; t þ Δtð Þ ¼ F2;sp i; j; tð Þ ð23Þ
F3;sp i; j−1; t þ Δtð Þ ¼ F3;sp i; j; tð Þ ð24Þ

F4;sp iþ 1; j; t þ Δtð Þ ¼ F4;sp i; j; tð Þ ð25Þ
F0;sp i; j; t þ Δtð Þ ¼ F0;sp i; j; tð Þ ð26Þ

Unlike (microscopic-) MC methods that track the
movements of every single particle, (mesoscopic-) cLBM
simulates the movement of collections of molecules
across a (lattice) system. Hence, when a large number of
molecules is considered and/or for long time simula-
tions, cLBM simulations are computationally more effi-
cient than MC methods. However, since each (cLBM-)
voxel can fit more than one molecules and assuming
that the voxel is well mixed, which is not necessarily true
especially for large voxels, some discrepancies could be
found between the diffusion results computed by cLBM
and MC (in this paper we use kMC).
In order to validate the crowding-adaptation of LBM

presented above, the simulation of a diffusion system was
carried out by an on-lattice kMC algorithm [14, 15],
whose results are used as our computational experiments.
A brief description of the kMC algorithm is given below.

Lattice Kinetic Monte Carlo (kMC) algorithm
In the on-lattice kMC [14] algorithm each site of the lat-
tice can be occupied by at most one molecule. Each
molecule can move to the one of the 4 neighbouring
sites (top, bottom, right, or left), as long as they are free,
i.e., there is no other molecule in the target site.
The basic idea of the procedure is the following:
At every time step

1) Identify the classes of species, i.e., the combinations
of adjacent species that can react or diffuse (if there
is an empty site next to a molecule).

2) The rates (including the diffusion rate) of all the
possible events or processes are listed and their
cumulative value is computed.

3) An event is probabilistically chosen, e.g., the next
molecule to move and the site where it will take
place, using a random number and the cumulative
value of the rates listed in point 2.

4) The diffusion (or reaction) of the chosen molecule(s)
takes place.

5) A variable time step value is also probabilistically
estimated using another random number and the
cumulative value of the rates.

6) The number of species and classes in a region and/
or in the whole lattice is updated as well as the time.

7) Go back to point 1 until the end simulation time is
reached.

See [14, 15] for detailed information of the algorithm and
the corresponding equations for each step of the process.
MC algorithms have been widely used for the simulation

of processes in crowded media [10–13, 16, 17]. The main
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difference between kMC and MC is that the former use a
constant Δx and a variable Δt, while in MC both parame-
ters are constant.
However for both cases, kMC and MC, a molecule only

can move if the target (adjacent) site, which was randomly
chosen is free/empty. Hence, the excluded volume restric-
tion is straightforward satisfied in both kMC and MC. A
comparison of the results of diffusion simulation obtained
from these two algorithms is shown in the Additional file 1.

Results and discussion
For the diffusion examples presented in this section the
following assumptions have been made:

1) The system analysed consists of a square lattice of
(1000 nm)2, divided in equal-sized voxels or sites of
Δx per side whose value is indicated in each example.

2) Each voxel is well-mixed.
3) The fluid phase is considered as a continuum and it is

at rest.
4) The system has periodic boundaries.
5) The mass of all species are assumed equal to 1 g per

molecule, therefore the value of ρsp is equal to the

number of molecules, i.e.,
X
d

Fd;sp. Notice that msp

can take other values if it is required.

The methodologies LBM and cLBM were programed in
MATLAB R2011a (The MathWorks, Natick, MA), while
the lattice kMC was implemented in Fortran 90.

Validation of cLBM: a lattice-model
For validation purposes, we consider a lattice model
(Fig. 2) for the diffusion of molecules here represented
by non-rotating squares of (10 nm)2 which have a square

uniform packing order. Taking into account that the sys-
tem’ size is (1000 nm)2 the maximum number of mole-
cules that can fit inside is 10,000.
This type of system is consistent with the ones commonly

used in on-lattice kMC simulations where a molecule can
move to one of its neighbouring sites at every time step.
According to the Δx value used in the cLBM simula-

tions, for comparison purposes, the average results ob-
tained (after 1000 repetitions) at every time step Δt by
kMC were coarse grained in lattice regions equivalent to
voxels of side length equal to Δx.
Due to the square uniform packing order of the same

size molecules in this lattice model the activity coeffi-
cient γsp (which is required in cLBM) given by Eq. (20)
and (21) can be simplified to

lnγsp ¼ − ln 1−S2ð Þ ð27Þ

S2 ¼ 1
Δx2

Xm
i¼1

ρiAi ð28Þ

where Ai is the area of a molecule of species i.
The diffusion of two types of molecules has been sim-

ulated using the parameters shown in Example 1 of
Table 1. For this, the lattice is divided into 10 vertical
regions, where the voxels (of Δx = 100 nm) of the first
column of the lattice have been filled with 100 molecules
of type A and B as indicated in the Fig. 3a.
Once the molecules begin to diffuse, it is possible to

compare their movement summing the number of mole-
cules A (used as tracer molecule) in each vertical region of
the lattice at different times. Figure 3b shows that LBM
and cLBM predict the same diffusion profile, which in
turn is close to the results estimated by kMC. This is be-
cause there are no obstacles in the horizontal direction
and therefore cLBM results are the same as the ones from

Fig. 2 Lattice model of square uniform packing order. The main grid represents the cLBM/LBM voxels in which the system was divided. The
molecules are represented by dashed squares (in the same way as in kMC algorithm)
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LBM. The same happens when the volume (or area in 2D)
of the molecules are zero (data not shown).
If we compare the molecules’ movement in the vertical

direction (summing the number of molecules A but now
in each horizontal region), then it is possible to see dif-
ferences between the diffusion profile of cLBM and
LBM (Fig. 3c). Results show that the system evolves fas-
ter, i.e., LMB computes that more molecules move or
diffuse to their neighbouring voxels, than cLBM. Hence,
the profile predicted by cLBM in the vertical direction
(where the obstacles are initially located) is closer to the
one obtained by kMC than that predicted by LBM.
The relative error of the results obtained by cLBM and/

or LBM compared with kMC is calculated as the Frobenius
norm of the difference of the matrixes containing the num-
ber of molecules sp in each voxel predicted by kMC (ρkMC)
and cLBM (ρcLBM), or by kMC and LBM (ρLBM), divided
by the total number of molecules sp simulated, i.e.,

errorsp ¼
norm ρsp;kMC−ρsp;cLBM

� �
Xm
i

Xm
j

ρsp;kMC i; jð Þ
100

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i

Xm
j

ρsp;kMC i; jð Þ−ρsp;cLBM i; jð Þ
� �2s

Xm
i

Xm
j

ρsp;kMC i; jð Þ
100

ð29Þ

Since msp of all sp is assumed to be equal to 1 g per
molecule, we keep the term ρsp to represent the number
of molecules in the system.

A comparison of the error(ρkMC − ρcLBM) and
error(ρkMC − ρLBM) for the diffusion of species A in the
Example 1 indicates that cLBM predictions are more ac-
curate than those of LBM (Fig. 3d). For example, the
relative error estimated by cLBM at time 30 ms is
errorA = 0.93 % (which indicates that from 100 mole-
cules A simulated, cLBM predicts that 0.93 molecules
are allocated in different voxel’s positions than those
predicted by kMC, in other words there are devia-
tions in the distribution of 0.93 molecules A from the
100 simulated in this example), while the error from
LBM amounts to errorA = 16.39 %.
This is because LBM considers point-like molecules so

that they will always find enough space to fit in the target
voxel, causing LBM to over-predict diffusion in the vertical
direction.
Nevertheless, if we assume that both molecules A and B

are of the same type then the relative error between kMC
and LBM decreases, becoming equal to that between
kMC and cLBM (Fig. 3e). This means that LBM is a good
alternative for quick simulations of one type of molecules,
but when two or more species are present then it can over
predict the system’s degree of mixing.
As was pointed out by Li et al. [35], the relaxation par-

ameter value affects the accuracy of LBM. According to
Eq. (5) and the chosen parameters Δx and Δt in Example
1, both ωA and ωB were estimated equal to one. In order
to show the dependency between the errorA and ωA, we
tested different Δt values, maintaining constant Δx =
50 nm, which corresponds to ωA ranging from 0.5 to 1.

Table 1 Parameters used in the diffusion examples

Example 1 Example 2 Example 3 Example 4 Example 5

Δx = 100 Δx = 50 Δx = 50 Δx = 50 Δx = 50

Δt = 5 Δt = 0.625 Δt = 0.625 Δt = 0.625 Δt = 0.625

DA = 500 DA = 1 000 Dtracer = 1 000 Dtracer = 1 000 Dtracer = 1 000

AA = 100 AA = 100 Atracer = 100 rtracer = 2, or 1.5, or 1, or 0 rtracer = 1.5

CA = 100 CA = 1 000 Ctracer = 100 Ctracer = 796 Ctracer = 1 414

DB = 500 DB = 1 050 Dcrowder = 1 000 Dcrowder1 = 1 050 Dcrowder = 1 000

AB = 100 AB = 100 Acrowder = 100 rcrowder1 = 1.9 rcrowder = 2

CB = 900 CB = 1 000 Ccrowder = 1 000 or Ccrowder1 = 6 172 Ccrowder = 23 873 or

DC = 1 100 Ccrowder = 2 000 or Dcrowder2 = 1 100 rcrowder = 1.5

AC = 100 Ccrowder = 3 000 or rcrowder2 = 1.8 Ccrowder = 42 441 or

CC = 1 000 Ccrowder = 4 000 Ccrowder2 = 9 824 rcrowder = 1

Dcrowder3 = 1 200 Ccrowder = 95 493

rcrowder3 = 1.6

Ccrowder3 = 6 217

Dcrowder4 = 1 250

rcrowder4 = 1.5

Ccrowder4 = 11 318

The parameters indicated above are expressed in units: Δx [=] nm, Δt [=] ms, Dsp [=] nm
2 ms−1, Asp [=] nm

2, Csp [=] molecules per (1 000 nm)2

The order of magnitude of diffusion coefficients used agrees with that reported by Elowitz et al. [41]
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The results indicate that ωA = 1 gives the lowest errorA
(Fig. 4a), therefore in the following we use Δx and Δt
values that allow setting ωsp close to one.
From Eq. (5) when ωsp = 1, then the diffusion coefficient

Dsp ¼ Δx2
4Δt , is equal to the stability limit, Δt≤ Δx2

4Dsp
, given by

the finite difference (FD) approximation of the diffusion

equation
∂ρsp
∂t ¼ Dsp∇2ρsp . Under this condition (ωsp = 1),

LBM estimates FLB
d;sp inext; jnext; t þ Δt
	 
 ¼ ρsp i;j;tð Þ

msp
wd (see

Eq. (1)–(3)), that substituting in Eq. (4) gives the
same equation obtained by FD at the stability limit
[19], i.e.,

Fig. 3 Diffusion example 1. a Initial location of a system composed by of two types of molecules. Diffusion profile of the test molecules A
predicted by LBM, cLBM, and kMC in (b) the horizontal direction and (c) vertical direction at times 10, 20, 30, 40 and 50 ms. Notice that in the
horizontal direction (b) identical profiles are predicted by LBM (green line) and cLBM (red line), therefore the red line is on top of the green one.
d Relative error of the distribution of molecules A estimated by cLBM − kMC and LBM − kMC. e Relative error predicted assuming that all the
molecules (a and b) are of the same type. The parameters used in the simulation are indicated in Table 1
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Moreover, since cLBM is formulated as an explicit
method that requires information of the neighbouring
voxels at time t to estimate ρsp of a voxel (i,j) for the
next time t + Δt, decreasing Δt also diminishes the error
predicted between kMC and cLBM for Example 1 as
shown in Fig. 4b, where 3 different sets of coefficient Δt
and the corresponding Δx that keeps constant ωsp = 1
were tested.
In all cases, the LB methods required s time steps of

length Δt, before reaching a quasi-stable error. There-
fore the smaller the chosen Δt (and the corresponding
Δx) the faster the system reached that state. Since good
results were obtained with Δt = 1.25 ms and Δx =
50 nm (where a voxel allows to fit a maximum of 25
molecules) compared with the more accurate but
slower Δt = 0.2 ms and Δx = 20 nm, in the following we
use Δx = 50 nm.
In the previous example the crowding conditions are

in the vertical direction so that reduced displacement
of species A is in this direction (Fig. 3c). Continuing
the analysis of the crowding effect on the molecules’
displacement, a second example is proposed for the dif-
fusion of three types of molecules initially allocated in
the region indicated in Fig. 5a (the parameters are
shown in Example 2 of Table 1).
For the purpose of this example, a region consists of

two columns of 20 voxels with Δx = 50 nm, where each
voxel of region 3 (Fig. 5a) is filled with 25 molecules of
species A. Region 4 and 5 are filled with equal numbers
of species B and C, respectively. The results of the

diffusion of species A show that cLBM predicts the same
behaviour as kMC as can be seen in Fig. 5b.
On the other hand, LBM predicts a symmetric move-

ment of A despite the fact that species B acts as an obs-
tacle in its way (Fig. 5b). The same symmetric profile is
obtained for species B and C (Fig. 5c and d).
A comparison of the relative error between kMC −

cLBM and kMC − LBM is shown in Fig. 6. As was also
observed in Example 1, the error computed with the
cLBM results is smaller than that computed through the
LBM results. In fact, at time 30 ms the errors given by
cLBM (errorA = 1.103 %, errorB = 0.833 %, errorC =
1.172 %) represent deviations in no more than 2 % of
the total number of molecules simulated for each
species.
Additionally, a comparison of the mean squared dis-

placement (MSD) of a tracer molecule, i.e., the displace-
ment from one voxel to another, was carried out under
different crowding conditions (the parameters are given
in Example 3 of Table 1). The total number of tracer
molecules represents 1 % of the lattice area of the 2D
system simulated by cLBM and LBM.
The results show (Fig. 7a and b) that only cLBM is

sensitive to increments in the concentration of the back-
ground/crowder molecules, which is reflected in a re-
duction of the displacement of the tracer particle.
The comparison of the MSD computed by cLBM

(lines and dashed lines in Fig. 7a) and kMC (circles in
Fig. 7a) reveals a very good agreement between both
methods. The error estimated between MSDcLBM and

ρsp inext; jnext ; t þ Δt
	 
 ¼ ρsp inext−1; jnext ; t

	 
þ ρsp inext þ 1; jnext ; t
	 
þ ρsp inext ; jnext−1; t

	 
þ ρsp inext ; jnext þ 1; t
	 


4
ð30Þ

Fig. 4 Relative error of the molecules distribution estimated by cLBM − kMC for Example 1. a Different relaxation parameter ωA were tested but
maintaining constant Δx = 50 nm. b Different Δx and Δt values were tested maintaining ωA = 1
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MSDkMC, errorMSD tð Þ ¼ norm MSDkMC tð Þ−MSDcLBM tð Þð Þ
MSDkMC tð Þ 100, was

found to be lower than 0.7 % for all the crowding condi-
tions tested (Fig. 7c). These small differences in the
tracer’s displacement may be due to the fact that LB
methods are unable to identify and quantify the motion of
the molecules that remain in the same voxel at time t +Δt,

i.e., LB methods only quantify the “effective” displacement
made when the molecules pass from one to another voxel,
but not how many movements have to be executed before
entering to the next voxel as is the case with lattice kMC.
Despite the fact that kMC and cLBM were imple-

mented in different computing languages (Fortran and
Matlab, respectively, using an Intel Xeon 5160, CPU
3.00 Hz processor) a comparison of the execution time
(CPU time) for the diffusion Example 1 (tkMC = 315 s per
run simulation or repetition vs tCLBM = 7.13 s), and Ex-
ample 2 (tkMC = 441 s per repetition vs tCLBM = 18.31 s)
reveals the potential use of cLBM for faster simulations
of larger systems. The total time required by kMC de-
pends on the number of repetitions performed. The
minimum error estimated between kMC and cLBM (Eq.
(29)) for Example 1 after different kMC simulation repe-
titions was 1.43 % (50 repetitions ~ tkMC = 4.37 hr),
1.32 % (100 repetitions ~ tkMC = 8.75 hr), 0.71 % (500
repetitions ~ tkMC = 43.75 hr), and 0.51 % (1000 repeti-
tions ~ tkMC = 87.5 hr). While in Example 2 the minimum
error computed was 0.89 % (50 repetitions ~ tkMC =
6.12 hr), 0.871 % (100 repetitions ~ tkMC = 12.25 hr),

Fig. 5 Diffusion example 2. a Initial conditions of the diffusion of three types of molecules. Diffusion profile of the species (b) A, (c) B, and (d) C
predicted by LBM, cLBM, and kMC at times 10, 20, 30, 40, 50 ms

Fig. 6 Relative error of the molecules distribution estimated by kMC
− cLBM and kMC − LBM for Example 2
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0.61 % (500 repetitions ~ tkMC = 61.25 hr), and 0.54 %
(1000 repetitions ~ tkMC = 122.5 hr).
Certainly, the speed of cLBM-simulations depends on

the time simulated and the chosen Δt, but also other
factors can affect its execution time, e.g., the number of
different species analysed and the number of voxels in
which the system is divided (i.e., the chosen Δx). This is
because Fd,sp(i,j,t) is estimated for each species sp at
every voxel position.

Different size molecules in cLBM
Up to this point we have analysed a lattice-model were
only molecules of the same size can be considered,
however as was pointed out by Vilaseca et al. [10, 11],
the size (and also the shape) of the molecules could
be an important parameter in their movement or
diffusion.
In order to study the influence of the size of the mole-

cules on the diffusion process we simulate the motion of
a tracer molecule in a 2D crowding system composed by
5 types of background particles (all of them of circular

shape with different radii and concentrations) which are
randomly located and all together occupy 30 % of the
total lattice space (the corresponding parameters are
given in Example 4 of Table 1).
According to the SPT assumption of a well-mixed

voxel, here the molecules can be anywhere unlike the
previous lattice model where only a square uniform
packing order is allowed.
Figure 8a shows the displacement across the lattice

predicted by cLBM for a tracer molecule of different ra-
dius magnitude whose total concentration (i.e., the total
number of molecules in the lattice) is 796 molecules. As
it can be seen (Fig. 8) more movements from one voxel
to another were detected when a small radius is
assumed. This is because the probability of the tracer
species to move to the target voxel increases inasmuch
as the second and third term of Eq. (20) disappear when
rtracer = 0 nm. In other words, the available space for
point-like molecules equals the free space in the target
voxel, i.e., the total area not occupied by other molecules
represented by the term 1 − S2 in Eq. (20).

Fig. 7 Diffusion example 3. Mean squared displacement of tracer molecules representing 1 % of the lattice area at different concentration of
crowder molecules: 0, 10, 20, 30, and 40 % of the lattice area, predicted by (a) cLBM and (b) LBM. The circles in (a) represent the MSD computed
by kMC for each condition tested. c Relative error of the tracer’s MSD estimated by cLBM − kMC. The parameters used in the simulation are
indicated in Table 1
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Moreover, the comparison of the displacement of the
tracer molecule with rtracer = 0 nm obtained by cLBM
(broken pink line in Fig. 8a) and that estimated by the
classical LBM for the same Example 4 (broken pink line
in Fig. 8b) indicates that even if the metabolites are con-
sidered as point-like particles they are still affected by
the molecular crowding conditions, unless all the mole-
cules simulated in the system are also point-like
molecules.
Finally, the effect of the size of the crowder molecules

on diffusion was investigated. For this, 3 different diffu-
sion simulations of a system composed of tracer mole-
cules of rtracer = 1.5 nm which occupies 1 % of the lattice

area, and crowder molecules having different radii: 2,
1.5, and 1 nm, representing 30 % of the total lattice
space were performed.
Since the area covered by the crowder is kept constant

despite the fact that the radius is modified, more parti-
cles of rcrowder = 1 nm are simulated compared with
those used if rcrowder is 1.5 or 2 nm. A comparison of the
mean squared displacement of a tracer molecule (Fig. 9)
under such conditions indicates that the particles’ mo-
tion decreases when the number of crowder molecules
increases.
This suggests that not only the space fraction occupied

by crowders is important but also the way it is covered,

Fig. 8 Diffusion example 4. Mean squared displacement estimated by (a) cLBM and (b) LBM for hard-disk tracer molecules of different radii: 2, or
1.5, or 1 or 0 nm, with total concentration equal to 796 molecules per (1000 nm)2, in a crowded media composed by 4 types of molecules which
together occupied 30 % of the lattice area. The parameters used in the simulation are indicated in Table 1

Fig. 9 Diffusion example 5. Mean squared displacement of a tracer molecule in 3 different systems where the 30 % of the total lattice space is
occupied by the same type of crowder molecules, but having different radii: 23 873 molecules of rcrowder = 2 nm, or 42 441 molecules of rcrowder =
1.5 nm, or 95 493 molecules of rcrowder = 1 nm). The radii and concentration of the tracer are 1.5 nm and 1 414 molecules, respectively. The
parameters used in the simulation are indicated in Table 1
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i.e., the size and number of molecules. Similar behaviour
was found by Vilaseca et al. [10] for the diffusion simu-
lation of molecules having different sizes using a Monte
Carlo algorithm.
The (2D-) cLBM methodology presented in this paper

is useful to simulate the diffusion in systems such as cell
membranes. Furthermore, cLBM can be easily extended
for diffusion simulations in three dimensions. Following
the same reasoning for the estimation of the corrected
value Fd,sp (Eq. (17)) there are only small differences
between the equations used for 3D and those for 2D.
For example the variables Fd,sp

LB , Fd,sp, ρsp, Ωd,sp
diff , and Psp

will depend on the position (i,j,k), where the index k
denotes the z-coordinate of the space. Besides, in the
calculation of ωsp (Eq. (5)) the coefficient 4 used in the
second term of the denominator would change to the
value 6, see [30] for the deduction of the relaxation par-
ameter equation in 3D. Finally, the 2D SPT equation
used to estimate γsp (Eq. 20) would also change to con-
sider spherical molecules in 3D systems, see [33, 34] for
more details.
Therefore, it is expected that 3D-cLBM will maintain

the computational efficiency of 2D-cLBM. However,
since the number of voxels will increase due to the di-
mensionality of the system, the time required to simulate
the motion of molecules will increase accordingly.
On the other hand, reactions have been simulated by

the classical LBM [35–38] through the law of mass ac-
tion, which assumes that the reaction rate is propor-
tional to the concentration of the reactants. However,
more general speaking the reaction rate is proportional
to the activity of the reactants (Eq. 6).
Considering the above, cLBM can be also extended to

simulate reaction–diffusion systems in crowded media.
For this, the reaction process takes place at every time
step and in every voxel. The evolution (consumption/
production) of the species in a well-mixed voxel is a
function of the activity of the reactants in the voxel, i.e.,
the species’ concentration (or number of molecules per
voxel equivalent to ρsp) and γsp estimated by SPT.
Since the reaction processes have to be evaluated at

every time step and in every voxel, an increase in the
execution time is expected for the simulation reaction–
diffusion systems proportional to the parameters Δx and
Δt. Therefore strategies and simplifications will be
required to optimise the simulation run time.
When the difference between the diffusion and reac-

tion rates is important, strategies like the time splitting
method [30] can be adopted into LBM and cLBM
methods. For example, in the scheme DRD splitting the
time step Δt is divided in two Δt =Δt1 +Δt2. First, the
diffusion is carried out during Δt1, then the reactions
take place using the number of molecules present in the
voxel after time Δt1. Finally, the updated number of

molecules (counted after the reactions took place) are
allowed to diffuse during time Δt2.
This paper focuses on the diffusion of macromole-

cules. However, when the simulation of a mixture of
metabolites and macromolecules (where the diffusion
coefficients could be of different order of magnitude) is
required, then some strategies are needed to balance the
computational cost with accuracy of cLBM. For example,
the use of a very small Δx will increase the number of
voxels and therefore the computation effort required for
the simulation. The use of the time splitting method (or
similar strategies) will help in the simulation of diffusion
of a mixture of metabolites and macromolecules. In this
way cLBM may be extended for the reaction–diffusion
simulation in more realistic (and crowded) scenarios.

Conclusions
The LBM predicts with great accuracy the diffusion of
particles under ideal conditions, i.e., considering point-like
molecules, and/or non-crowding systems, and/or when
only one type of molecules is simulated. However, if con-
ditions change, for example, a system involving more than
two species at crowding conditions, LBM predictions
increasingly deviate from our on-lattice kMC-based com-
putational experiment.
Although small discrepancies were found between the

cLBM and kMC results (differences that were expected
due to the level of detail inherent in each method), the
proposed crowding adaptation of LBM is able to predict
the same behaviour in the species diffusion profile. This
suggests that the coupled SPT-LBM can be considered
as a computational alternative for fast simulations of dif-
fusion systems with a large number of molecules of dif-
ferent size and/or for long times, under crowding
conditions at a fraction of the computational cost com-
pared to a molecular (microscopic) method such as
kMC.
Nevertheless, as in other mesoscopic methods, the sav-

ing in the execution time is accompanied by a reduction
in the information that cLBM can provide compared
with that obtained from a microscopic method. For ex-
ample, the quantification of the total displacement of the
molecules on time for the parameters estimation of
anomalous diffusion [10, 11].
The accuracy of cLBM is influenced by the chosen

voxel size Δx and time increment Δt, both related by the
relaxation parameter ωsp. It was found that the use of
ωsp values close to one gives better results than any
other in the range 0 ≤ ωsp ≤ 1. Moreover, cLBM being an
explicit method, small values of Δt (maintaining ωsp = 1,
which involves reducing Δx) also reduce the error
between the proposed methodology (cLBM) and kMC.
Other factors that can affect the accuracy of cLBM is

the area (or volume in 3D) fraction occupied by
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molecules, and the presence of immobile species. In par-
ticular, SPT (used in cLBM to estimate the probability to
find available space Psp) works well for low to moderate
area (or volume in 3D) fraction occupied by molecules
[39, 40]. At high area (or volume) fraction occupied by
molecules or when immobile particles are considered, the
spatial distribution of the molecules inside a voxel could
form free space “pockets” which will be not available for
the incoming molecules from neighbouring voxels but
that SPT takes into account in the calculation of Psp. This
would lead to an overestimation of the molecules’
diffusion.
Regarding the influence of the size of the particles on

the diffusion process, a reduction in the mean squared
displacement of a tracer molecule when its size is in-
creased was observed, as well as when the size of the
crowders is decreased (but maintaining constant the lat-
tice fraction occupied by them). Hence, the incorpor-
ation of small molecules, e.g., metabolites, in the
simulation system can affect the diffusion profile pre-
dicted for macromolecules.
Even though cLBM requires the species’ concentration

of the neighbour voxels at time t to compute the results
at t +Δt, therefore the LBM’s local feature is lost, the
correction for the crowding effects is external to the es-
timation of LBM distributions, i.e., Fd,sp

LB , so that alterna-
tive LBM schemes can potentially be implemented
within cLBM, e.g., for the simulation of reaction–diffu-
sion systems.

Nomenclature
asp Activity of the species sp [dimensionless].
Asp Area of a molecule of the species sp [nm2].
Csp Concentration of the species sp [molecules nm−2].
Csp
st Standard concentration of the species sp [mole-

cules nm−2].
d Direction chosen by the molecules to jump to

neighboring voxel [dimensionless].
Dsp Diffusion coefficient [nm2 ms−1].
Dsp
0 Diffusion coefficient in dilute solutions [nm2 ms−1].

errorsp Relative error of molecules’ distribution predicted
by kMC − cLBM or kMC − cLBM of the species
sp [%].

errorMSD Relative error of tracer’s MSD predicted by
kMC − cLBM [%].

Fd,sp Distribution function of the species sp in the direc-
tion d predicted by cLBM [molecules per voxel].

Fd,sp
eq Equilibrium distribution function of the species sp

in the direction d [molecules per voxel].
Fd,sp
LB Distribution function of the species sp in the direc-

tion d predicted by LBM [molecules per voxel].
i Index that identify the position of a voxel

[dimensionless].

j Index that identify the position of a voxel
[dimensionless].

Jsp Diffusive flux of molecules sp in 2D [molecules nm−1

ms−1].
msp Mass of a molecule sp [g molecule−1].
next Subscript that indicates the target voxel where

the molecules will move in the t +Δt
[dimensionless].

Psp Probability to find available space for species sp in
the target voxel [dimensionless].

rsp Radii of the species sp [nm].
kB Boltzmann constant equivalent to 1.3806 × 10−23

[J K−1].
sp Index that identify the molecule species sp

[dimensionless].
t Time [s].
T Temperature of the medium [K].
wd Weight factor for the calculation of the equilibrium

function [dimensionless].
Δt Time increment [s].
ΔW Work required to free the target space from back-

ground molecules [J molecule−1].
Δx Size of the voxel in which the lattice is divided [nm].
γsp Activity coefficient of a molecule sp [dimensionless].
Ωd,sp

diff Non-reactive collision term [molecules per voxel].
ωsp Relaxation parameter [dimensionless].
ρsp Macroscopic density of species sp in a voxel [g

per voxel].
ρsp Matrix with the macroscopic density of species sp

in all voxels of the lattice [g voxel].
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Additional file 1: A Lattice-Boltzmann scheme for the simulation of
diffusion in intracellular crowded systems. (PDF 363 kb)
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