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Abstract

Background: Functional annotation of genes and gene products is a major challenge in the post-genomic era.
Nowadays, gene function curation is largely based on manual assignment of Gene Ontology (GO) annotations to
genes by using published literature. The annotation task is extremely time-consuming, therefore there is an increasing
interest in automated tools that can assist human experts.

Results: Here we introduce GOTA, a GO term annotator for biomedical literature. The proposed approach makes use
only of information that is readily available from public repositories and it is easily expandable to handle novel sources
of information. We assess the classification capabilities of GOTA on a large benchmark set of publications. The overall
performances are encouraging in comparison to the state of the art in multi-label classification over large taxonomies.
Furthermore, the experimental tests provide some interesting insights into the potential improvement of automated
annotation tools.

Conclusions: GOTA implements a flexible and expandable model for GO annotation of biomedical literature. The
current version of the GOTA tool is freely available at http://gota.apice.unibo.it.
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Background
The Gene Ontology (GO) project [1] is a major collabo-
rative initiative, started in 1998 with the aim to unify the
representation of gene and gene product attributes across
all species. Nowadays, GO is the de facto standard for
functional annotation of genes [2, 3]. The twomain efforts
of the GO project involve: i) the development and mainte-
nance of a controlled vocabulary (ontologies) of functional
attributes; ii) the annotation of genes in terms of the their
associated attributes.
Nowadays, the majority of GO annotations are assigned

by using computational methods [4–8], although elec-
tronically inferred annotations are usually considered as
inaccurate and unreliable [9, 10]. At the state of the art,
GO annotations derived from manual curation of scien-
tific literature can be still regarded as the gold-standard
in terms of quality and specificity. However, the manual
annotation step is extremely time-consuming, and thus
it is one of the major bottlenecks in GO curation. The
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annotation task has become an even harder challenge in
the post-genomic era, which has been characterized by
an unprecedented growth in the production of biomedi-
cal literature. As an example, The Arabidopsis Informa-
tion Resource’s curation team (TAIR) reports that, in the
recent years, it has been able to curate only a relatively
small fraction (∼30%) of the newly published literature on
Arabidopsis thaliana [11]. Due to this enormous growth
of biological information in form of unstructured text,
there is an increasing interest in text mining tools that
can aid GO curators during the labor-intensive annotation
task [12].
The main reference for the state-of-the-art in auto-

mated GO curation is the text-mining challenge task for
literature-based GO annotation at the BioCreative exper-
iments [13, 14]. The main effort of BioCreative experi-
ments is to provide as much as possible realistic biological
scenarios for performance assessment of automated anno-
tation tools. The two GO annotation-specific subtasks at
the most recent BioCreative IV [14] were aimed at assess-
ing automated GO recognition, given as input full-text
articles with relevant gene information: i) Task A. Retrieve
GO evidence text for relevant genes (text retrieval task);
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ii) Task B. Predict GO terms for relevant genes (concept-
recognition task). The performances were assessed with
both gold-standard GO annotations and the help of expert
GO curators. The overall conclusions of BioCreative’s
assessors are that, despite the improvement over the last
decade, even the best performing methods are still not
accurate enough to aid manual GO curation.
In this work we focus on GO annotation of biomedical

literature, namely the automatic assignment of GO terms
to a scientific publication. This problem is closely related
to BioCreative’s Task B, which further requires to iden-
tify the associations between GO annotations related to
a publication and genes within its text. GO annotation
of biomedical literature is itself a relevant sub-problem
of the most general gene annotation task. First of all,
divide-and-conquer strategies often reduce complexity for
difficult problems. Therefore, decoupling the GO anno-
tation task (for publications) from the GO association
task (for genes within the publication) leads to two sim-
pler subproblems, which could be approached with ad
hoc techniques. Also, the unsatisfactory results obtained
so far in automated annotation could be due to a lack
of easily accessible gold-standard training data, such as
full-text articles and evidence sentences related to GO
terms and gene names. Conversely, public web reposito-
ries contain a growing number of heterogeneousmetadata
and annotations, which can be automatically processed by
text annotation tools. Furthermore, the literature annota-
tion problem is of interest in itself for the development of
ontology based search engines, such as GoPubMed [15],
which could be used as a pre-filter by human curators.
In the Information Retrieval (IR) community, GO anno-

tation of biomedical literature can be seen as a hierarchical
multi-label classification problem, where GO terms rep-
resent (a large number of) categories in which biomedical
publications have to be classified [16]. There are two
major approaches for hierarchical multi-label classifica-
tion. In the big-bang approach a single supervised classi-
fication model is trained and used on the whole hierarchy
[17–19]. The training of these methods becomes imprac-
tical at increasing number of categories. In the most com-
mon top-down approach a different classifier is used for
each node of the hierarchy [20–22]. In these methods, an
iterative process is carried on from the root of the hierar-
chy, progressively descending to more specific categories
in order to detect the potentially correct one. Typical
issues in the top-down approach involve the identification
of the most promising paths to follow at higher levels of
the hierarchy, as well as the detection of the levels at which
to stop searching. More generally, classical IR approaches
are topic-centric, in that they rely on indexed represen-
tations of the categories. Indexing is typically performed
by using a controlled vocabulary of terms contained in
pre-labeled documents. The classification accuracy drops

down as the categories are poorly represented, thus state-
of-the-art IR methods are best suited on hierarchies con-
sisting of relatively few and well-represented categories.
Some attempts have been made to apply supervised text
classification methods in large taxonomies [21, 23, 24],
but the results are still quite poor in comparison to
those obtained in smaller settings. To our knowledge, the
only available tool that directly addresses the hierarchi-
cal multi-label classification over GO categories is GOCat
[25]. Differently from classical IR approaches, GOCat is
document-centric, in that it uses a k-Nearest Neighbors
(k-NN) strategy [26]. While in topic-centric approaches
a query document is classified by means of direct com-
parisons with categories, with GOCat, annotations for a
query abstract are inferred from the k most similar pre-
annotated publications in a knowledge base. The k-NN
approach proved to be valuable and best performing in
one of the GO annotation subtasks (Task B) at BioCreative
IV [27].
Here we introduce several new ideas for GO annota-

tion of biomedical literature. First, we exploit a novel
approach that combines the document-centric and topic-
centric strategies. Second, we experiment with novel mea-
sures for assessing the similarity between documents and
against category membership. Our resulting annotation
tool, GOTA, makes use of publication title, abstract, refer-
ences and year of publication (all readily available in public
repositories, such as PubMed), although the approach
itself is easily scalable to incorporate more (or less) infor-
mation. We test the classification capabilities on a quite
large set of scientific publications (15.000 documents) and
with respect to different evaluation metrics. By compari-
son with GOCat, our approach shows better performance
over all considered metrics. As a general consideration,
the experimental results are encouraging and, in some
aspects, surprising. In summary, on the average almost
half of the gold standard annotations can be recov-
ered for a query publication. This is a quite satisfactory
result in comparison to other general-purpose hierarchi-
cal multi-label classification tools. More specifically, the
annotations recovered for a publication, although not pre-
cise, are usually semantically close to the gold-standard
annotations. Furthermore, we found that the classifica-
tion capabilities improve over specie-specific knowledge
bases. This suggests that the GO curation task could bene-
fit from developing species-centered annotation tools. To
our opinion, the most interesting findings are related to
the smallest source of information that can aid classifica-
tion. It is not unexpected that the biological content of
a paper is summarized in few short sentences within the
text, while the rest is background noise. In our experi-
ments, given the information available for classification,
it comes out that the strongest signal comes from the
publication title.
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Methods
Benchmark set
The Gene Ontology vocabulary was retrieved from Gene
Ontology Consortium web resource [28]. At the time
of the retrieval, the GO vocabulary consisted of 39,399
distinct terms partitioned into three main categories,
structured as directed acyclic graphs (DAG) with a
unique root: 26,099 terms of type Biological Process
(BP), 9753 of type Molecular Function (MF) and 3547
of type Cellular Component (CC). The literature-based
GO annotations were retrieved from the UniProt-GOA
web resource [29]. We downloaded all the single Gene
Association files, corresponding to set of proteins in
different species/knowledge bases (30 overlapping sets).
The single files were parsed in order to extract only the
associations between pairs of GO terms and PubMed
identifiers (PMIDs), discarding the gene product refer-
ences. We ended up with a benchmark set of 328,357
pairs, consisting of 115,402 distinct PMIDs annotated
with 22,839 distinct GO terms (see Additional file 1).
The title, abstract and reference information related
to the PMIDs in the benchmark set were downloaded
in XML format from PubMed [30]. For 1256 out of
115,402 documents (1%) the information downloaded
from PubMed consists of the publication title only. For
a total of 45,341 documents (39%) also the cited ref-
erences are available. Out of 22,839 GO identifiers in
benchmark set, 14,889 are of type BP, 5951 of type MF
and 1999 of type CC. The number of GO annotations
for each PMID ranges from 1 to 1309 terms, with an
average of 2.8. The distribution of annotations in the
benchmark set is not uniform. In particular, except for
a small subset, the number of annotations per PMID
is quite small: 39% of PMIDs have a single GO annotation
and 99% at most 10 distinct annotations (see Additional
file 2).
Our method requires a preprocessing of the under-

lying Knowledge Base (KB) and a parameter tuning
phase (see “Text preprocessing” section and “Tuning
of parameters” section below). Both these phases are
extremely time-consuming, which prevents the possibil-
ity of performing multiple rounds of cross validation
in reasonable time. For this reason, for performance
evaluation, we randomly selected a large sample of
15,000 publications from the benchmark set derived from
UniProt-GOA. Publications in this set are used for test-
ing the classification performances, while the remain-
ing ∼100,000 publications constitute the underlying KB
of our method. Almost 6% of the terms represented
in the test set have no associated publication in the
KB.
Among thesemissing terms, there is a higher number of

BP terms (67%) in comparison to MF (25%) and CC (8%)
terms.

Approach
We use the combination of a publication-centric and
term-centric approach to capture the relation between a
scientific publication and a GO term:

1. Publication-centric: the relation between a GO term
t and a query q is inferred from the query’s similarity
with annotated publications in the underlying KB.

2. Term-centric: the relation between the topics
covered by a query q and a GO term t is determined
by direct comparison.

The likelihoods obtained from these two approaches are
simply combined into a single relatedness score:

�(q, t) = �P(q, t) · �T (q, t), (1)

where �P and �T are the publication-centric and the
term-centric similarity scores, respectively. The meaning
of Eq. 1 is quite simple (see Fig. 1). The�P function makes
use of a k-NN strategy to select a ranked list of GO terms
(only terms associated to some publication in the KB can
be selected). The �T function provides a re-weighting of
the selected terms.
The details of the preprocessing and tuning phase, as

well as the exact definition of the two similarity functions
in Eq. 1 are given in the rest of this section.

Text preprocessing
We perform typical preprocessing operations to trans-
form each publication and GO term into a structured
representation more manageable for querying. We make
use of the quite common Bag of Words (BoW) represen-
tation of documents. The BoW representation describes a
textual document bymeans of a feature vector, where each
entry indicates the presence or absence of a word. The
elements of the vector are weighted in order to balance
their relative importance. Other than BoW representa-
tion, we experimented with different features that can be
automatically extracted from PubMed and GO knowledge
bases. In detail, a publication p is indexed by the following
information:

• W(p) (text): BoW built from the abstract and title of
the publication p. More generally, this feature
represents the BoW built from unstructured text
associated to the publication.

• T (p) (title): BoW built from the title of the
publication p.

• R(p) (references): weighted vector of references
(PMIDs). As for the BoW, each entry of the vector
indicates the presence (or absence) of a reference
within the publication. The references are weighted
according to their importance.

• Y(p) (year): year of publication of p.
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Fig. 1 GOTA workflow Graphical representation of Eq. 1

All the features above can be easily extracted for doc-
uments indexed into PubMed. Some of these features
could not be available for some publication (references, for
example), particularly for query publications. We assume
that at least the W(p) feature vector is always non-null
(i.e. contains entries greater than zero). A GO term t is
indexed with the following information (with abuse of
notation, we use the same symbol when the term-specific
and publication-specific features are related):

• W(t) (text): BoW built from unstructured text
associated to the term t. In this case, the text
associated to t includes the term name, synonyms
and description (all available in the GO knowledge
base), as well as all the titles and abstracts of those
publications in the KB associated to term t (these
informations could be absent).

• T (t) (name): BoW built from the name and
synonyms of the term t.

• Y(t) (year): average year of the publications
annotated with term t.

TheW(t) and T (t) BoWs are always non empty, while the
Y(t) feature can be unspecified (if there is no publication
in the KB annotated with t).
We use the following procedure to create a pool of

words (BoW) appearing in titles and abstracts of publica-
tions in the KB, as well as title, synonyms and descriptions
of GO terms. Single words occurring in the text are
extracted, discarding punctuation. A stopword list is used
to filter-out all the words that are not enough informative

about the text (such as, actually, after, etc). The standard
Porter stemming algorithm [31] is used to group words
with common stems. As the method works accurately
even without filtering or selecting features, which gener-
ally are costly steps that require further complex tuning
of parameters, we do not perform such task in this paper.
However, we use the common tf-idf scheme [32], which
is one of the several existing techniques [33], to assign a
relevance weight to words related to each feature.
The Term Frequency (tf ) measures how frequently a

word appears into a document:

tf (w, x) = number of times word w appears in text x
total number of words in text x

The Inverse Document Frequency (idf ) measures how
much important a word is:

idf (w)

= log
total number of publications and GO terms

number of publications and GO terms containing w

The tf-idf scheme is the product of these two quantities.
To automatically extract weighted vectors of references
R(p), we use the same criteria of the idf measure. Pub-
lications indexed in PubMed are identified with a unique
PMID and cited references are represented as a list of
PMIDs. Thus, the idf measure for references can be easily
calculated by:
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idf ref(PMID)

= log
total number of publications with bibliography

number of publications citing PMID

With the BoW representation, the similarity between
two feature vectors x, y can be measured by means of the
commonly used cosine similarity [34]:

simcos(x, y) = x · y
‖x‖‖y‖

Since by definition the BoW vectors have only positive
values, the simcos score is always non-negative.

Publication-centric score
The first similarity score between a publication query and
a GO term is recovered by comparison with annotated
literature, namely the publications in the underlying KB.
This is basically a k-NN approach. First, the publication
query is compared with all the publications in the KB, in
order to detect those that appear to bemost closely related
to the query (Step 1 in Fig. 1). Second, a ranked list of GO
annotations for the query is inferred from the recovered
publications (Step 2 in Fig. 1).
The comparison score between a query publication q

and a target publication p in the KB is given by the product
of four different similarity measures:

φP(q, p) = �4
i=1(1 + fi(q, p))mi (2)

where 0 ≤ fi(q, p) ≤ 1 gives a similarity score associated to
a single publication-related feature and the powermi rep-
resents its relative weight. The four similarity functions
fiqp are defined by:

1. (Text similarity) Cosine similarity between BoW of
the query and target publications:

f1(q, p) = simcos(W(q),W(p))

2. (Title similarity) Cosine similarity between the
title-related BoW of the query and target
publications:

f2(q, p) = simcos(T (q), T (p))

3. (References similarity) Cosine similarity between the
weighted vector of references of the query and target
publications:

f3(q, p) = simcos(R(q),R(p))

4. (Year similarity) Distance between the publication
year of the query and target. We decided to normalize
this value with a maximum distance of 50 years:

f4(q, p)=
{
0 if |Y(q) − Y(p)| > 50
(50−|Y(q) − Y(p)|)/50 otherwise

We remark that the four features described above can be
used for the classification only if the query publication is

indexed into PubMed. In all the other cases, i.e. when the
query consists of unstructured text only, the only avail-
able feature is f1(q, p). Furthermore, also for publications
indexed in PubMed some information can be missing
(abstract and/or bibliography, for example). However, due
to the definition of Eq. 2, the missing information does
not affect the calculation of the comparison score. Sym-
metrically, the comparison score can be easily extended to
incorporate more features.
The measure φP(q, p), computed by Eq. 2, is used to

rank the publications in the KB according to their simi-
larity with the query. The gold-standard GO annotations
of the top-K ranked publications are then transferred to
the query, by using φP(q, p) as their relative weight. The
publication-centric similarity score between a query q and
a GO term t is then given by:

�P(q, t)=
∑

top-K ranked p∈KB

{
φP(q, p) if p has annotation t
0 otherwise

(3)

Term-centric score
The second similarity score between a publication query
and a GO term is based on the direct comparison between
a query q and a term t (Step 3 in Fig. 1). Also in this case,
the score is given by the the product of different similarity
measures:

�T (q, t) = �5
i=1(1 + gi(q, t))ni (4)

where 0 ≤ gi(q, t) ≤ 1 is the score associated to a sin-
gle GO term-related feature and the power ni represents
its relative weight. The five similarity functions gi(q, t) are
defined by:

1. (Text similarity) Cosine similarity between the BoW
of the query and term:

g1(q, t) = simcos(W(q),W(t))

2. (Title similarity) Cosine similarity between the
title-related BoW of the query and term:

g2(q, t) = simcos(T (q), T (t))

3. (Name frequency) Percentage of the words in the
title-related BoW of the term that are contained in
the BoW of the query:

g3(q, t) = |T (t) ∩ W(q)|
|T (t)|

4. (Name occurrence) Normalized number of
occurrences of the name or synonym of the term in
the query. In this case, we seek the full name of the
term (and its synonyms) in the entire query text. The
number of occurrences c is normalized to 4.
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g4(q, t) =
{
1 if c > 4
c/4 otherwise

5. (Year similarity) Distance between the publication
year of the query and term:

g5(q, t)=
{
0 if |Y(q) − Y(t)|> 50
(50−|Y(q) − Y(t)|)/50 otherwise

Tuning of parameters
The computation of Eq. 1 requires a preprocessing of the
underlying KB, as well as the tuning of a few parame-
ters. The parameter tuning has been performed over the
100,402 publications in the KB, which has been randomly
extracted from the 115,402 publications of the benchmark
text set. Moreover we randomly split the KB into two text
sets: a training set of 90,402 publications and a validation
set of 10,000 publications.
Generally the tuning of parameters requires perform-

ing a cross-validation strategy, however, as previously
explained, we do not use such a strategy because of
(i) the computational time required for preprocessing a so
large data set and because (ii) the amount of data, ran-
domly selected for the validation set, is representative of
the entire benchmark text set. In fact, according to the
sampling theory [35], in the worst case the representative-
ness (or sampling) error of this validation set is less than
0.98%, with a confidence level of 95%. We also remark
that the effectiveness of the method does not strongly
depend from the parameter tuning. In fact, without it the
drop in classification accuracy over the validation set is
less than 2% (data not shown).
The parameters involved in the tuning process belong

to the two functions that calculate the two similarity
scores. In particular the computation of the similarity
score �P(q, t) in Eq. 3 requires the tuning of the power
parameters mi in Eq. 2 and the K parameter in Eq. 3. We
tested all the combinations of the mi ranging from 0 to
4 each. Note that a 0-value leads to not considering the
related feature.
The selected power parameters are: m1 = 4,m3 = 3,

m2 = m4 = 1. While the power parameters seem to
give more importance to some similarity scores, such as
f1(q, p), they actually play a balancing role, since the actual
values of the four similarity scores follow different dis-
tributions. We also remark that, when the input query
consists uniquely of unstructured text, the classification
relies only on the f1(q, p) similarity score. In such situa-
tions, the power parameter m1 has only a limited effect
on the scoring. We also tested the method by varying the
number (K) of most similar publications in the KB consid-
ered in Eq. 3. We experimented that varying K from 50 to
1000, we obtain the best results with K ranging from 50 to
300, with a maximum peak at K = 150.

As for Eq. 3, we tuned the power parameters ni for the
Eq. 4 testing all combinations with each value ranging
from 0 to 4. The selected parameters are: n1 = 4, n3 = 2,
n2 = n4 = n5 = 1. When the input query consists just
of unstructured text, the only power parameters used are
n1, n3 and n4.
We further considered the problem of assigning a con-

fidence threshold (low, medium, high) to the predicted
annotations. The aim of such filter is to provide to the
user a confidence level, mainly for those queries that have
a very low biological content. The confidence score is not
considered for the experimental testing in the paper, but it
is made available on the online Web application. Further
details are reported in Additional file 2.

Evaluation metrics
In a real world scenario, a text mining tool for GO clas-
sification should assist a database curator for manual
extraction of GO annotations from scientific literature.
From this point of view, a classification tool can be use-
ful whether it can provide a small set of annotations
that accurately cover the biological content of a scientific
publication. Thus, for performance assessment, we partic-
ularly focus on the evaluation of the top-10 ranked terms
only (recall that 99% of the publications in our bench-
mark set have at most 10 distinct GO annotations ). The
performances for the top-20 ranked terms are shown in
Additional file 2.
Furthermore, in order to make the results more acces-

sible to a heterogeneous community, we adopt differ-
ent metrics from different domains. In particular, we
use specific evaluation metrics from the IR domain,
as established at TREC experiments [36], and metrics
exploited for performance assessment in biologically-
related domains, such as BioCreative [14] and CAFA
[5] experiments. The topic covered at CAFA is the
evaluation of protein function prediction methods. As
in our setting, also at CAFA the performances are
assessed over the GO hierarchy. We further introduce
a third set of metrics, based on recent approaches for
measuring semantic similarity between set of terms/
concepts [37].
In the rest of this section, we adopt the following nota-

tion. For a given query, we denote with T and P its related
set of gold-standard (from GOA) and predicted (from
the classifier) GO annotations, respectively. We use low-
ercase letters, such as t and p, to denote single terms
within T and P, respectively. We can assume that pre-
dicted terms in P are ranked according to the classifier
score. We denote with Pk the top-k ranked terms in P.
With abuse of notation, we use Ps to denote also the subset
of predicted terms in P with a score greater than or equal
to score threshold s. A detailed description of the metrics
follows.



Di Lena et al. BMC Bioinformatics  (2015) 16:346 Page 7 of 13

TRECmetrics
The reciprocal rank metric evaluates the precision at first
correctly predicted term by computing the reciprocal of
its rank:

RRk(T ,P) = 1
min{i | T ∩ Pi �= ∅, 1 ≤ i ≤ k} . (5)

The MRRk is computed by averaging the RRk over the
entire set of evaluated queries. The recall at rank k metric
evaluates the average fraction of relevant GO terms in the
top-k predictions returned by the classifier:

Rk(T ,P) = |T ∩ Pk|
|T | . (6)

The RRk and Rk measures are strictly greater than zero
only if T ∩ Pk �= ∅. For performance evaluation, here we
consider only the mean reciprocal rank and recall at the
top-10 predictions,MRR10 and R10, respectively.

CAFA/BioCreativemetrics
These metrics, introduced to reflect the hierarchical
nature of GO, are based on a variant of the standard pre-
cision/recall measures, called hierarchical precision/recall
[38]. The hierarchical measures are some of the met-
rics adopted at the BioCreative IV experiments. The
hierarchical-precision at rank k is defined by

hPk(T ,P) = |A(T) ∩ A(Pk)|
|A(Pk)| , (7)

and the hierarchical-recall at rank k by

hRk(T ,P) = |A(T) ∩ A(Pk)|
|A(T)| , (8)

where A(X) denotes the set of all the ancestors of terms
in X, recursively propagated up to the root(s) of the GO
hierarchy. The set A(X) contains also X, i.e. X ⊆ A(X).
The hierarchical-precision and hierarchical-recall can be
combined into a single metric, the hierarchical F-measure
(harmonic mean):

hFk(T ,P) = 2 · hPk(T ,P) · hRk(T ,P)

hPk(T ,P) + hPk(T ,P)
(9)

The hPk(T ,P)measure tends to assign high scores when
P contains very generic terms, such as those at the top
of the hierarchy. Thus, the hPk(T ,P) measure is not very
robust over GO, since it gives high scores even when
P consists of just few non-informative terms, such as
the three roots of the GO hierarchy. Symmetrically, the
hRk(T ,P) measure tends to assign high scores when P
contains very specific terms, such as those at the bottom
of the hierarchy. Since the GO hierarchy contains many
leaf terms, the hRk measure is more robust than the hPk
over GO. Furthermore, if we choose a fixed k (= 10 or 20),
even if T ⊂ P, hPk(T ,P) would generally provide a poor
estimation of the classification capabilities, due to the
highly unbalanced number of annotations per publication

in our benchmark set. Conversely, the unbalanced num-
ber of annotations does not affect the hRk metric. The hFk
metric is more robust than hPk but it still suffers from
the unbalanced amount of annotations in our dataset. For
these reasons, here we consider only the hierarchical recall
at rank 10, hR10. The results for hP10 and hF10 are shown
in Additional file 2.
With small modifications, the hierarchical measures

have been adopted also at CAFA experiments. In detail,
at CAFA, the top-ranked predictions are selected with
respect to a given score threshold s, not a rank k. The hier-
archical precision and recall in Eqs. 7 and 8, respectively,
just need to be recoded with respect to score thresholds.
Note that, in A(Ps) only the predicted terms with score
greater than or equal to s are propagate up to the root(s)
of the ontology. Furthermore, the hierarchical precision
hPs(T ,P) is assumed to be equal to zero if |Ps| = 0. For
a given dataset D consisting of pairs of true and predicted
annotations, and for a given score threshold s, CAFA’s
average hierarchical precision at s is defined by

hPs(D) = 1
ms(D)

∑
(T ,P)∈D

hPs(T ,P),

wherems(D) = |{P|(T ,P) ∈ D, |Ps| > 0}| is the number of
non-empty predictions at threshold s. Asymmetrically, the
average hierarchical recall at threshold s is averaged over
all pairs in the dataset, and it is defined by

hRs(D) = 1
|D|

∑
(T ,P)∈D

hRs(T ,P).

These last two measure can be combined into a sin-
gle metric, the F-measure (harmonic mean), at different
score thresholds. The main evaluation metric at CAFA,
which we also consider here, is the maximum value of the
harmonic mean over all thresholds:

hFmax(D) = max
s

{
2 × hPs(D) × hRs(D)

hPs(D) + hRs(D)

}
. (10)

Thanks to the choice to adopt a score cutoff, CAFA’s
hierarchical F-measure is not affected by the unbalanced
number of annotations in the benchmark set.

Information-Theoretic metrics
These metrics can be considered the information-
theoretic counterparts of precision/recall, and rely on
the information content of individual terms t in the GO
hierarchy:

ic(t) = − logPr(t)

where Pr(t) is the relative frequency of term t with
respect to some background distribution. We adopt as
background distribution the entire set of gold-standard
annotations in our benchmark set. The Resnik’s similarity
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[39] between two terms t and p is defined as the maxi-
mum information content among the common ancestors
of t and p:

simResnick(t, p) = max
a∈A({t})∩A({p})

{ic(a)}
The Lin’s similarity [40] between two terms t and p is

the normalized version of the Resnick’s similarity:

simLin(t, p) = 2 × simResnick(t, p)
ic(t) + ic(p)

Following the approach in [37], we can extend the
information-theoretic similarities to sets of annotations.
In this way, it is possible to obtain the information-
theoretic counterpart of precision at the top-k ranked
terms:

iPk(T ,P) = 1
|L(Pk)|

∑
p∈L(Pk)

max
t∈L(T)

{simLin(t, p)}, (11)

and recall at the top-k ranked terms:

iRk(T ,P) = 1
|L(T)|

∑
t∈L(T)

max
p∈L(Pk)

{simLin(t, p)} (12)

where L(X) denotes the set of leaf terms in X, i,e.
L(X) ⊆ X is the largest subset of X such that ∀u, v ∈
L(X),u /∈ A(v). As it happens for the hierarchical-
precision hP10, the information-theoretic precision iP10 is
slightly affected by the unbalanced number of annotations
in our benchmark set. Conversely, the iP1 metric is more
robust, since it just estimates the quality of the very top
predicted annotation. For these motivations, here we con-
sider only the information-theoretic precision at the top
ranked term (iP1) and the information-theoretic recall at
rank 10 (iR10), which can be seen as complementary to the
two TRECmetricsMRR10 and R10. The results for iP10 are
shown in Additional file 2.

Results and discussion
In the following sections, performances are assessed over
the entire GO hierarchy, without considering separately
the three main ontologies BP, MF and CC. The detailed
results can be found in Additional file 2. As a general con-
sideration, the classification accuracy is overall better if
we asses the results separately for the three ontologies.
Furthermore, it is higher over the MF and CC in compar-
ison to BP. These results are not completely unexpected,
since the entire GO hierarchy contains much more cat-
egories/terms than its main sub-ontologies. Equivalently,
the number of distinct categories is much lower inMF and
CC than in BP. Furthermore, also baseline random clas-
sifiers have surprisingly good classification performances
over MF and CC (see Additional file 2). This may sug-
gest that there is some manual-annotation bias toward
few specific MF and CC terms. Conversely, the perfor-
mance gap between random and non-random classifiers

is much more pronounced over the entire GO hierarchy.
The results over the complete GO are thus more repre-
sentative of the true classification limits of the different
approaches.

Overall classification performances
Classification performances on our test set of 15,000 pub-
lications (see “Benchmark set” section) are shown in the
top section of Table 1. In order to clarify how the classi-
fication is affected by different sources of information, in
Table 1 we show the performances of our best-parameter
model, which makes use of the detailed information avail-
able in PubMed (PM), and those of two more versions
that make use of unstructured text only: title plus abstract
(T + A), and only title (T). In these last two models, the
classifier is queried with unstructured text and it does
not know whether the input text is related to the publica-
tion title and/or abstract. We include in the comparison
also two naive baseline predictors obtained from the dis-
tribution of GO terms in our KB. Both naive predictors
assign exactly the same predictions to all query targets.
The first naive predictor, RandFR, ranks the GO terms
according to their relative frequency in the underlying
KB. The second naive predictor, RandIC, ranks each GO
term according to its average information-theoretic pre-
cision (Eq. 11), with respect to all the publications in the
underlying KB.
As shown in Table 1, GOTA classification capabilities

are much better than those of the two naive predictors,
over all considered metrics. By observing in more detail
the best performances (first row) in Table 1, according to
the MRR10 metric, on the average a prediction includes
a gold standard annotation at rank between 2 and 3.
According to the R10 metric, 46% of the gold standard
annotations are included in the top-10 predicted terms.
Although not directly comparable, these results are bet-
ter that those reported at BioCreative IV Task B [14] and
for other large hierarchical multi-label classification set-
tings [24]. The information-theoretic measures provide
more interesting insights into the classification capabili-
ties. According to the iR10 metric, the average semantic
similarity between the gold standard annotations with
respect to the top-10 predicted terms is 0.64. Accord-
ing to the iP1 measure, the average semantic similarity
of the top predicted term is 0.46. By themselves these
scores say little about the quality of the predicted annota-
tions. However, we can easily calculate some statistics to
asses whether these values are meaningful or not. For 72%
of the gold-standard terms (represented in the test set)
there are less than 1% terms (represented in the KB) with
semantic similarity ≥0.46. That is, two terms with seman-
tic similarity ≥0.46 are very likely to be closely related.
We also bootstrapped (10,000 draws of 10 terms each
from the KB) the sample mean and standard deviation
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Table 1 Performances over a test set of 15,000 publications

Methoda Infob ITc CAFAc BCc TRECc

iP1 iR10 hFmax hR10 MRR10 R10

GOTA PM 0.43 0.64 0.43 0.69 0.40 0.46

GOTA T+A 0.42 0.64 0.43 0.68 0.39 0.45

GOTA T 0.41 0.63 0.42 0.68 0.39 0.44

RandFR N/A 0.20 0.33 0.20 0.33 0.18 0.15

RandIC N/A 0.21 0.27 0.18 0.31 0.03 0.08

GOTA �P PM 0.37 0.64 0.41 0.67 0.38 0.44

GOTA �P T+A 0.35 0.62 0.40 0.66 0.36 0.41

GOTA �P T 0.35 0.62 0.40 0.66 0.36 0.41

GOTA �T PM 0.28 0.41 0.30 0.49 0.16 0.17

GOTA �T T+A 0.24 0.37 0.27 0.46 0.11 0.12

GOTA �T T 0.22 0.35 0.26 0.44 0.09 0.10

aMethod used for the classification. RandFR and RandIC are baseline predictors, based on the distribution of GO terms in the training set
b Informations used in prediction: PM = title, abstract, references and publication year (PubMed); T + A = title and abstract; T = title; N/A = no information
cMetrics definitions are in the “Evaluation metrics” section. In top section of the table, for each metric, the best result is highlighted in italic

of the iR10 and iP1 scores for each test-publication. At
a confidence level of 10−5, GOTA’s iR10 and iP1 scores
are significantly higher (according to a Z-test) than the
samples means for 88 and 57% of the test publications,
respectively. The conclusion is that, on the average: i) the
top-10 predicted terms include GO terms that are signif-
icantly similar to the gold standard annotations. ii) such
classifications are very unlikely to be observed by ran-
dom selection of GO terms from the KB. With respect
to the hR10 metric, we can observe a satisfactory perfor-
mance (although not directly comparable) with respect to
the results reported at BioCreative IV Task B [14]. Finally,
although protein and literature annotation are different
but related problems, the hFmax measurements for BP and
MF (see Additional file 2) are higher in comparison to the
best performing methods at CAFA [5]. With respect to
CAFA, we can report better results also if we restrict to
subsets related to specific species (see Human, Mouse and
Rat performances in Additional file 2 and Supplementary
Information of [5]). This may suggest that the automated
GO annotation task from protein sequences is an even
harder problem than literature-based annotation.
Although the classifier that makes use of more detailed

information (PM) has the best performances, its classifi-
cation capabilities are not much higher than those of two
models that make use of unstructured text only (T+A
and T). We can asses whether the improvement is sta-
tistically significant with a paired Student’s t-test over
all selected metrics but hFmax (which is not an averaged
score). At standard significance level of 5% (the detailed
p-values are shown in Additional file 2), the performances
of the full model (PM) are significantly better over all

metrics in comparison to the title plus abstract-based
model (T+A) and the title-based model (T). However,
the performances of the two text-based classifiers are
indistinguishable for some of the adopted metrics (data
not shown). This is somewhat surprising and suggests
that publication title is the most important source of
information for GO annotation of scientific literature.
Another interesting question is whether authorship can

introduce some bias in the experimental testing. In par-
ticular, we ask to which extent having in test and training
papers from the same author(s) can affect the classifica-
tion performance. In this context, the authorship infor-
mation can be relevant for two main reasons: i) the way
in which an author writes can be repetitive in some parts
and it could affect the text similarities extracted by an
automatic classifier, and ii) it is conceivable that the same
authors could work and publish more than one papers on
similar topics. In Additional file 2 we show some experi-
ments that exploit the authorship information. The overall
conclusion of these tests is that authorship information
alone provides better results than random classification.
On the other end, such information does not affect signif-
icantly GOTA’s performances.
To conclude, in the bottom section of Table 1 we show

the average performances of the two comparison scores
(�P and �T ) used in the GOTA classifier (see “Approach”
section). It is evident that publication-centric approach
(�P) is more accurate than the topic-centric approach
(�T ). However, their combination provides overall better
results. This shows that the two approaches are not signif-
icantly affected by collinearity problems. In fact, their two
BoWs are built using different techniques.
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Performances on species-specific knowledge bases
A natural question concerning GO annotation of litera-
ture is whether we can improve the classification accuracy
by restricting to species-specific knowledge bases. For
instance, if we know a-priori that some publication is
related to some specific species, for annotation purposes
is it better to compare it with a smaller set of publications
on the same species or with a larger set of publications on
different species?
In order to answer this question, here we considered

four species for which we found a sufficiently high num-
ber of annotated publications in GOA database: Human
(27,133 distinct publications, 24% of the entire bench-
mark set), Mouse (21,581, 19%), Rat (18,321, 16%) and
Yeast (10,162, 9%). We extracted from our test set of
15,000 publications the subsets related to the selected
species. For each one of such subsets we compare the
performances we obtain when the underlying KB is the
same as in previous Section (Full) and when it con-
sists of species-specific subsets only (Human, Mouse,
Rat and Yeast). The species-specific subsets have been
constructed by selecting from the KB only the PMID-
GO associations listed in the species-related GOA files.
The results are summarized in Table 2, where we can

observe that the classification performances over species-
specific KBs are overall better than those on the full KB.
However, the improvement is statistically significant (as
assessed by a paired t-test at significance level of 5%)
over almost all the adopted metrics only on the set of
publications related to Rat and Yeast. In the remain-
ing cases, the improvement is not uniformly significant
for all the considered metrics, but only some of them
(the detailed p-values are shown in Additional file 2).
These results indicate that, in some specific cases, specie-
related KB can help to improve dramatically the classi-
fication accuracy. To some extend, these results are not
completely unexpected, since specie-specific KBs iden-
tify specie-specific subsets of GO terms. For instance,
the rat-specific KB collects 9090 distinct terms, in com-
parison to the 25,622 terms in the full KB. Thus, the
classification of rat-related publications is less challeng-
ing, since the rat-specific KB drastically reduces the
number of possible categories represented in the full
KB.
As a final remark, as shown in Table 2, also for species-

specific classification tasks, the publication title is the
most important source of information. This is true irre-
spectively of the considered species.

Table 2 Performance comparison over species-specific knowledge bases

Speciesa KBb Infoc ITd CAFAd BCd TRECd

iP1 iR10 hFmax hR10 MRR10 R10

Human Human PM 0.45 0.62 0.46 0.69 0.49 0.49

Human Full PM 0.44 0.62 0.44 0.69 0.44 0.48

Human Human T 0.42 0.60 0.45 0.66 0.46 0.47

Human Full T 0.44 0.61 0.44 0.68 0.45 0.47

Mouse Mouse PM 0.45 0.63 0.45 0.67 0.45 0.44

Mouse Full PM 0.45 0.61 0.44 0.66 0.43 0.42

Mouse Mouse T 0.42 0.63 0.44 0.65 0.43 0.42

Mouse Full T 0.44 0.60 0.43 0.64 0.42 0.41

Rat Rat PM 0.38 0.64 0.41 0.69 0.36 0.44

Rat Full PM 0.34 0.61 0.37 0.67 0.33 0.42

Rat Rat T 0.37 0.62 0.40 0.67 0.34 0.42

Rat Full T 0.33 0.61 0.37 0.66 0.33 0.42

Yeast Yeast PM 0.45 0.72 0.47 0.77 0.42 0.50

Yeast Full PM 0.43 0.70 0.47 0.75 0.39 0.49

Yeast Yeast T 0.41 0.68 0.44 0.74 0.37 0.45

Yeast Full T 0.41 0.68 0.44 0.73 0.35 0.46

aOnly publications related to the specified Species are considered for the evaluation. Human: 3575 publications; Mouse: 2825 publications; Rat: 2380 publications; Yeast: 1290
publications
bKnowledge base used for prediction. Full = all available publications in the KB. Human/Mouse/Rat/Yeast = only publications related to Human/Mouse/Rat/Yeast
c Informations used in prediction: PM = title, abstract, references and publication year (PubMed); T = title
dMetrics definitions are in the “Evaluation metrics” section. For each metric and Species, the best result is highlighted in italic
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Table 3 Performance comparison with different approaches

Methoda Infob ITc CAFAc BCc TRECc

iP1 iR10 hFmax hR10 MRR10 R10

GOTA PM 0.42 0.69 0.42 0.73 0.39 0.49

GOTA T+A 0.37 0.68 0.41 0.73 0.35 0.48

GOTA T 0.39 0.66 0.39 0.70 0.34 0.44

GOCat T+A 0.34 0.64 0.37 0.69 0.29 0.40

GOCat T 0.30 0.64 0.36 0.69 0.28 0.40

RandFR N/A 0.08 0.21 0.10 0.23 0.03 0.05

RandIC N/A 0.22 0.23 0.19 0.30 0.00 0.01

aMethod used for prediction. RandFR and RandIC are baseline predictors, based on the distribution of GO terms in the training set
b Informations used in prediction: PM = title, abstract, references and publication year (PubMed); T + A = title and abstract; T = title; N/A = no information
cMetrics definitions are in the “Evaluation metrics” section. For each metric, the best result is highlighted in italic

Performance comparison with related approaches
We compare the performances of our tool with GOCat
[25] (ML classifier), which is, to date, the only publicly
available tool closely related to our work. For compari-
son purposes, we extracted from our test set of 15,000
publications the set of 412 PMIDs not included in the
KB of GOCat’s latest release. GOCat’s predictions over
the 412 queries have been obtained by using the pub-
lication title only (T) and publication title plus abstract
(T+A), in form of unstructured text. For a fair compari-
son, we removed from GOCat’s predictions all the terms
not included in our GO hierarchy.
The results are summarized in Table 3. The perfor-

mances of both GOTA and GOCat are significantly
higher than those of the two naive classifiers RandFR and
RandIC. GOTA performances with full information (PM)
are significantly better then those of GOCat (T+A) over
all the considered metrics, as assessed by a paired t-test at
significance level of 5% (the detailed p-values are shown in
Additional file 2). GOTAmakes use of more specific infor-
mation than GOCat, such as references and publication
year. Anyway, even when exactly the same information
is used in prediction (T+A and T), GOTA classification
capabilities are significantly superior to those of GOCat
for almost all the considered metrics (data not shown). As
a further analysis, we calculate what is the fraction of pub-
lications for which the top-10 predictions contain at least
one gold standard term (see Additional file 2). We have an
a amount of 62% publications with GOTA against 52% of
GOCat.
Analyzing in further detail GOTA and GOCat perfor-

mances, we can verify whether they behave in similar or
completely different way. In Table 4, for each evaluation
metric (but hFmax) we show the fraction of publica-
tions on which GOTA gets a score exactly equal to
(GOTA=GOCat), strictly higher than (GOTA>GOCat)
or strictly lower than (GOTA<GOCat) GOCat’s.
Although GOTA’s performances are overall better, from

Table 4 it is clear that there is a non-trivial fraction of
publications on which GOCat performs better than
GOTA.
Finally, interestingly enough, also with GOCat there is

not a dramatic improvement in the classification capabil-
ities when the input query consists of title and abstract
(T+A) versus publication title only (T). This is a fur-
ther confirmation that, independently of the particular
approach, titles provide most of the information about
the biological content of scientific publications. This may
suggest that automated GO annotation tools could ben-
efit from a preprocessing phase aimed at selecting short
sentences within the text, in order to filter-out the back-
ground noise.

Conclusions
We described a novel approach for GO annotation
of biomedical literature. The resulting annotation tool,
GOTA, makes use only of information that is readily avail-
able from public repositories and it is easily expandable
to handle novel sources of information. The classification

Table 4 1-to-1 comparison between GOTA (PM) and GOCat
(T+A)

Metrica GOTA = GOCatb GOTA > GOCatc GOTA < GOCatd

iP1 0.44 (0.13) 0.36 (0.15) 0.20 (0.07)

iR10 0.29 (0.16) 0.41 (0.15) 0.30 (0.07)

hR10 0.41 (0.25) 0.36 (0.17) 0.23 (0.09)

MRR10 0.42 (0.13) 0.37 (0.16) 0.20 (0.07)

R10 0.61 (0.21) 0.25 (0.17) 0.13 (0.08)

aMetrics definitions are in the “Evaluation metrics” section
bFraction of publications on which GOTA and GOCat get exactly the same score.
In parenthesis, fraction of publications on which the score is equal to 1 (maximum)
cFraction of publications on which GOTA gets a score strictly higher than GOCat’s.
In parenthesis, fraction of publications on which the score is equal to 1 (maximum)
dFraction of publications on which GOCat gets a score strictly higher than GOTA’s.
In parenthesis, fraction of publications on which the score is equal to 1 (maximum)
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capabilities of GOTA are reasonably good in compari-
son to the state of the art in multi-label classification
over large taxonomies and the experimental tests pro-
vide some interesting insights into the potential improve-
ment of automated annotation tools. In particular:
i) the classification capabilities improve if the approach
is tested over specie-specific knowledge bases. This sug-
gests that GO curation task could benefit from developing
species-centered annotation tools; ii) the publication title
is the most important source of information for GO clas-
sification biomedical literature. This result is a strong
indication that the biological content of a paper is well-
summarized in few short sentences within the text, while
the rest is background noise. In this view, the suggestion is
that GO annotation tools for literature could benefit from
a preprocessing phase aimed at filtering-out background
sentences within the text.

Additional files

Additional file 1: Benchmark set. Detailed list of PubMed identifiers and
related GO annotations used for the experimental tests. (GZ 2263 kb)

Additional file 2: Detailed experimental results. Detailed results of the
experimental tests over the three distinct GO categories BP, MF and CC.
(PDF 293 kb)

Abbreviations
GO: Gene ontology; BP: Biological process; MF: Molecular function; CC: Cellular
component; DAG: Direct acyclic graph; IR: Information retrieval; k-NN: k-nearest
neighbors; KB: Knowledge base; PMID: PubMed identifier; BoW: Bag of words.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PDL, GD, LM and GM designed the project. PDL drafted the manuscript. GD
and GM developed the algorithmic procedure and contributed to drafting the
Methods Section. PDL, GD and GM defined and carried out experiments and
result interpretations. All the authors read, reviewed and approved the final
manuscript.

Acknowledgements
This research has been partially supported by the “GenData 2020” project
funded by the Italian MIUR. We thank J. Gobeill for providing us the
knowledge base used in the latest version of GOCat.

Received: 16 March 2015 Accepted: 13 October 2015

References
1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.

Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:
25–9.

2. Lewis SE. Gene Ontology: looking backwards and forwards. Genome Biol.
2004;6:103.

3. Rubin DL, Shah NH, Noy NF. Biomedical ontologies: a functional
perspective. Brief Bioinform. 2008;9:75–90.

4. Du Plessis L, Skunka N, Dessimoz C. The what, where, how and why of
gene ontology- a primer for bioinformaticians. Brief Bioinform. 2011;12:
723–35.

5. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, et al.
A large-scale evaluation of computational protein function prediction.
Nat Methods. 2013;10:221–7.

6. Barutcuoglu Z, Schapire RE, Troyanskaya OG. Hierarchical multi-label
prediction of gene function. Bioinformatics. 2006;22:830–6.

7. Tao Y, Li J, Friedman C, Lussier YA. Information theory applied to the
sparse gene ontology annotation network to predict novel gene
function. Bioinformatics. 2007;23:i529–38.

8. Domeniconi G, Masseroli M, Moro G, Pinoli P. Discovering new gene
functionalities from random perturbations of known gene ontological
annotations. In: Proceedings of the International Conference on
Knowledge Discovery and Information Retrieval (KDIR). Vol 1. 2014,
p. 107–16. http://www.scitepress.org/portal/ProceedingsDetails.aspx?ID=
xer6arJeMc8=&t=1.

9. Lomax J. Get ready to GO! A biologist’s guide to the Gene Ontology. Brief
Bioinform. 2005;6:298–304.

10. Skunca N, Althenhoof A, Dessimoz C. Quality of computationally inferred
gene ontology annotations. PLoS Comput Biol. 2012;8:e1002533.

11. Li D, Berardini TZ, Muller RJ, Huala E. Building an efficient curation
workflow for the Arabidopsis literature corpus. Database. 2012;2012:
bas047.

12. Hirschman L, Van Auken K, Fey P, Berardini TZ, Dodson R, Cooper L, et al.
Text mining for the biocuration workflow. Database. 2012;2012:bas020.

13. Blaschke C, Leon EA, Krallinger M, Valencia A. Evaluation of BioCreAtIvE
assessment of task 2. BMC Bioinform. 2005;6:S16.

14. Mao Y, Van Auken K, Li D, Arighi CN, McQuilton P, Hayman GT, et al.
Overview of the gene ontology task at BioCreative IV. Database.
2014;2014:bau086.

15. Doms A, Schroeder M. GoPubMed: exploring PubMed with the Gene
Ontology. Nucleic Acids Res. 2005;1:783–786.

16. Silla NR, Freitas AA. A survey of hierarchical classification across different
application domains. Data Min Knowl Disc. 2011;22:31–72.

17. Cai L, Hofmann T. Hierarchical document categorization with support
vector machines. In: Proceedings of the 13th ACM international
conference on information and knowledge management. ACM, New
York, NY, USA; 2004. p. 78–87.

18. Rousu J, Saunders C, Szedmak S, Shawe-Taylor J. Kernel-Based learning
of hierarchical multilabel classification models. J Mach Learn Res. 2006;7:
1601–26.

19. Vens C, Struyf J, Schietgat L, D?eroski S, Blockeel H. Decision trees for
hierarchical multi-label classification. Mach Learn. 2008;73:185–214.

20. Sun A, Lim E. Hierarchical text classification and evaluation. In:
Proceedings of the 2001 IEEE international conference on data mining.
IEEE Computer Society, Washington, DC, USA; 2001. p. 521–8.

21. Liu T, Yang Y, Wan H, Zeng HJ, Chen Z, Ma WY. Support vector
machines classification with a very large-scale taxonomy. SIGKDD Explor
Newsl. 2005;7:36–43.

22. Cesa-Bianchi N, Gentile C, Zaniboni L. Incremental algorithms for
hierarchical classification. J Mach Learn Res. 2006;7:31–54.

23. Bennett PN, Nguyen N. Refined experts: improving classification in large
taxonomies. In: Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval. ACM,
New York, NY, USA; 2009. p. 11–8.

24. Tao X, Li Y, Lau R, Wang H. Unsupervised multi-label text classification
using a world knowledge ontology. In: Proceedings of the 16th
Pacific-Asia conference on advances in knowledge discovery and data
mining - Volume Part I. Springer; 2012. p. 480–92.

25. Gobeill J, Pasche E, Vishnyakova D, Ruch P. Managing the data deluge:
data-driven GO category assignment improves while complexity of
functional annotation increases. Database. 2013;2013:bat041.

26. Altman NS. An introduction to kernel and nearest-neighbor
nonparametric regression. Am Stat. 1992;46:175–85.

27. Gobeill J, Pasche E, Vishnyakova D, Ruch P. Closing the loop: from paper
to protein annotation using supervised Gene Ontology classification.
Database. 2014;2014:bau088.

28. http://geneontology.org/ontology/go-basic.obo. Release 2014-06-14.
Accessed 30 Jun 2014.

29. http://www.ebi.ac.uk/GOA/downloads. Accessed 30 Jun 2014.
30. http://www.ncbi.nlm.nih.gov/pubmed Accessed 30 Jun 2014.
31. Porter MF. An algorithm for suffix stripping. Program. 1980;14:130–7.
32. Salton G, Buckler C. Term-weighting approaches in automatic text

retrieval. Inf Process Manag. 1988;24:513–23.
33. Domeniconi G, Moro G, Pasolini R, Sartori C. A study on term weighting

for text categorization: a novel supervised variant of TF.IDF. In:

http://dx.doi.org/10.1186/s12859-015-0777-8
http://dx.doi.org/10.1186/s12859-015-0777-8
http://www.scitepress.org/portal/ProceedingsDetails.aspx?ID=xer6arJeMc8=&t=1
http://www.scitepress.org/portal/ProceedingsDetails.aspx?ID=xer6arJeMc8=&t=1
http://geneontology.org/ontology/go-basic.obo
http://www.ebi.ac.uk/GOA/downloads
http://www.ncbi.nlm.nih.gov/pubmed


Di Lena et al. BMC Bioinformatics  (2015) 16:346 Page 13 of 13

Proceedings of the 4th international conference on data management
technologies and applications (DATA). Candidate to the best conference
paper award; 2015. p. 26–37.

34. Singhal A. Modern information retrieval: a brief overview. Bull IEEE
Comput Soc Tech Comm Data Eng. 2001;24:35–43.

35. Wonnacott TH, Wonnacott RJ. Introductory statistics, 5th ed. John Wiley
and Sons (WIE): New York, USA; 1990. 962 ISBN: 978-0471615187.

36. Voorhees E. Overview of the TREC 2001 question answering track. In:
Proceedings of the 10th text retrieval conference. 2001. p. 42–51.

37. Schlicker A, Domingues FS, Rahnenführer J, Lengauer T. A new measure
for functional similarity of gene products based on Gene Ontology. BMC
Bioinform. 2006;7:302.

38. Verspoor K, Cohn J, Mniszewski S, Joslyn C. A categorization approach to
automated ontological function annotation. Protein Sci. 2006;15:1544–9.

39. Resnik P. Using information content to evaluate semantic similarity in a
taxonomy. In: Proceedings of the 14th international joint conference on
artificial intelligence, Morgan Kaufmann. Morgan Kaufmann Publishers
Inc. San Francisco, CA, USA; 1995. p. 448–53.

40. Lin D. An information-theoretic definition of similarity. In: Proceedings of
the 15th international conference on machine learning. Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA; 1998. p. 296–304.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Benchmark set
	Approach
	Text preprocessing
	Publication-centric score
	Term-centric score

	Tuning of parameters
	Evaluation metrics
	TREC metrics
	CAFA/BioCreative metrics
	Information-Theoretic metrics


	Results and discussion
	Overall classification performances
	Performances on species-specific knowledge bases
	Performance comparison with related approaches

	Conclusions
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References



