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Abstract

Background: Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres
of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often
limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the
analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least
partly on manual operation.

Results: We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of
orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to
estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among
others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus
on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user
interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations
using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed
for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and
superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated
general good agreement between computational and manual results while also revealing notable expert-to-expert
variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using
different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to
demonstrate the software in an actual experiment and observed changes in cellular orientation in response to
stretching.

Conclusions: CytoSpectre, a versatile, easy-to-use software tool for spectral analysis of microscopy images was
developed. The tool is compatible with most 2D images and can be used to analyze targets at different scales.
We expect the tool to be useful in diverse applications dealing with structures whose orientation and size distributions
are of interest. While designed for the biological field, the software could also be useful in non-biological applications.
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Background
Oriented features, such as various fibrillar structures of
the cytoskeleton and the extracellular matrix, are
frequent in biological systems but their analysis is often
limited to subjective assessment by human experts [1].
Such procedures are not only typically too arduous to
allow high-throughput studies but their reliability and
repeatability are also questionable. Both optical techniques
and software tools have been developed to obtain quanti-
tative information in repeatable and automated manner.
The software approach is advantageous in the sense
that instead of using special instruments, the analyses
can be performed for images captured with routinely
used microscopy techniques. The proposed computa-
tional methods typically rely either on intensity-based
segmentation, partial derivative approaches or spectral
analysis. Separating individual objects from the image
by segmentation is often difficult due to intensity vari-
ations and the presence of interfering high intensity
features. Methods utilizing different forms of partial
derivatives, on the other hand, detect the sharp
changes in pixel intensity near the edges of oriented
structures. The directions of intensity gradients can
then be used as a measure of orientation in a particu-
lar image region. Methods of this family have been
used to analyze e.g., myofiber arrangement in cardiac
tissue [2], orientation of endothelial cells subjected to
fluid flow [3], the organization of collagen fibers in the
adventitia of arteries [4] and the orientation of fibrillar
structures in plant cells [1]. Methods of the third class
are markedly different, as instead of processing the
images in the original spatial domain, they transform
each image into an alternative frequency domain rep-
resentation by decomposing the image into a spectrum
of periodic components. This spectrum is called the
power spectrum or power spectral density (PSD) of
the image. By analyzing the PSD, one can estimate the
orientation distribution of the different structures
present in the image. Moreover, the PSD also contains
information which can be related to the size of the
structures. Spectral methods have been applied to the
analysis of e.g., collagen and other fibers in different
tissues and biomaterials [5–10], myocytes subjected to
magnetic fields [11], the contractile cytoskeleton of
stem cell derived cardiomyocytes [12, 13], neurite
development [14] and keratoconic corneas [15]. In
addition to these main classes of methods, approaches
combining spatial and frequency domain analysis steps
have been reported [16, 17].
Despite their numerous possible applications, few of the

published methods are currently available in the form of
user-friendly software. Previously published general
purpose tools include the ImageJ [18] plug-ins FibrilTool
[1] and OrientationJ [4], which allow the quantification of

orientation distributions based on intensity gradients.
Although highly useful in many applications, these
methods still require significant manual operation in the
form of selecting cells or regions of interest, or tuning of
multiple parameters that lack any physical interpretations.
Moreover, to the best of our knowledge, there are no
publicly available tools utilizing spectral analysis for this
purpose. In the case of images with heterogeneous con-
tent, such as complete cells with different subcellular
structures visible, the possibility of separately examining
features that fall into different spatial frequency bands
could be highly beneficial. Such an approach would allow
‘unmixing’ of different image features that would other-
wise all contribute to the final result of the analysis. This
cannot be accomplished with spatial methods without
significant image preprocessing steps. Such a tool could
also take advantage of the capability to simultaneously
analyze orientation and spatial frequency distributions,
a feature of spectral analysis that has been mostly over-
looked in previous studies. Spatial frequencies can be
further transformed into wavelengths, which can be
more easily interpreted to derive measures of object
dimensions. Spectral methods are also relatively insensi-
tive to noise [1] and can be flexibly adapted to different
applications in a computationally efficient manner [9].
To enable spectral analysis of oriented features on

both cellular and subcellular level with minimal user
intervention, we developed a flexible software tool,
CytoSpectre. CytoSpectre can be operated in highly
automated fashion via a graphical user interface (GUI)
on basic desktop computers without prior image
processing expertise. In addition to the conventional
approach of analyzing the whole power spectrum, domi-
nated by the gross properties of the image, CytoSpectre
extracts spectral regions representative of more detailed
features such as fibrils or other intracellular structures. The
obtained orientation and wavelength distributions and
corresponding summary statistics can be easily exported in
various formats for further study. To quantitatively measure
the performance of CytoSpectre, we developed a simulation
test bench capable of generating hundreds of artificial
microscopy images with varying characteristics. We ana-
lyzed the performance of the software by an extensive set of
simulations based on a large library of these computer-
generated images and also by benchmarking against Fibril-
Tool [1], a state-of-the-art orientation analysis tool. In the
case of real images, performance of the software was vali-
dated by comparing computational and manual results for
fluorescence and phase contrast images of human induced
pluripotent stem cell (hiPSC) derived cardiomyocytes
(hiPSC-CM) and peripheral sensory neurons (hiPSC-PSN).
Finally, we demonstrated the functionality of the software
in an actual experiment by studying the response of hiPSC-
CMs to cyclic uniaxial stretching.
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Implementation
CytoSpectre was developed using MATLAB R2014a
(The MathWorks, Inc., Natick, MA, USA) and it can be
used either under MATLAB or as a standalone 64-bit
Windows 7 application. The standalone application may
be used free of charge for the purpose of academic
research even without a MATLAB license by installing
the MATLAB Compiler Runtime library, which can be
obtained automatically during installation. The installer
for the standalone deployed application is provided in
Additional file 1 and the MATLAB source codes in
Additional file 2. Instructions for operating the software
are given in the user’s guide in Additional file 3.
CytoSpectre can be operated either via the MATLAB
command line or via a graphical user interface. A
screenshot of the CytoSpectre GUI during a typical analysis
session is shown in Fig. 1. The GUI features controls for
importing and examining images, customizing analysis
settings, running the analysis and for exporting results.
Analysis results are also presented in graphical form as
plots. The computation time required for a single image of
typical size (see the Results and Discussion section for
details) on a basic laptop PC (equipped with an Intel Core™
i5 processor) was approximately 2–3 s in our experiments,

allowing even large datasets to be analyzed without special
hardware. The main analysis steps performed for each
image are illustrated in Fig. 2 and described in the following
sections. More detailed information concerning each step
of the analysis can be found in the user’s guide and the
supplementary information provided in Additional file 3
and Additional file 4, respectively.

Importing images and selecting analysis settings
CytoSpectre is compatible with grayscale and RGB
images in .tif, .jpeg, .gif., .bmp and .png image formats.
In principle, 2D images obtained using any form of
microscopy are supported. Only a single image is loaded
into memory at a time, allowing users to examine large
sets of images without particular system requirements
in terms of available memory. CytoSpectre neither
performs nor requires any particular preprocessing
steps for the images. Before starting an analysis, the
user needs to input the correct values for magnifica-
tion, pixel size of the camera and in the case of RGB
images, the color channel of interest. Magnification can
also be detected automatically from the file names of
the images if certain naming rules are followed. The
physical size of the image pixels is then obtained by

Fig. 1 CytoSpectre graphical user interface. The GUI allows users to import (far left) and examine images (upper left, cell outline obtained from a
segmentation mask is shown in red). Analysis settings and morphological parameters for each cell are shown in tables (upper right). The orientation
and wavelength distributions are presented as plots and as summary statistics (middle). The GUI also features controls for running analyses and
exporting results (bottom right)
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dividing the camera pixel size by magnification. A number
of other settings controlling the analysis may also be
adjusted but based on a sensitivity analysis using simulated
images the results produced by the software are not overly
sensitive to the exact values of these settings (see Additional
file 4 and Additional file 5). More information on these set-
tings is available in Additional file 3 and Additional file 4.
Once suitable settings have been found, CytoSpectre allows
them to be stored in a user profile file, which can then be
loaded during later analysis sessions. This feature also
makes it easy to store favorite settings suitable for different
types of images.

Importing cell segmentation data and analyzing cellular
morphology
In addition to analyzing complete images as a whole,
CytoSpectre allows the spectral analysis to be performed on
a cell-by-cell basis. This can be accomplished by providing
CytoSpectre with cell segmentation data in the form of
mask images, along with the actual images. The mask
images can be either binary images or label images. Binary
images show background pixels in black and pixels belong-
ing to cells in white. In that case, CytoSpectre assumes that
each connected region of white pixels represents a single
cell. Alternatively, the mask image can have labels for each

Read image

Read segmentation mask &
analyze morphology (optional)

Estimate PSD

Estimate spectral background & 
transform PSD to probabilistic form

Extract mixed component Extract detail component

Analyze orientationsAnalyze orientations Analyze wavelengths Analyze wavelengths

Export results

Fig. 2 Flowchart of the analysis pipeline. At the beginning of an analysis run, images and (optional) segmentation masks are read into
CytoSpectre. If segmentation masks are provided, descriptors of cellular morphology are computed before estimation of the PSD. Spectral regions
of interest (outlined in red) corresponding to mixed and detail components are then extracted from the PSD. Orientation and wavelength analysis
is performed for each component and the obtained results are typically exported for further study
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cell, allowing the separation of touching cells. That is, in
label images, background pixels have an intensity value of
zero, pixels belonging to the ‘first’ cell have a value of one,
pixels belonging to the ‘second’ cell have a value of two and
so on. In addition to the spectral analysis, basic descriptors
of cellular morphology, such as cell area, perimeter and
eccentricity are computed for each cell. A large number of
image processing and analysis tools, for example ImageJ
[18] and CellProfiler [19], are available for performing the
actual segmentation step. In some cases, the segmentation
masks may even be formed manually. Since specialized
tools fine-tuned for a particular application are often
required for successful segmentation, we did not choose to
include any single tool as an integral part of CytoSpectre.
Instead, users can freely perform the segmentation step
using tools they have found suitable and import the final
results into CytoSpectre as mask images. However, the
segmentation step is optional and in most cases it is
probably sufficient to analyze the complete image as such,
especially if only a single cell is present in the image.

Spectral estimation
The PSD of the image is estimated using Welch’s method,
also known as Weighted Overlapped Segment Averaging
(WOSA) [20], with 50 % overlap between neighboring
segments. The size of the segments, controlling the tradeoff
between spectral resolution and stability, can be selected by
the user from five different options: maximum resolution,
high resolution, balanced, low noise or minimum noise. In
most cases, the balanced setting is appropriate. Circularly
symmetric Hann windowing is applied to each segment
before computing its Discrete Fourier Transform (DFT) in
order to reduce spectral leakage. If cell segmentation is
enabled, background pixels are set to zero prior to spectral
estimation. For more convenient processing during
later analysis steps, the PSD is then transformed into
polar coordinates.

Separation of spectral components
CytoSpectre separates two components from the polar
PSD, which we refer to as the mixed component and the
detail component. The mixed component represents all
features of the image present in the range of spatial
frequencies dictated by upper and lower cutoff frequen-
cies. By default, these frequency cutoffs are employed
merely to exclude extremely low spatial frequencies,
which typically only contain uninteresting, poorly resolved
features [5, 6] or windowing artefacts [21]. However, the
cutoff values may also be adjusted by specifying corre-
sponding wavelength cutoffs. This may be desirable
e.g., to exclude high-frequency noise or to focus the
analysis on a particular wavelength range of interest.
Analyzing the mixed component is appropriate for images
having relatively homogeneous content such as a confluent

layer of cells in a phase contrast micrograph. Inspecting the
mixed component can also be a good starting point for any
analysis.
The detail component, on the other hand, represents

some particular group of structures with a limited range
of spatial frequencies and/or orientations, such as intra-
cellular fibrils of given size. If present in the image, such
structures are reflected in the power spectrum as more
or less contiguous regions of high intensity relative to
background. The aim of the detail component extraction
procedure is to separate these regions from the rest of
the power spectrum, allowing the user to obtain results
that more specifically represent the structures of inter-
est. The main advantage of this approach is that it allows
the exclusion of interfering spectral components arising
from, for example, the contours of a cell’s cytoplasm or
from variations in fluorescent background signal across
the image. CytoSpectre uses an iterative method, bearing
some resemblance to a Bayesian classifier and segmenta-
tion algorithms based on region growing, to separate the
spectral region corresponding to the detail component.
If an estimate of the size of the targets of interest is
available a priori, this information can be provided as a
wavelength guess to guide the algorithm. The procedure,
illustrated in Fig. 3, consists of first forming an estimate of
spectral background using an approach based on smooth-
ing the actual PSD estimate. The background estimate is
utilized to obtain a probabilistic representation of the PSD.
‘Posterior probability’ of belonging to the detail compo-
nent spectral region is obtained for each spectral element
by multiplying the probabilistic PSD with a 2D Gaussian
‘selector function’, whose role is similar to a prior in a
Bayesian classifier. Initial parameters of the 2D Gaussian
are estimated based on the circular statistics of the PSD
and a 1D peak fitting step. An initial estimate of the detail
component spectral region is then formed by thresholding
the ‘posterior probabilities’. The region is then adapted
to the actual shape of the spectral area of interest by
modifying the 2D Gaussian at each iteration, based on
the circular statistics of the spectral region extracted
during the previous iteration. Technical details of the
procedure are described in Additional file 4.

Orientation and wavelength analysis
After the mixed and detail spectral component have been
extracted from the polar power spectrum, their spectral
elements are averaged over all spatial frequencies and all
orientations to obtain one-dimensional distributions of ori-
entations and spatial frequencies, respectively. For the
orientation distribution, summary statistics are computed
using the functions provided by the CircStat toolbox [22].
In addition to the mean orientation, given in degrees, they
include circular variance and angular standard deviation,
which are two alternative measures of isotropy, as well as
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circular skewness and circular kurtosis, which are indicative
of the symmetry and peakedness of the orientation distribu-
tion, respectively. More information on these parameters is
available in Additional file 3 and Additional file 4. The
spatial frequency distribution is first transformed into a
wavelength distribution, which in turn reflects the size
distribution of target structures, and descriptive statistics
(mean, median, mode and standard deviation) are then
computed. The wavelengths are given in micrometers by
default, but the preferred unit can be selected by the user.

Examining and exporting results
After finishing an analysis run, the estimated orientation
and wavelength distributions can be examined as plots via
the CytoSpectre GUI together with summary statistics. If
segmentation is enabled, allowing analysis of cellular
morphology, the corresponding statistics are also shown
in tabular form for each cell. The power spectrum can also
be examined visually in order to spot interesting spectral
features, which may then be extracted by tuning the wave-
length cutoffs and/or the expected detail component
wavelength range. CytoSpectre allows the user to export
the analysis results in a variety of formats. Summary statis-
tics can be easily exported to spreadsheets or plain text
files for further study. The analysis settings used to
obtain the results are also stored in these files. In
addition, the user can export plots of the estimated
orientation and wavelength distributions as images for
visualization purposes. It is also possible to export the
actual orientation and wavelength distribution values in
plain text files, allowing customized analysis pipelines to
be developed utilizing external software.

Results and discussion
Performance on synthetic phase contrast microscopy
images of cell clusters
The performance of orientation analysis algorithms has
typically been assessed using simple computer-generated
test images featuring randomly placed Gaussians, ellipsoids
or lines [1–3, 5, 7, 9, 10, 15]. In line with this traditional

approach, a MATLAB script was used to generate
1000 synthetic images featuring randomly placed two-
dimensional Gaussian functions as targets, resembling
clusters of cells in a phase contrast microscopy image.
The sizes, aspect ratios and orientations of the Gaussians
were obtained by sampling from normal and von Mises
distributions with parameters varying from image to image
to create a diverse set of test images. The approximate
mean width of these artificial cells varied between 10 and
50 μm from image to image. In the remainder of the article,
we refer to this set of images as the ‘cell cluster dataset’.
The test images were then analyzed using CytoSpectre with
and without different types of image quality degradations
and the estimated values were compared with the true
values. In the comparisons, we used the values estimated
for the mixed component, as the sizes of the targets in a
single image were not particularly limited to a certain band
of wavelengths and the images do not contain any other
structures besides the targets of interest. To simulate real-
life processes leading to image quality degradation in
microscopy, signal-dependent Poisson distributed noise
and additive white Gaussian noise were added into the
synthetic images [23]. In addition to noising, blurring was
applied by filtering the images with a Gaussian filter to
simulate the effects of imperfect focus, leading to loss of
sharp details in the images [1]. Each of the degradation
operations was performed for all 1000 images and the
images were then analyzed by CytoSpectre to quantify the
effects of degraded image quality. The analysis settings
used for the original images were not adjusted in any way
for the degraded images. A detailed description of the
synthetic image generation and degradation process is
given in Additional file 4 while full numerical data and the
used analysis settings from these experiments are provided
in Additional file 6.
First, we analyzed the images without any degradation.

The results of this experiment are summarized in Table 1.
For each parameter, we calculated the means and standard
deviations of the errors. To allow comparisons between
different parameters having different numerical values, we

(See figure on previous page.)
Fig. 3 Flowchart of the detail component extraction procedure. An estimate of spectral background (topmost right) is first obtained by applying a
smoothing operation on the PSD (topmost middle) of the input image (topmost left). The PSD is then converted to probabilistic form (center)
based on the values of the PSD relative to spectral background. An initial 2D Gaussian ‘selector function’ (iteration 1, top row) is formed based on
parameters estimated from the PSD. The 2D Gaussian is multiplied with the probabilistic PSD to obtain ‘posterior probabilities’ of belonging to
the detail component region (iteration 1, middle row). A threshold of 0.5 is then applied to the ‘posterior’ to obtain the initial detail component
region (iteration 1, bottom row; region outlined in red). The process then proceeds in iterative manner. Parameters for the ‘selector function’ used
during the second iteration (iteration 2, top row) are estimated based on the detail component spectral region obtained during the first iteration.
The same steps are then repeated during each iteration until the parameters of the ‘selector function’ reach convergence at a certain threshold
(in this case after four iterations) or the maximum number of allowed iterations is reached. The final estimate of the detail component spectral
region is retained for further analysis steps. The x-axis in all of the spectral plots indicates spatial frequency in μm−1 while the y-axis indicates
orientation in degrees. The values of the PSD, spectral background and the detail component region plots are given in arbitrary units. The values
of the probabilistic PSD, the Gaussian ‘selector function’ and the ‘posterior’ plots are given as probabilities, as indicated by the color bar on the
right-hand side of the probabilistic PSD
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also computed the corresponding statistics for normalized
errors, which were obtained by normalizing the errors
relative to the full range of the true values of each param-
eter. Moreover, we computed Pearson’s linear correlation
coefficient between the true and estimated values for each
parameter. In the case of the mean orientation, which is
the only parameter defined on a circular scale, only the
absolute errors were analyzed. The results show that the
mean orientation could be estimated with an accuracy
that is highly likely to be sufficient for most applications
since errors on the order of a few degrees are probably
overshadowed by biological or technical variation in most
experiments. It should be noted that we did not exclude
even highly isotropic test images from this analysis. In the
most extreme cases, the structures are so isotropic that
even the true mean orientation is not really indicative of
any preferred orientation which can result in large, more
or less random errors for such images. The obtained
orientation error values can therefore be seen as rather
pessimistic. The other orientation and wavelength param-
eters, except for circular skewness, exhibit relatively high
mean errors, indicating that the numerical values of these
parameters should be interpreted with caution. However,
the linear correlation coefficients are acceptable for all
parameters, ranging from ~0.42 to ~0.95, which indicates
that the errors are mostly attributable to systematic bias.
This means that the estimated values can still be useful in
experiments where a point of comparison is available. For
example, values obtained from samples treated with a
chemical of interest could be compared to a non-treated
control sample. As such a comparative experimental setup
including control samples is typical for many biological
assays we feel that the high systematic bias in most of the
estimated parameters is not a major issue, as long as the
user acknowledges the fact that the numerical values
should not be interpreted without a point of reference.
Moreover, even in the absence of any systematic bias,
interpreting many of the parameters (e.g., circular

variance) directly based only on their numerical values
would probably be possible only for a statistics expert
with previous experience of working with such measures.
In other words, as the answer to the question of whether a
particular value of circular variance, for example, is ‘high’
or ‘low’ is usually relative and depends on the case at hand,
strong linear dependence between true and estimated
values is much more important than the amount of
systematic bias.
Images with different levels of blurring were obtained by

filtering with Gaussian kernels having different standard
deviation values, ranging from 0.5 to 5 pixels. Errors in the
estimated parameter values obtained at different levels of
blurring are plotted in Fig. 4a. An example of a moderately
blurred image is shown in Fig. 4d. The effect of blurring on
the results was negligible for all of the parameters with both
the mean and the standard deviation of the errors staying
almost constant. Images with different levels of additive
white Gaussian noise were obtained by adding noise with
zero mean and normalized variance ranging from 0.25 to
2.5 %. These values correspond to approximate standard
deviations of 13 and 40, respectively, on the absolute 8-bit
intensity scale (0–255). Errors in the estimated parameter
values obtained in the presence of different amounts of
Gaussian noise are plotted in Fig. 4b while an example of
an image with moderate Gaussian noise is shown in Fig. 4e.
The estimates of parameters describing the orientation
distribution, especially the mean orientation and circular
skewness, are able to tolerate even extreme amounts of
Gaussian noise with only a moderate increase in error. The
wavelength statistics, on the other hand, are more sensitive
towards Gaussian noise. In the case of the mean, median
and mode of the wavelength distribution, the mean errors
actually decrease with increased noise but at the same time,
the standard deviation of the error increases, indicating
increased random variation. Finally, images with different
levels of signal-dependent Poisson noise were obtained as
in [23] by using scaling factors ranging from 2 to 20 during

Table 1 Performance on simulated images of cell clusters

Error mean ± std Normalized error mean ± std Pearson’s r

Mean orientation 1.5534° ± 3.3967° - -

Circular variance 0.2384 ± 0.2162 0.2384 ± 0.2162 0.4156

Angular std 0.4042 ± 0.2632 0.2858 ± 0.1861 0.4230

Circular skewness −0.0001 ± 0.0312 −0.0002 ± 0.0578 0.4686

Circular kurtosis −0.3930 ± 0.2209 −0.3272 ± 0.1840 0.4980

Wavelength, mean 21.9955 μm± 5.5363 μm 0.5281 ± 0.1329 0.9532

Wavelength, median 24.4053 μm± 6.1943 μm 0.5703 ± 0.1447 0.9262

Wavelength, mode 31.7249 μm± 10.1070 μm 0.7023 ± 0.2237 0.4770

Wavelength, std 2.1006 μm± 3.6847 μm 0.1104 ± 0.1936 0.4722

Errors (mean ± standard deviation) and Pearson’s linear correlation coefficient between true and estimated values for non-degraded simulated images of the cell
cluster dataset (N = 1000) are shown for each parameter. Normalized errors were obtained by dividing the errors by the full range of true values. The normalized
error and linear correlation coefficient are not applicable to the mean orientation. Mean orientation error is given as absolute error in degrees
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Fig. 4 (See legend on next page.)
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the noise generation process. Errors in the estimated
parameter values obtained in the presence of different levels
of Poisson noise are plotted in Fig. 4c while an example of
an image with moderate Poisson noise is shown in Fig. 4f.
Overall, the effect of Poisson noise on the results is very
similar to that of Gaussian noise. It should be noted, that
the more extreme amounts of noise and blurring tested in
these experiments represent a worst case scenario, which
would rarely be encountered in practice unless there was a
technical problem with the imaging system.

Performance on synthetic fluorescence microscopy
images of cells with intracellular fibrillar structures
In addition to the more traditional performance evaluation
with simple 2D Gaussian targets, the performance of the
software was also evaluated with more sophisticated test
images containing 2D Gaussian subunits organized into
intracellular fibrillar structures. SimuCell [24] was used to
generate synthetic images of cells and nuclei, and an in-
house developed MATLAB algorithm was utilized to
construct the fibrillar structures within the cells. As a result,
a library of 1000 images with characteristics imitating those
of fluorescence microscopy images captured from cells with
immunostained intracellular fibrils was generated. Similarly
to the cell cluster dataset, random sampling from normal
and von Mises distributions was used to generate images
with different fibril orientations and isotropy, different
numbers of fibrils and fibril subunits, and different fibril
subunit sizes and spacing. In the remainder of the article,
we refer to this set of images as the ‘fibril dataset’. In the
case of this dataset, the targets of interest are present within
a particular range of wavelengths and there are interfering
features in the image, namely the nucleus and the cell
borders. This allowed us to try focusing the analysis to the
targets by using the detail component values rather than
the mixed component, which would also include contribu-
tions from the interfering structures. The image quality
degradation experiments performed for the cell cluster
dataset were repeated for the fibril dataset. Whenever the
detail component could not be detected, the image in
question was excluded from the analysis. The total
number of excluded images varied between zero and
four (corresponding to 0–0.4 % of all images) depend-
ing on the type and severity of the degradations. The
largest number of four exclusions was actually observed

for the non-degraded images, which is probably a conse-
quence of the less natural spectra of these images. A
detailed description of the synthetic image generation and
degradation process is given in Additional file 4 while full
numerical data and the used analysis settings from these
experiments are provided in Additional file 6.
Similarly to the cell cluster dataset, the images of the fibril

dataset were first analyzed without any image quality
degradation. The results of this experiment are summarized
in Table 2. The errors of the estimated mean orientations
were slightly higher than for the cell cluster dataset but the
mean error is still less than two degrees. This is again a pes-
simistic value, as even the most isotropic cells are included
in the analysis. The other orientation distribution parame-
ters exhibited low errors as well, with all of the normalized
mean errors below 5 %. Linear correlation coefficients be-
tween the true and estimated circular variance, angular
standard deviation and circular kurtosis were rather high,
ranging from ~0.53 to ~0.65, while circular skewness exhib-
ited a moderate correlation of ~0.34. The decrease of sys-
tematic bias relative to that observed for the cell cluster
dataset and the mixed component is probably explained by
the ability of the detail component to capture only the rele-
vant part of the power spectrum, which appears to be rep-
resentative of the targets of interest, while decreasing the
contributions of irrelevant parts of the spectrum. In the
case of the wavelength parameters, the strong improvement
was limited to the wavelength mode. The wavelength mode
had a mean error of only 6.1 nm (with the size of the tar-
gets being on the order of a few micrometers) or 0.54 % of
the full range of true values. As the simulated images have
a pixel size of 170 nm, this level of error indicates subpixel
accuracy for the majority of the images. A high linear cor-
relation coefficient of ~0.78 also indicated that the esti-
mated wavelength mode reflects the true values reliably.
The mean, median and standard deviation parameters
of the wavelength distribution did not show similarly
improved results, however, with weak or non-existent
correlations ranging from ~0.09 to ~0.19. Based on
these results, when using the detail component to sep-
arate targets of interest from the image, the orientation
parameters may be used with confidence but the wave-
length statistics, excluding the mode, should be treated
with caution. The mode of the wavelength distribution,
however, reliably indicates the typical size of the targets

(See figure on previous page.)
Fig. 4 Simulation results for the cell cluster dataset. Errors (mean ± standard deviation) between estimated and actual values for each parameter
using images of the cell cluster dataset (N = 1000). The errors are shown for images blurred with Gaussian kernels having standard deviations
from 0 to 5 pixels (a), images with additive white Gaussian noise having normalized variances from 0 to 2.5 % (b) and images with Poisson
distributed noise at levels 0–20 (c). For the mean orientation, the errors are absolute and given in degrees. For the other parameters, the errors
were normalized by the range of true values. Examples of images with moderate blurring (std 2.5 pixels) (d), Gaussian noise (var. 1 %) (e) and
Poisson noise (level 10) (f) are shown
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of interest. This was expected, as the mode has been
used previously e.g., as a measure of the sarcomere
length of cardiomyocytes [12].
The effects of blurring, Gaussian noise and Poisson noise

on the results of the fibril dataset are visualized in Fig. 5a-c
with example images shown in Fig. 5d-f. As opposed to the
cell cluster dataset, serious blurring increased the errors of
most parameters. This is natural, as the fibril subunits are
much smaller and closer to each other than the Gaussian
targets of the cell cluster dataset. Sharper images are
therefore required to properly capture these detailed
structures. However, the errors only start to increase
markedly after the blur kernel standard deviation is in-
creased beyond 2–3 pixels while less severe blurring is
still tolerated well. Moreover, increased blurring smoothly
increases the errors rather than causing sudden, complete
breakdown of the detail component detection procedure.
Tolerance against even extreme amounts of Gaussian and
Poisson noise, on the other hand, is very high as none of
the estimated parameters exhibit any clear sensitivity to ei-
ther type of noise. The adverse effects of severe noise ob-
served in the case of the cell cluster dataset are probably
avoided due to the ability of the detail component to again
extract only the relevant part of the power spectrum, de-
creasing the relative contribution of noise.

Validation using real fluorescence microscopy images of
hiPSC-derived cardiomyocytes
Two sets of real images of hiPSC-CMs with different
immunofluorescent stainings were used to validate the
performance of CytoSpectre with fluorescence microscopy
images. Spontaneously beating hiPSC-CMs were differen-
tiated by END-2 co-culture method [25] from hiPSCs
reprogrammed from skin fibroblasts [26]. Differentiated
hiPSC-CMs appeared as beating clusters in co-culture
after 15 days of initiation of differentiation. These clusters
were cut, dissociated and cultured as single hiPSC-CMs
[27]. Cultured cells were fixed and stained by

immunocytochemistry with cardiac specific antibodies
binding on the sarcomere structures of hiPSC-CMs. Sam-
ples were imaged with Zeiss AxioScope.A1 fluorescence
microscope with Zeiss AxioCam MRc5 using 2 × 2 binning
and an effective pixel size of 6.8 μm. The first set (valid-
ation set 1) included 15 images at 20× and 40× magnifica-
tions, stained with DAPI and antibody labels for cardiac
Troponin T and α-actinin. An example image from this set
is shown in Fig. 6a. The second set (validation set 2) in-
cluded 15 images at 40× magnification, stained with DAPI
and labels for cardiac Troponin T and Myosin binding
protein C3. In these images, the striated sarcomere pat-
terns were clearly visible. An example image is shown in
Fig. 6b. A detailed description of the experimental
methods is given in Additional file 4. Validation sets 1 and
2 were analyzed by 12 human experts, i.e., researchers
working with hiPSC-CMs, based only on visual examin-
ation of the images. The experts were asked to give an
estimate of the mean orientation of the intracellular
myofibrils present in the images. The experts also had
the option of leaving the mean orientation unspecified in
the case of cells exhibiting a high degree of isotropy (i.e.,
lacking any preferred orientation). Some experts also spe-
cified multiple main orientations for a single cell, in
which case circular averaging was used to obtain a single
mean orientation value for each image. In addition to es-
timating the mean directions, the experts were asked to
rank the images of each set based on the anisotropy of
the myofibrils. We limited ourselves to analyzing the
mean orientation and anisotropy only, since estimating
the wavelength parameters (e.g., sarcomere length) would
have been highly challenging based on visual examination
and the value of such results would have been question-
able. The images were then analyzed using CytoSpectre
and the computational results were compared with the
expert evaluation. Full numerical data and analysis set-
tings for these experiments are provided in Additional
file 7.

Table 2 Performance on simulated images of cells with intracellular fibrillar structures

Error mean ± std Normalized error mean ± std Pearson’s r

Mean orientation 1.8128° ± 7.1196° - -

Circular variance −0.0119 ± 0.1427 −0.0119 ± 0.1427 0.5305

Angular std 0.0149 ± 0.1982 0.0106 ± 0.1401 0.5414

Circular skewness 0.0008 ± 0.0311 0.0015 ± 0.0616 0.3432

Circular kurtosis −0.0509 ± 0.1808 −0.0453 ± 0.1609 0.6500

Wavelength, mean 0.3886 μm± 0.5756 μm 0.3809 ± 0.5642 0.1681

Wavelength, median 0.2109 μm± 0.5283 μm 0.2020 ± 0.5061 0.1978

Wavelength, mode 0.0061 μm± 0.2002 μm 0.0054 ± 0.1778 0.7817

Wavelength, std 0.4912 μm± 0.4384 μm 2.2042 ± 1.9671 0.0936

Errors (mean ± standard deviation) and Pearson’s linear correlation coefficient between true and estimated values for non-degraded simulated images of the fibril
dataset (N = 996) are shown for each parameter. Normalized errors were obtained by dividing the errors by the full range of true values. The normalized error and
linear correlation coefficient are not applicable to the mean orientation. Mean orientation error is given as absolute error in degrees
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Fig. 5 Simulation results for the fibril dataset. Errors (mean ± std) between estimated and actual values for each parameter using images of the
fibril dataset (N = 1000). The errors are shown for images blurred with Gaussian kernels having standard deviations from 0 to 5 pixels (a), images
with additive white Gaussian noise having normalized variances from 0 to 2.5 % (b) and images with Poisson distributed noise at levels 0–20 (c).
For the mean orientation, the errors are absolute and given in degrees. For the other parameters, the errors were normalized by the range of true
values. Examples of images with moderate blurring (std 2.5 pixels) (d), Gaussian noise (var. 1 %) (e) and Poisson noise (level 10) (f) are shown
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The myofibrils visible in the images of the validation set 1
were not limited to any clearly specific band of wavelengths
in the power spectrum. We therefore analyzed the mixed
component using a relatively broad wavelength range from
1 to 5 μm. This selection allowed us to exclude noise and
irrelevant structures present at high spatial frequencies (i.e.,
short wavelengths) as well as structures much larger than
the myofibrils, such as the nucleus and the shape of the
entire cell. The mean orientations estimated by CytoSpectre
were then compared with the manual estimates of each

expert. We excluded the most isotropic images from this
analysis, since mean orientation is not a meaningful quan-
tity for highly isotropic cases. If ¼ or more of the human
experts were unable to specify the mean orientation for an
image, the image was excluded. Based on this criterion, 11
images were retained. The distributions of absolute
differences between manual and computational mean
orientations are visualized for each expert in Fig. 6d.
The combined difference averaged over all experts and all
images was 15.6° ± 14.6° (mean ± standard deviation). This
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Fig. 6 Results for real images. Examples of hiPSC-CMs from validation set 1 (a) and validation set 2 (b), imaged using fluorescence microscopy,
are shown. An example of hiPSC-PSNs, from validation set 3, imaged using phase contrast imaging is shown in (c). The distributions of absolute
differences in degrees between mean orientations estimated by CytoSpectre and by each human expert are plotted in (d), (e) and (f) for images
of validation set 1 (N = 11), validation set 2 (N = 10) and validation set 3 (N = 10), respectively. If ¼ or more of the human experts were unable to
specify the mean orientation for an image, the image was excluded from this analysis. The red line is the median, the edges of the blue box are
the 25th and 75th percentiles and the whiskers extend to 1.5 times the interquartile range (corresponding to approximately 99.3 % coverage for
normally distributed data). Values beyond these limits are considered outliers and are plotted as red crosses. Pearson’s linear correlation coefficients
between anisotropy rankings estimated by human experts and circular variance values estimated by CytoSpectre (CS) for each human-human or
CS-human pair are shown as correlation matrices in (g), (h) and (i) for images of validation set 1 (N = 15), validation set 2 (N = 15) and validation set
3 (N = 15), respectively
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can be seen as an acceptable result in view of psychological
studies which indicate that humans may overestimate or
underestimate angles by up to 10° [28, 29]. There was also
considerable variation from expert to expert. For example,
the difference between CytoSpectre and expert 3 was only
10.6° ± 5.9° while comparison with expert 7 produced a
difference of 22.8° ± 24.8°. This variation clearly underlines
the potential benefits of automated, objective analysis and
casts doubts on the reliability of manual measurements
relying on a single human observer, as is often the case.
We also analyzed the correlation between the circular

variance values estimated by CytoSpectre and the rank-
ing of images performed by the human experts, based
on the perceived degree of anisotropy of the myofibrils.
We computed Pearson’s linear correlation coefficient
between the values estimated by CytoSpectre and by each
human expert as well as between each possible pair of
humans. All 15 images were used for this analysis. The
results are visualized as a heatmap of correlation coeffi-
cients in Fig. 6g. The linear correlation coefficient between
the values estimated by CytoSpectre and the rankings
performed by human experts was 0.30 ± 0.43 (mean ±
standard deviation) while the linear correlation coefficient
between human experts was only 0.18 ± 0.50. While the
mean correlation coefficient of 0.30 is rather low, there is
considerable variation from expert to expert, similarly to
the mean orientation estimates. Many of the human
analysts, especially experts 1, 4, 5, 6, 8, 11 and 12 agree
with the computational results much more strongly with
correlation coefficients of approximately 0.40, 0.71, 0.70,
0.63, 0.65, 0.59 and 0.60, respectively. The remaining
experts tend to disagree not only with CytoSpectre but
also with each other, highlighting the diversity of ways of
perceiving the images and performing scoring. In sum-
mary, these results seem to indicate that it is more
likely for a randomly selected human expert to agree
with the computational results than with another ran-
domly selected human expert. Moreover, the software
was able to estimate circular variance values which cor-
responded well with the majority of manual rankings,
while the observed expert-to-expert variation again
confirmed the need for objective analysis methods.
Next, we analyzed the second set of fluorescence

microscopy images to evaluate the compatibility of the
software with different immunofluorescent stainings.
The staining used for the images of validation set 2
highlighted the characteristic striated patterns of the
myofibrils (see Fig. 6b). The striations reflect the repeating
structure of sarcomeres, which have a size of approximately
2 μm and are delimited by protein structures known as Z-
disks [12]. In the power spectrum, sarcomeres appear as a
prominent peak constrained within a narrow range of
spatial frequencies close to 0.5 μm−1 (or equivalently within
a narrow range of wavelengths close to 2 μm). Based on

this information about the target structures, we analyzed
the detail component using an expected wavelength range
of 1.5 to 2.5 μm. Computational results were compared
with manual results similarly to the validation set 1 images.
Results of the mean orientation comparison are shown in
Fig. 6e. Ten images with sufficient anisotropy were
retained for this analysis based on the same criterion as
with validation set 1. For these images, the difference in
computationally and manually estimated mean orienta-
tions was 11.3° ± 12.0° (mean ± standard deviation) when
averaged over all images and experts. The variation from
expert to expert was again considerable, with the lowest
mean difference of 8.1° ± 6.6° observed with expert 5 and
the largest mean difference of 20.1° ± 20.0° observed again
in the case of expert 7. Results of the correlation analysis
for computationally and manually estimated measures of
isotropy, performed for all 15 images, are shown in Fig. 6h.
These results are very similar to the values observed for
validation set 1, with Pearson’s linear correlation coefficient
between circular variance values estimated by CytoSpectre
and rankings performed by human experts having the value
of 0.36 ± 0.36 (mean ± standard deviation). The correspond-
ing value between human experts was 0.30 ± 0.54. Again,
the relatively low mean linear correlation coefficients are
largely explained by the remarkable variation among the
human experts. The general pattern of the correlation
heatmap is similar to the images of validation set 1 i.e.,
the same experts tended to agree and disagree with the
computational results as with the first dataset. These
results show that the detail component extraction
procedure functions properly also in the case of real
images and produces results that most human experts
agree with relatively well. Moreover, these results support
the idea that CytoSpectre is not limited to a particular
fluorescent label but can be used in combination with
different stainings.

Validation using real phase contrast microscopy images
of hiPSC-derived peripheral sensory neurons
A third set of real images (validation set 3), depicting
hiPSC-PSNs, was used to validate the performance of
CytoSpectre with a different microscopy technique,
namely phase contrast imaging. The hiPSC-PSNs were
differentiated from hiPSCs using the methods described in
[30, 31]. Differentiated hiPSC-PSNs formed neurospheres
which were cut, dissociated and plated on PA6 feeder
cells. Samples were imaged with Nikon Eclipse TS100
phase contrast microscope with Imperx IGV-B1620M
camera having a pixel size of 7.4 μm. This validation set
included 15 images at 10× magnification. An example
image is shown in Fig. 6c. A detailed description of the
experimental methods is given in Additional file 4.
Validation set 3 was analyzed by 13 human experts in a
manner similar to validation sets 1 and 2. That is, the
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experts were asked to visually estimate the mean orienta-
tion of the clusters of neurons and to rank the images based
on the perceived anisotropy of the cells. Full numerical data
and analysis settings for these experiments are provided in
Additional file 7.
Since the targets in these images are not clearly limited

to a specific range of wavelengths and no significant inter-
fering structures such as nuclei are visible, we analyzed
the mixed component using the default settings for cutoff
wavelengths. Ten images were retained for the compari-
son between computationally and manually estimated
mean orientations based on the same exclusion criterion
employed for the images of validation sets 1 and 2. The
distributions of differences between mean orientations
estimated by CytoSpectre and the human experts are
shown in Fig. 6f. The difference averaged over all images
and experts was 15.4° ± 17.4° (mean ± standard deviation),
with the smallest mean difference of 11.9° ± 14.9° observed
with expert 9 and the highest mean difference of 19.8° ±
23.9° observed with expert 5. Results of the correlation
analysis for the estimated isotropy are shown in Fig. 6i.
This analysis was again performed for all 15 images.
The degree of agreement over the isotropy was high
both between CytoSpectre and human experts and also
between pairs of humans. Pearson’s linear correlation
coefficient between computational and manual values was
0.72 ± 0.15 (mean ± standard deviation). The correlation
coefficients between human experts were again slightly
lower with a corresponding value of 0.67 ± 0.24. Overall,
the results indicate that CytoSpectre is not limited to
fluorescence microscopy but is also suitable for phase
contrast imaging. Moreover, we have no theoretical or
practical reasons to doubt the compatibility of the
software with images captured using other 2D microscopy
techniques, although only fluorescence and phase contrast
images have been systematically evaluated thus far. This
experiment also confirmed that the results obtained on a
subcellular level for the images of cardiac myofibers can
be generalized to images with different cell types and
structures on a different scale.

Comparison with existing software
As we are not aware of any existing freely available soft-
ware aimed for spectral analysis of microscopy images,
we benchmarked CytoSpectre against FibrilTool [1], a
recently published orientation analysis plug-in for the
popular ImageJ [18]. While FibrilTool cannot be used to
estimate any wavelength statistics, we could still com-
pare the orientation analysis capabilities of the two
methods. FibrilTool allows the estimation of mean
orientation and anisotropy of structures within user-
specified regions of interest (ROI) on the basis of nem-
atic tensors. For each image, we used an ImageJ macro
to select the complete image as a ROI, because

CytoSpectre analyzes the whole images as well. The de-
fault line width setting of one was used for all images, as
suggested in the FibrilTool paper [1]. We applied Fibril-
Tool in this manner for the first 100 images from each
synthetic image dataset first without any degradation
and then with moderate amounts of blurring (Gaussian
kernel standard deviation 2.5 pixels), Gaussian noise
(normalized variance 1 %) or Poisson noise (level 10).
The total number of images to analyze was thus 400 per
dataset, i.e., 800 in total. We used these subsets of im-
ages instead of the complete datasets because Fibril-
Tool requires manual operation and analyzing 800
images in total, instead of 8000 images, was still feas-
ible. The mean orientations estimated by FibrilTool
were adjusted to follow the CytoSpectre angle conven-
tion (0°–180°), allowing a direct comparison. In the
case of the fibril dataset, we observed that FibrilTool
often detects the orientation parallel to the fibril sub-
units as the main orientation. This orientation is per-
pendicular to the actual orientation of the fibrils and we
noted that the mean orientation error can be lowered by
applying a correction of 90°. This correction was thus per-
formed for all main orientations estimated by FibrilTool
for this dataset. For the synthetic images of cell clusters,
this adjustment was not necessary due to the absence of
such problematic structures in these images. In contrast
to CytoSpectre, FibrilTool does not estimate the circu-
lar variance for each ROI but instead an anisotropy
index, which is a measure of anisotropy rather than
isotropy. However, as both measures are defined in the
range of 0 to 1, we simply obtained an isotropy index
for each ROI as the complement of the corresponding
anisotropy index (i.e., unity minus the anisotropy
index). The resulting values are then directly propor-
tional to circular variance, even though the numerical
values of the two measures are not necessarily identical.
Full FibrilTool outputs for the synthetic images are pro-
vided in Additional file 8.
Next, the results obtained by CytoSpectre in the man-

ner described in the previous sections were compared
with the results produced by FibrilTool. We again used
the mixed component parameters in the case of the cell
cluster dataset and the detail component parameters for
the fibril dataset. For each dataset and type of image
degradation, we calculated the mean and standard devia-
tions of the absolute main orientation errors in degrees
for both CytoSpectre and FibrilTool. Paired, two-sided
Wilcoxon signed rank tests were performed for each
case to evaluate the statistical significance of any differ-
ences between the orientation errors produced by the
two tools. Similarly for each dataset and degradation
type, we computed Pearson’s linear correlation coeffi-
cient between the true circular variance and the esti-
mated measure of isotropy i.e., circular variance in the
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case of CytoSpectre and isotropy index in the case of
FibrilTool. The resulting values are shown in Table 3 for
the cell cluster dataset and in Table 4 for the fibril data-
set. In the case of non-degraded or blurred images of
the cell cluster dataset, FibrilTool produces main orien-
tation estimates with slightly lower mean error than
CytoSpectre. However, in both cases the difference is less
than one degree, which probably does not have any
practical significance in most applications. Moreover, in
the case of the non-degraded images, the difference is not
statistically significant at the 1 % significance level. As
observed also in the image quality degradation experiment
for both synthetic image datasets, the main orientation
estimates of CytoSpectre are almost unaffected by blurring
or noise. The corresponding estimates of FibrilTool are
more sensitive towards image quality degradation,
although in the case of the cell cluster dataset, blurring
is tolerated well. In the case of added noise and for the
fibril dataset in general, the main orientation estimates of
CytoSpectre compare favorably against those of FibrilTool.
The differences between the orientation errors produced by
the two tools were statistically significant at the 1 %
significance level in all cases except the non-degraded
images of the cell cluster dataset. For the isotropy
estimates, CytoSpectre obtained higher correlation coeffi-
cients than FibrilTool in all of the test cases for both
datasets. However, the difference was less pronounced for
the non-degraded and blurred cell cluster images.
We also compared the performance of CytoSpectre

and FibrilTool in the case of the three sets of real images
described in the previous sections. The results already
obtained by CytoSpectre in the validation experiments
were used also for this comparison. Analysis of the real
images using FibrilTool was performed similarly to the
synthetic images, that is, by selecting the entire image as
a ROI and by using the default line width settings. The
adjustments applied to the orientations and anisotropy
values estimated by FibrilTool were performed as described
above for the synthetic images. Full FibrilTool outputs for
the real images are provided in Additional file 7. As in the

case of the validation experiments described in the previous
sections, we compared the mean orientations and isotropy
values estimated using FibrilTool to the mean orientations
and anisotropy rankings performed by human experts for
each validation set. We computed the mean and standard
deviation of the absolute orientation errors over all experts
(N = 12 for validation sets 1 and 2, N = 13 for validation
set 3) and all images (N = 11 for validation set 1, N = 10 for
validation sets 2 and 3) for each tool and each validation
set. The number of images used for these evaluations is
lower than the total number of images in each validation
set (N = 15) due to the exclusion of highly isotropic images
for which quantification of mean orientation is meaning-
less, as described in the previous sections. To evaluate the
coherency of the computational and manual estimates of
isotropy, Pearson’s linear correlation coefficients were
calculated between the anisotropy rankings performed by
each human expert and the circular variances and isotropy
indices estimated by CytoSpectre and FibrilTool, respect-
ively. The mean and standard deviation of the correlation
coefficients obtained for each method were computed over
all experts in order to compare the performance of the
two tools. Finally, we used the paired, two-sided Wilcoxon
signed rank test to assess the statistical significance of
differences in the orientation errors and correlation coeffi-
cients obtained for CytoSpectre and FibrilTool. The results
of this experiment are summarized in Table 5.
For all three sets of real images, the mean errors between

computational and manual estimates of mean orientation
obtained for CytoSpectre were lower than the correspond-
ing values of FibrilTool. The difference was statistically
significant at the 1 % significance level in all three
cases, but the most remarkable difference was observed
in the case of validation set 2. For these images, the
orientation error of CytoSpectre was approximately
11.3° ± 12.0° (mean ± standard deviation) while it was
42.0° ± 31.2° for FibrilTool. For validation set 1, the
difference in the mean errors of the two tools was
approximately five degrees, and less than one degree
for the phase contrast micrographs of validation set 3.

Table 3 Performance comparison between CytoSpectre (CS) and FibrilTool (FT) using synthetic images of cell clusters

CS orientation, error mean ±
std (deg)

FT orientation, error mean ±
std (deg)

Wilcoxon signed rank test
p-value

CS circular variance,
Pearson’s r

FT isotropy index,
Pearson’s r

Non-
degraded

1.7884 ± 3.6128 1.3904 ± 3.5042 0.0111 0.39844 0.31512

Blurred 1.8748 ± 3.9533 1.3432 ± 3.0325 0.0069 0.39645 0.31258

Gaussian
noise

1.7101 ± 3.4064 6.4346 ± 10.067 4.0933E-14 0.38642 0.15947

Poisson
noise

1.8325 ± 3.623 3.3052 ± 3.0916 1.0166E-08 0.38501 0.22644

Absolute errors in degrees (mean ± standard deviation) between true mean orientation values and values estimated by CS and FT are shown for images of the cell
cluster dataset (N = 100) without degradations, with moderate blurring (kernel std 2.5 pixels), with moderate Gaussian noise (var. 1 %) and with moderate Poisson
noise (level 10). Paired, two-sided Wilcoxon signed rank tests were performed to compare the orientation errors of CS and FT and the resulting p-values are given
for each case. Pearson’s linear correlation coefficients between true and estimated measures of isotropy are also shown for the corresponding cases
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The mean linear correlation coefficients between the
manual and computational measures of isotropy were
almost identical for the two tools in the case of validation
set 1. In the case of validation set 2, the mean correlation
coefficient of CytoSpectre was considerably higher than
that of FibrilTool, but the difference was not statistically
significant at the 1 % significance level. In the case of
validation set 3, CytoSpectre again outperformed FibrilTool
and the difference reached statistical significance at the
aforementioned significance level.
In summary, we found the accuracy of CytoSpectre to be

comparable to that of FibrilTool for the cell cluster dataset
without any added noise. However, even if the accuracy of
the two methods is similar in this case, FibrilTool requires
approximately 20 s of manual operation per ROI [1], which
could mean minutes of labor for a single image in the case
of multiple ROIs. In contrast, CytoSpectre only requires a
few seconds of computation time per image, freeing the
user for other tasks during an analysis run. In the presence
of Gaussian or Poisson noise, CytoSpectre performed better
than FibrilTool in terms of mean orientation error and
linear correlation between the true circular variance and
the estimated measure of isotropy. In the case of the fibril
dataset, CytoSpectre outperformed FibrilTool in all cases.
One of the main difficulties for FibrilTool in the images
present in the fibril dataset is probably the shape of the

fibril subunits, as they have variation in intensity also along
the longitudinal orientation of the fibrils. The contribu-
tions from intensity gradients along the longitudinal
and transverse orientations cannot be easily separated
from each other in the spatial domain. Another issue
present in many real images that is incorporated into
the synthetic images of this dataset is the presence of
interfering structures. The nucleus and the exterior of
the cell’s cytoplasm also contribute to the orientation
distribution estimated by FibrilTool and they too cannot
be separated from the actual targets of interest in the
spatial domain, unless some kind of segmentation steps
are introduced. This separation is possible in the
frequency domain, allowing CytoSpectre to obtain better
results for such images. On the other hand, the cell cluster
dataset does not feature such interfering structures and
this advantage of spectral analysis does not bring any
added benefit for CytoSpectre in that case. It is therefore
not surprising, that the results produced by the two
methods are very similar for that dataset, although CytoS-
pectre still appears to be less sensitive to noise.
The results obtained using real micrographs are rather

similar to those based on synthetic images. From the
viewpoint of statistical significance, the mean orientation
estimates of CytoSpectre were clearly superior to those
of FibrilTool for all three validation sets. In the case of

Table 5 Performance comparison between CytoSpectre (CS) and FibrilTool (FT) using real images

CS orientation, error
mean ± std (deg)

FT orientation, error
mean ± std (deg)

Wilcoxon signed
rank test p-value

CS circular variance,
Pearson’s r, mean ± std

FT isotropy index,
Pearson’s r, mean ± std

Wilcoxon signed
rank test p-value

Validation
set 1

15.5774 ± 14.5547 21.1937 ± 15.0628 2.2755E-11 0.3018 ± 0.4325 0.3024 ± 0.4251 0.8501

Validation
set 2

11.2739 ± 11.9993 41.9884 ± 31.2416 1.0532E-15 0.3574 ± 0.3555 −0.0896 ± 0.1343 0.0122

Validation
set 3

15.3819 ± 17.3992 16.0332 ± 14.1959 0.0016 0.7192 ± 0.1505 0.6086 ± 0.1440 7.3242E-04

Absolute errors in degrees (mean ± standard deviation) between mean orientation values estimated by human experts (N = 12 for validation sets 1 and 2, N = 13
for validation set 3) for the images of each validation set (N = 11 for validation set 1, N = 10 for validation sets 2 and 3) and values estimated by CS and FT are
shown. Pearson’s linear correlation coefficients (mean ± standard deviation) between anisotropy rankings estimated by human experts (N = 12 for validation sets 1
and 2, N = 13 for validation set 3) and measures of isotropy estimated by CS and FT are also shown for the images of each set (N = 15 for all validation sets).
Paired, two-sided Wilcoxon signed rank tests were performed to compare the orientation errors and correlation coefficients of CS and FT and the resulting p-values
are given

Table 4 Performance comparison between CytoSpectre (CS) and FibrilTool (FT) using synthetic images of intracellular fibrils

CS orientation, error mean ±
std (deg)

FT orientation, error mean ±
std (deg)

Wilcoxon signed rank test
p-value

CS circular variance,
Pearson’s r

FT isotropy index,
Pearson’s r

Non-
degraded

2.6261 ± 10.482 29.673 ± 39.693 5.6773E-12 0.54506 0.19542

Blurred 3.2969 ± 10.063 56.685 ± 38.136 2.6288E-22 0.15807 0.10137

Gaussian
noise

2.2876 ± 10.11 15.785 ± 25.552 3.7340E-19 0.45714 0.2711

Poisson
noise

3.7733 ± 13.852 19.829 ± 28.444 1.9903E-16 0.49203 0.22492

Absolute errors in degrees (mean ± standard deviation) between true mean orientation values and values estimated by CS and FT are shown for images of the
fibril dataset (N = 100) without degradations, with moderate blurring (kernel std 2.5 pixels), with moderate Gaussian noise (var. 1 %) and with moderate Poisson
noise (level 10). Paired, two-sided Wilcoxon signed rank tests were performed to compare the orientation errors of CS and FT and the resulting p-values are given
for each case. Pearson’s linear correlation coefficients between true and estimated measures of isotropy are also shown for the corresponding cases
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validation set 1, CytoSpectre outperformed FibrilTool in
terms of mean orientation error by several degrees.
Validation set 2, consisting of images of hiPSC-CMs with
their intracellular fibrils, proved to be very challenging
for FibrilTool, resulting in a mean error over 30° higher
than that of CytoSpectre. The difficulties encountered by
FibrilTool when analyzing this set were probably due to
the same reasons as those observed in the case of the
synthetic fibril dataset, as discussed above. In the case of
validation set 3, the magnitude of the difference,
although in favor of CytoSpectre, is so small that it does
not probably have any practical significance. This result
resembles the case of the non-degraded and blurred
images of the synthetic cell cluster dataset, in which case
the small but statistically significant difference was in
favor of FibrilTool. The synthetic images of the cell
cluster dataset and the real images of validation set 3
both feature relatively homogeneous content, which
appears to suit FibrilTool better than the images contain-
ing more distinct fibrillar structures. Results concerning
the isotropy estimates produced by the two tools also
varied from dataset to dataset. In the case of validation set
1, the performance of CytoSpectre was essentially identical
to FibrilTool but for the other two datasets, CytoSpectre
had a slight performance advantage, although the differ-
ence was not statistically significant in the case of valid-
ation set 2. Based on this experiment with real images, the
results produced by CytoSpectre match subjective evalua-
tions at least as well as those produced by FibrilTool, and
in some cases CytoSpectre is clearly superior to FibrilTool.
Of course, reliability of the subjective evaluations as a gold
standard can be questioned in light of the considerable ex-
pert-to-expert variation observed in the validation experi-
ments. The experiments based on synthetic images are
not affected by this issue but they, on the other hand, can-
not necessarily replicate all of the characteristics of real
micrographs.
Finally, it should be noted that this comparison is not

perfectly fair, since FibrilTool and CytoSpectre are based
on quite different philosophies. FibrilTool allows (and
requires) users to manually select ROIs and careful
selection of these regions could probably improve the

results when compared to our approach of selecting the
entire image as a ROI. CytoSpectre, on the other hand,
is meant to be used in automated fashion for analyzing
large quantities of images with varying quality. This
automated, high-throughput approach is reflected in the
experimental setting of this comparative analysis, as man-
ual selection of ROIs would have been unfeasible for such
a large number of images and would have introduced hu-
man error into the results. With this in mind, we conclude
that CytoSpectre appears to be superior to FibrilTool for
such large-scale analyses. Still, the possibility of perform-
ing highly accurate measurements of mean orientation on
carefully selected ROIs probably makes FibrilTool suited
for particular types of experiments.

Analysis of computational performance
In order to evaluate the computational performance of
CytoSpectre, we benchmarked the software in terms of
computation time required for images of different size. For
this experiment, we used all of the real images (N = 15 per
dataset) from validation sets 1, 2 and 3 as well as the first
15 images from each of the two synthetic image datasets.
CytoSpectre’s default analysis settings were used for
all datasets in this experiment. We used bilinear
interpolation to scale the images to different sizes
ranging from 500 × 500 pixels (0.25 megapixels) to
5000 × 5000 pixels (25 megapixels) before running the
benchmarking experiment for each case. Benchmarking
was performed using MATLAB’s timeit function, which
runs the code multiple times for each input and stores the
median time required for the computations. The analysis
was performed using a 64-bit Windows 7 laptop PC
equipped with an Intel Core™ i5 processor. The evaluation
was applied to the main analysis function of CytoSpectre,
which includes all of the actual processing and analysis
steps performed for each image. The computation time
required for updating the GUI is thus not included in
these results. However, the GUI operates in essentially real
time and the contribution of the computations required
by the GUI on the overall computation time is negligible.
The computation times (mean ± standard deviation) in

seconds for each dataset and image size are shown in Table 6.

Table 6 Computation time per image for different datasets and image sizes

Image size (pixels) Cell cluster dataset Fibril dataset Validation set 1 Validation set 2 Validation set 3

500 × 500 1.96 ± 0.46 1.93 ± 0.26 2.17 ± 0.32 2.18 ± 0.44 2.40 ± 0.39

1000 × 1000 1.91 ± 0.28 2.00 ± 0.30 2.26 ± 0.52 2.10 ± 0.38 2.62 ± 0.54

2000 × 2000 2.04 ± 0.18 2.10 ± 0.37 2.36 ± 0.34 2.17 ± 0.32 2.59 ± 0.61

3000 × 3000 2.24 ± 0.49 2.30 ± 0.32 2.40 ± 0.29 2.52 ± 0.42 2.62 ± 0.49

4000 × 4000 6.79 ± 0.73 7.40 ± 1.52 8.65 ± 1.52 7.84 ± 1.10 9.61 ± 2.06

5000 × 5000 7.05 ± 0.75 7.87 ± 1.85 8.36 ± 1.23 8.26 ± 1.63 9.77 ± 2.05

Computation time (mean ± standard deviation) in seconds required for analyzing a single image from each dataset at different image sizes. The analysis was
performed using a laptop PC equipped with an Intel Core™ i5 processor
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Some variation from dataset to dataset can be ob-
served, but the computation time does not seem to
depend heavily on the dataset, that is, on image con-
tent. As could be expected, the required computation
time increases with increasing image size, but the
increase is not dramatic for moderate image sizes (up
to 9 megapixels). Based on these results, the compu-
tation times required for images of this size are typic-
ally 2–3 s. For the 16 megapixel and 25 megapixel
images, the mean computation times were approximately
7–10 s. These results indicate that CytoSpectre can be
used to study even relatively large datasets on basic hard-
ware with acceptable computation times.

Case study: effects of mechanical stretching on hiPSC-
derived cardiomyocytes
To demonstrate the software in an actual use case, we
applied CytoSpectre to a real experiment featuring
mechanically loaded hiPSC-CMs. After Yamanaka’s
Nobel winning breakthrough iPSCs have been widely
used in disease modeling and drug screening [32–35].
Despite the advances in the field, cultured hiPSC-CMs are
lacking in some functional and structural properties in
vitro. In fact, they are considered to be immature, more
fetal-like, than those found in adult tissue [36, 37].
Therefore, research on improving the maturity of these
cells has become a hot topic lately [12, 13]. It has been
shown that mechanical stress can promote the orienta-
tion and presumably also the maturation of hiPSC-CMs
[38]. In this study, we investigated the effect of cyclic
uniaxial mechanical stretching on hiPSC-CMs’ orientation
with six different hiPSC lines. Generation and culturing of
hiPSC lines, cardiac differentiation and mechanical loading
with Flexcell® (Burlington, NC, USA) are described in detail
in Additional file 4.
CytoSpectre was used to analyze the mean orientations

of cells in a large quantity of fluorescence microscopy
images acquired from both control and stretched samples
(see Fig. 7 for example images). Mixed component from
the red channel, representing Alexa Fluor 568 secondary
antibody against Troponin T or α-tropomyosin (both thin
filament sarcomeric proteins), was analyzed from the
images. Cells with circular variance exceeding 0.9 were
excluded from the rest of the analysis, since mean
orientation is not a meaningful quantity for highly iso-
tropic distributions. Using the obtained mean orienta-
tion values describing the dominant orientation of each
cell, we computed the mean orientation over all cells
for each sample i.e., for each cell line and each culture
condition (control vs. stretched). We also computed the
circular variance of the cellular orientations for each
sample. Watson-Williams tests were then performed to
compare the control and stretched samples of each cell
line. The Watson-Williams test is a circular analogue of

the two sample t-test or the one-factor ANOVA and it
can be used to assess the question whether the mean
directions of two groups are identical or not. The
calculations were performed using the CircStat toolbox
[22]. The raw data and analysis settings can be found in
the Additional file 9.
The results in Table 7 and Fig. 7 show that the mean

orientation of the hiPSC-CMs subjected to stretching
changes towards an axis that is perpendicular (orientation
of 90°) to the axis of applied stress (horizontal i.e., orienta-
tion of 0° or 180°), when comparing to control samples.
This result holds for five out of the six cell lines studied.
In one cell line, UTA.02912, the observed change in mean
orientation was opposite compared to the other lines.
Also, we observed that circular variance decreased when
comparing stretched samples to control samples. That is,
cells subjected to stretching not only orientated towards a
particular axis but their orientations were also concen-
trated more strongly along this particular orientation
when compared to the more random orientation of cells
in control samples. The results of the Watson-Williams
tests indicate that the differences between the orientations
of control and stretched samples are statistically signifi-
cant at the 1 % significance level (p < 0.005) for each cell
line. These results indicate that cyclic uniaxial stretching
orientates the cells compared to static culture conditions.
This finding could be relevant for tissue engineering when
trying to create native, more mature, orientated myocar-
dial tissue grafts in vitro.

Conclusions
We developed CytoSpectre, a software tool implemented
as a standalone MATLAB application, allowing spectral
analysis of microscopy images. The tool can be operated
via a GUI on basic hardware without prior experience of
programming or image processing. Spectral analysis
allows users to extract information about the orientation
and size distributions of targets within the images. In
addition to analyzing complete images, the analysis can be
targeted to features of a particular size range in order to ob-
tain information only on these targets of interest while ex-
cluding other structures present in the image. Analyses can
be performed automatically for large quantities of images
and the results can be exported to spreadsheets and text
files or plotted as images for further study. We analyzed the
performance of the software by extensive simulations using
computer-generated images with varying types and levels of
image quality degradations and observed high tolerance
against realistic amounts of blurring and Gaussian or Pois-
son distributed noise. The performance of CytoSpectre in
the case of real images was validated using fluorescence mi-
croscopy images of hiPSC-CMs and phase contrast micros-
copy images of hiPSC-PSNs. Comparison with manual
measurements performed for these images by a large panel
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of human experts showed that CytoSpectre is not limited
to a single microscopy technique or cell type and is able to
produce results which are in agreement with the majority
of human experts. Furthermore, we observed a great deal
of variation from expert to expert, underlining the need for
automated computational tools such as CytoSpectre. We

benchmarked CytoSpectre against FibrilTool [1], a state-of-
the-art orientation analysis tool, using both synthetic and
real images. In the case of synthetic images featuring simple
targets without any degradation in image quality, CytoSpec-
tre offered accuracy comparable to that of FibrilTool with
the important added benefit of rapid, fully automated
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Fig. 7 Quantitative analysis of the effect of mechanical stretching on the cellular orientation of hiPSC-CMs. Example images of a non-stretched control
hiPSC-CM (a) and a stretched hiPSC-CM (b) are shown. The stretching experiments were performed using the FlexCell platform (c). Distributions of cellular
mean orientations of control and stretched samples for different cell lines are shown in (d). The radial distance from the origin corresponds to the number
of images whose mean orientations were within the limits of the corresponding orientation bin
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operation. For synthetic images with degraded quality or
more realistic targets, CytoSpectre outperformed FibrilTool
also in terms of accuracy. In the case of real images, CytoS-
pectre produced mean orientation estimates with accuracy
superior to those of FibrilTool. The accuracy of estimated
isotropy measures was either superior to or on a par with
those of FibrilTool, depending on dataset. Finally, we dem-
onstrated the software in a real experiment by analyzing
images of hiPSC-CMs subjected to cyclic uniaxial stretch-
ing. The results of this experiment suggest that stretched
hiPSC-CMs orientate along an axis that is transverse to the
orientation of stretching, a finding which could have rele-
vance for tissue engineering applications. We hope CytoS-
pectre will be useful in various applications where the
orientations and/or size distributions of biological struc-
tures are of interest. The main benefits offered by the soft-
ware are the high level of automation, ease of use,
versatility in terms of applications and good tolerance
against degraded image quality. Since the software is
compatible with any kind of 2D images, it could also be
useful in biology related or even non-biological applications
benefiting from spectral analysis such as (bio)materials
research [9, 39] or geophysics [40].

Availability and requirements
Project name: CytoSpectre
Project home page: http://www.tut.fi/cytospectre
Operating system(s): Windows 7 64-bit (standalone
deployed application)
Programming language: MATLAB (R2014a)
Other requirements: For standalone operation on
Windows 7 (64-bit) systems without a MATLAB
installation, MATLAB Compiler Runtime (version 8.3)
is required. The MATLAB Compiler Runtime can be

automatically obtained during installation. Operating
the software in source code form via MATLAB requires
the following toolboxes: Signal Processing Toolbox, Image
Processing Toolbox, Statistics Toolbox and Curve Fitting
Toolbox.
License: All original CytoSpectre source codes are
governed by the GNU General Public License (GPL).
CircStat toolbox source codes are governed by the corre-
sponding CircStat license. The standalone deployed
application is governed by the MATLAB Compiler
Runtime license.
Any restrictions to use by non-academics: The standa-
lone deployed application may only be used for the sole
purpose of academic research in accordance with the
MATLAB Compiler Runtime license. No restrictions
apply for the software in MATLAB source code form.

Ethics statement
The collection of biopsies for generating patient specific
hiPSC lines was approved by the ethical committee of
Pirkanmaa Hospital District (Aalto-Setälä R08070). Writ-
ten informed consent was obtained from all the donors.

Additional files

Additional file 1: CytoSpectre installer. This file contains the
installation package for the Windows 7 (64-bit) deployed application.
(EXE 10939 kb)

Additional file 2: CytoSpectre source code. This file contains the
MATLAB (R2014a) source codes. (7Z 78 kb)

Additional file 3: CytoSpectre user guide. This file contains the user
guide of the software. (PDF 464 kb)

Additional file 4: Supplementary information. This file contains
detailed descriptions of computational and experimental methods as well
as results and discussion of the sensitivity analysis. (PDF 715 kb)

Table 7 Summarized results of the mechanical stretching experiment

Cell line Sample N Mean orientation Circular variance Watson-Williams
test p-value

UTA.04511 Control 48 153° 0.92 0.00243

Stretch 125 105° 0.46

UTA.04602 Control 88 138° 0.68 1.76E-11

Stretch 208 102° 0.31

UTA.06108 Control 63 142° 0.63 5.18E-06

Stretch 179 112° 0.56

UTA.07801 Control 50 133° 0.57 1.05E-09

Stretch 112 99° 0.21

UTA.13602 Control 161 127° 0.72 1.77E-08

Stretch 254 103° 0.34

UTA.02912 Control 93 128° 0.69 5.72E-10

Stretch 112 171° 0.60

Cellular mean orientations, circular variance and Watson-Williams test p-values for different cell lines cultured under control vs. stretching conditions are shown. N= number
of images analyzed per sample. The orientation of stretching was 0°, or equivalently, 180°
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Additional file 5: Raw data from sensitivity experiments. This file
contains all numerical data from the experiments evaluating the
sensitivity of the results to changes in the values of adjustable
parameters. (XLSX 8008 kb)

Additional file 6: Raw data from image degradation experiments.
This file contains all numerical data from the image quality degradation
experiments. (XLSX 19997 kb)

Additional file 7: Raw data from experiments with real images. This
file contains all numerical data from the experiments with real images.
(XLSX 45 kb)

Additional file 8: Raw data from FibrilTool experiments with
synthetic images. This file contains all numerical data from the
comparative experiments with FibrilTool using synthetic images.
(XLSX 336 kb)

Additional file 9: Raw data from the case study. This file contains all
numerical data from the case study experiment. (XLSX 919 kb)
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