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Abstract

Background: MiRNAs play a critical role in the response of plants to abiotic and biotic stress. However, the
functions of most plant miRNAs remain unknown. Inferring these functions from miRNA functional similarity would
thus be useful. This study proposes a new method, called PPImiRFS, for inferring miRNA functional similarity.

Results: The functional similarity of miRNAs was inferred from the functional similarity of their target gene sets. A
protein-protein interaction network with semantic similarity weights of edges generated using Gene Ontology
terms was constructed to infer the functional similarity between two target genes that belong to two different
miRNAs, and the score for functional similarity was calculated using the weighted shortest path for the two target
genes through the whole network. The experimental results showed that the proposed method was more effective
and reliable than previous methods (miRFunSim and GOSemSim) applied to Arabidopsis thaliana. Additionally,
miRNAs responding to the same type of stress had higher functional similarity than miRNAs responding to different
types of stress.

Conclusions: For the first time, a protein-protein interaction network with semantic similarity weights generated
using Gene Ontology terms was employed to calculate the functional similarity of plant miRNAs. A novel method
based on calculating the weighted shortest path between two target genes was introduced.
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Background
MicroRNAs (miRNAs) are single-stranded noncoding
RNAs and are typically ~22 nucleotides long. These
molecules are involved in post-transcriptional regulation
and trigger targeted degradation of messenger RNA or
inhibit translation [1, 2]. In plants, the expression of
miRNA genes is a multistep process. First, the miRNA
gene is initially transcribed as a primary miRNA se-
quence (pri-miRNA) by RNA polymerase II. Then, the
pri-miRNA is processed into a hairpin sequence (precur-
sor miRNA) by the endoribonuclease Dicer. Next, the
loop region of the precursor miRNA is removed from the
hairpin to form a miRNA duplex (miRNA:miRNA*). Fi-
nally, the miRNA* strand is degraded, and the other

miRNA strand, named the mature miRNA, is incorpo-
rated into the RNA-induced silencing complex (RISC) [3].
miRNAs that predominantly act as regulators of gene

expression are involved in many plant biological pro-
cesses such as development, nutrient homeostasis, biotic
stress responses, abiotic stress responses and pathogen
responses [3]. Previous studies have verified that groups
of miRNAs are involved in many biological processes [4,
5]. Therefore, miRNAs involved in the same biological
process should have identical or similar group functions.
Currently, the number of miRNAs with functional anno-
tations is limited, and the functions of some miRNAs
are only partly known. Therefore, research on miRNA
function has received increasing attention. In recent
years, biologists have compared the functions of miRNA
genes and predicted the potential functions of miRNAs
based on the relationship between miRNAs with known
molecular functions or associated with a specific stressor
and those with unknown functions.

* Correspondence: luanyush@dlut.edu.cn
2School of Life Science and Biotechnology, Dalian University of Technology,
Dalian, Liaoning, China
Full list of author information is available at the end of the article

© 2015 Meng et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Meng et al. BMC Bioinformatics  (2015) 16:360 
DOI 10.1186/s12859-015-0789-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0789-4&domain=pdf
mailto:luanyush@dlut.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


To date, only a few computational models have been
available for inferring the functional similarity among
miRNAs. In one report, functional similarity scores of
human miRNAs were computed based on human
miRNA-disease association data [6]. This computational
method was implemented by measuring the similarity of
miRNA-associated diseases structured as directed acyclic
graphs and is similar to inferring the similarity of
protein-coding genes by measuring the semantic similar-
ity weights of Gene Ontology (GO) terms [7]. In the On-
line Mendelian Inheritance in Man (OMIM) disease
similarity network, a random walk was applied to predict
potential disease-miRNA associations under the assump-
tion that functionally related miRNAs are often associ-
ated with phenotypically similar diseases [8]. The above
two methods make full use of the associations among
phenotypically similar diseases and obtained very satis-
factory performance on the human data, but there are
no disease similarity network data for plants, preventing
the application of these strategies to plants. Because
miRNAs are involved in biological processes through the
regulation of their target transcripts, the functional simi-
larity of miRNAs can be inferred by studying the associ-
ations of their target genes. In previous studies, several
computational methods were proposed based on the as-
sociations between target genes. The simplest method
used the proportion of the common target genes regu-
lated by two miRNAs calculated by the Jaccard similarity
measure [9]. Each plant miRNA regulates a small num-
ber of target genes, and the target gene sets of most
plant miRNAs have no intersections; therefore, most of
the calculation results from the Jaccard similarity meas-
ure are zeros. Therefore, this method is also not suitable
for plants. A systematic method for studying the func-
tional similarity of human miRNAs was proposed [10].
The functional similarity between two miRNAs was
quantified by measuring the semantic similarity weights
of the GO terms between two miRNA target genes. A
new definition called a co-regulating functional module
was introduced [11]. The GO categories of the target
gene sets of each pairwise set of miRNAs were used to
test the significance of their co-regulated target genes
using a hypergeometric test. The co-regulating func-
tional modules were established using a protein-protein
interaction network (PPIN). miRNAs that shared at least
one co-regulating functional module were considered to
have similar functions. The shortcomings of this method
are that the results are only 0 or 1 and that it cannot
generate numerical results to measure the level of simi-
larity. Another method used a target gene network to
measure the functional similarity of miRNAs. This
method considered both the target site accessibility and
the interactive context of the target genes in a functional
gene network constructed with semantic similarity

weights generated using the GO terms of the target
genes [12]. Because the GO annotations are incomplete,
the functional gene network constructed may not be as
realistic as those of networks confirmed by experimental
data, such as PPI networks. PPINs have been widely
used to predict protein function [13], protein complexes
[14], and gene functional similarity [15]. Furthermore,
the functional similarity scores of human miRNAs were
computed using a PPIN that quantified the associations
between the miRNAs based on their targeting propensities
and protein connectivity in an integrated PPIN [16].
Most of the existing computational methods have been

designed specifically for human. Based on the above ana-
lysis, few of them can be used for plants. It is thus ne-
cessary to develop an effective and stable computational
method for calculating functional similarity scores of
plant miRNAs. This study proposes a novel computa-
tional method, called PPImiRFS, to obtain the functional
similarity scores of miRNA pairs based on a PPIN with
semantic similarity weights generated using GO terms
and graph theoretic properties. The proposed method is
available for download at our supporting website:
https://github.com/kobe-liudong/PPImiRFS. The miRNA
families, miRNA clusters and experimentally verified
miRNAs associated with biotic and abiotic stress re-
sponses in Arabidopsis thaliana (A. thaliana) were used
to evaluate and validate the performance of our method.
Furthermore, a comparative analysis showed that our
method was more effective and reliable than two
widely used computational methods (miRFunSim [16]
and GOSemSim [10]).

Methods
A. thaliana miRNA and mRNA
All of the A. thaliana mature miRNA sequences, A.
thaliana miRNA families and genome coordinates of the
miRNAs were downloaded from miRBase [17] (Release
21, June 2014). This release contains 427 mature se-
quences, 47 families containing more than one miRNA
and 30 clusters (with 10 kb as the maximum inter-
miRNA distance for two miRNA genes to be clustered
together) [18]. The A. thaliana candidate mRNAs were
obtained from the TAIR database, which includes all of
the transcribed sequences [19] (Release 10). The families
and clusters of A. thaliana miRNAs are presented in
Additional file 1 and Additional file 2, respectively.

A. thaliana miRNAs in response to stress
There is no publicly available database of A. thaliana
miRNAs related to their response to abiotic and biotic
stress; thus, we obtained 126 experimentally verified A.
thaliana miRNAs associated with the stress response,
including 12 types of abiotic stress and 3 types of biotic
stress, by referring to 25 reports listed in Additional file
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3, which also presents the 126 experimentally verified A.
thaliana miRNAs that respond to various types of stress.

Method description
The flow chart for PPImiRFS is shown in Fig. 1. First, a
weighted protein-protein interaction network (WPPIN)
was constructed by combining a PPIN with GO term se-
mantic similarity weights. Second, the target genes of
the miRNAs were predicted with two tools, psRNATar-
get [20] and Targetfinder [21], using their default set-
tings. Third, the functional similarity score between the
target gene sets of each miRNA pair of interest was cal-
culated based on the WPPIN and a modified weighted
breadth-first search (BFS) algorithm. Then, we obtained
a functional similarity matrix for the target gene sets of
the miRNA pairs. Finally, the functional similarity scores
of each pair of miRNAs were calculated using the func-
tional similarity matrix of the target gene sets and a
modified method that is based on best-match average
(BMA) [22, 23].

Integrated PPIN
The A. thaliana PPIN data were download from
TAIR (http://www.arabidopsis.org/) [19], AtPIN (http://

bioinfo.esalq.usp.br/web/) [24], PAIR (http://www.cls.zju.
edu.cn/pair/) [25], BioGRID (http://thebiogrid.org/) [26]
and IntAct (http://www.ebi.ac.uk/intact/) [27]. These data-
bases have all been widely used in other studies on A.
thaliana. We integrated the data from these various data-
bases and derived the non-redundant A. thaliana PPIN
containing 88,484 interactions between 10,985 proteins.
The topological characteristics of the A. thaliana PPIN
and the percentage of each dataset in the integrated PPIN
are shown in Table 1.

Construction of the WPPIN
The weights of the PPIN were computed by measuring
the functional similarity of the target genes based on the
semantic similarity of their GO terms. The functional
similarity weights were calculated by GOSemSim [28],
an R package that has implemented the compute
methods of the semantic similarity. GOSemSim supports
19 species, including A. thaliana, human, mouse, and
yeast. For PPImiRFS, we used geneSim in the GOSem-
Sim package to calculate the semantic similarity between
two target genes. In geneSim, a graph-based semantic
similarity measurement method [7] is used. The GO data
used in the experiment were collected and processed by

Fig. 1 Flow chart of PPImiRFS. a Prediction of target genes. b Construction of a weighted integrated protein-protein interaction network. c Calculating
the miRNA functional similarity scores. The filled arrows represent the workflow of the PPImiRFS method, and the closed arrows represent the
computational methods or datasets used in each step
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the GOSemSim and its version is 2.14.0. Because GO is
composed of three orthogonal ontologies, molecular func-
tion (MF), biological process (BP), and cellular component
(CC), we calculated the semantic similarity weights of the
GO terms of a pair of target genes using each of the three
orthogonal ontologies separately and then constructed
three WPPINs.

Prediction of the miRNA target genes
A few experimentally validated target genes of A. thali-
ana miRNAs are available. We obtained miRNA target
genes using the prediction method described below. In
contrast to animals, particularly humans, most miRNAs
in plants have only a few target genes, likely because of
the near-perfect complementarity between plant miR-
NAs and their target genes. To prevent the bias pro-
duced by individual prediction methods and obtain
more satisfactory results, the target genes of all of the
miRNAs were predicted using two widely used plant
miRNA target gene prediction tools, psRNATarget and
Targetfinder, using their default settings. The prediction
results were integrated by union, and any redundancies
were removed. In our previous study on miRNA target
gene prediction, we also used multiple tools (including
psRNATarget) to prevent bias and obtain more satisfac-
tory results [29]. The present results are summarized in
Table 2.

Functional similarity of target gene sets
A novel network-based weighted shortest path method
was proposed to calculate the functional similarity be-
tween two target gene sets.
Given the target gene sets of two miRNAs, miRNAi

and miRNAj, we extract a target gene from each miRNA
and calculate the functional similarity score for the two

target genes. All of the shortest paths between the two
target genes are obtained from the WPPIN. We use a
modified weighted BFS to search for the shortest paths.
This modified weighted BFS is more efficient in the
weighted networks than the classical BFS. In the modi-
fied weighted BFS, we represent these shortest paths as a
tree and prune the tree based on the accumulated
weights during its growth. The functional similarity
score of the pair of target genes is calculated using a best
average accumulated weight method as follows:

Fi;j ¼ max
Y

e∈shortestpath genei;genejð Þ
weight eð Þ

0
B@

1
CA; ð1Þ

where n is the number of edges in the shortest path. The
function max(x) means that Fi, j is the maximum of all
of the results calculated by the average accumulated
weight method when there is more than one shortest
path between genei and genej in the WPPIN. Fi, j is equal
to 1 when genei and genej are equivalent.
The functional similarity scores of all target gene pairs

from the two target gene sets are obtained to form a
functional similarity matrix, and the functional similarity
score for the comparison between the target gene sets is
calculated based on that functional similarity matrix
using a modified BMA method, which is defined as
follows:

FSTarSet i;j ¼

Xm−m0

x¼1

max
1≤y≤n−n0

Fx;y
� �þ

Xn−n0

y¼1

max
1≤x≤m−m0

Fx;y
� �

m−m0ð Þ þ n−n0ð Þ ;

ð2Þ
where m and n are the number of target genes of miR-
NAi and miRNAj, respectively, and n’ and m’ are the
number of target genes that are not included in the
WPPIN.

Results and discussion
Functional similarity of the miRNAs in the same family or
cluster
Mature miRNAs in the same family exhibit sequence
similarity and have completely identical seed regions
for miRNA target recognition [30]. Therefore, the
functions of the miRNAs in the same family are likely
to be more similar than the functions of miRNAs in
different families. Accumulating evidence supports this
phenomenon [6, 11, 15]. To evaluate the reliability of
the functional similarity scores computed by the PPI-
miRFS method, we divided all of the A. thaliana miR-
NAs into three classes: intrafamily, interfamily and
randomly selected miRNA pairs (which are from
among the 91378 miRNA pairs, excluding the miRNA

Table 1 Topological characteristics of the A. thaliana PPIN

Database Proteins No.
(%)

Interactions
No. (%)

Degree

Max Min Average

TAIR 7,115 (64.8 %) 70,699 (79.9 %) 737 1 19.87

AtPIN 2,807 (25.6 %) 6,204 (7.0 %) 134 1 4.42

PAIR 2,776 (25.3 %) 5,619 (6.4 %) 131 1 4.05

BioGRID 6,943 (63.2 %) 16,463 (18.6 %) 1297 1 4.74

IntAct 4,172 (38.0 %) 9,480 (10.7 %) 259 1 4.54

Integrated 10,985 (100 %) 88,484 (100 %) 1304 1 16.11

Table 2 Results of A. thaliana miRNA target prediction

Tools No. of
miRNAs

No. of Targets

Sum Average Max Min

psRNATarget 415 3,461 8.33 25 1

Targetfinder 397 7,372 18.57 1,741 1
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pairs in the intrafamily, interfamily, intracluster and
intercluster classes; there are 47 families that contain
158 miRNAs and 30 clusters that contain 74 miRNAs).
The PPImiRFS method was then applied to compute
the functional similarity scores of the miRNAs within
each of the three classes. Because three WPPINs have
been constructed based on three orthogonal ontologies
(GO types), the above results should be calculated on
the three WPPINs separately. The computed func-
tional similarity scores based on BP, CC and MF terms
are shown in Fig. 2a. We further studied the differ-
ences among the functional similarity scores of intra-
family, interfamily and randomly selected miRNA
pairs. These functional similarity scores demonstrate
significant differences (Kruskal-Wallis, df = 2; results
are shown in Table 3). The functional similarity scores
of the miRNAs in the intrafamily group are signifi-
cantly higher than those in the interfamily and ran-
domly selected miRNA groups (Wilcoxon rank-sum
test; results are shown in Table 3). The similarity score
matrix for all 91378 possible pairs of the A. Thaliana
miRNA dataset is provided in Additional file 4.

Many miRNAs are located in close proximity to each
other in genomes, forming clusters. Previous studies
have suggested that miRNAs in the same cluster are
often located in a polycistron and display homogeneous
expression patterns [31], suggesting that the functions of
these clustered miRNAs may be similar or identical.
Therefore, miRNA cluster patterns were also studied
with PPImiRFS using the same research method applied
to miRNA families. The final results based on BP, CC
and MF terms are shown in Fig. 2b. Statistical analysis
reveals that the functional similarity scores among the

Fig. 2 Performance evaluation of PPImiRFS on miRNA family and cluster data. a Results of family data based on BP, CC and MF terms calculated
with PPImiRFS. b Results of cluster data based on BP, CC and MF terms calculated with PPImiRFS. c Results of family data calculated with
miRFunSim and GOSemSim. d Results of cluster data calculated with miRFunSim and GOSemSim

Table 3 Statistical analysis results of functional similarity of the
intrafamily, interfamily and randomly selected miRNAs

Methods Intra-inter-random
(p-value)

Intra-inter
(p-value)

Intra-random
(p-value)

PPImiRFS (BP) 0.0E0 1.41E-170 5.51E-182

PPImiRFS (CC) 0.0E0 1.42E-138 2.39E-162

PPImiRFS (MF) 0.0E0 9.28E-165 1.69E-178

miRFunSim 1.2354E-155 1.06E-139 2.82E-132

GOSemSim 0.0E0 1.40E-104 2.19E-117
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miRNAs in the intracluster, intercluster and randomly
selected miRNA pairs are also significantly different
(Kruskal-Wallis, df = 2; results are shown in Table 4).
The functional similarity scores of the miRNA pairs
within the intracluster group are significantly higher
than those of the intercluster and randomly selected
miRNA groups (Wilcoxon rank-sum test; results are
shown in Table 4).
To verify our result, the other two methods (miRFun-

Sim [16] and GOSemSim [10]) were applied to the above
experiment, and the results based on family and cluster
data are shown in Fig. 2c and d. The functional similar-
ity scores among the three classes of miRNA pairs are
significantly different. The statistical analysis results of
these methods based on family and cluster data are also
shown in Tables 3 and 4, respectively.
In conclusion, the above two methods produce the

same results as those obtained using PPImiRFS and
clearly verify the utility of PPImiRFS.

Functional similarity of miRNAs responding to identical
types of stress
In this study, we hypothesized that miRNAs responding
to identical abiotic or biotic stresses are likely to have
similar functions. To test our hypothesis, two classes of
test datasets were generated: a positive test set with 324
miRNA pairs responding to identical abiotic or biotic
stresses, from among 12 abiotic and 3 biotic stresses,
and a negative test set with 324 miRNA pairs not
responding to identical abiotic or biotic stresses. To ob-
tain more objective results, we generated 50 negative
test sets. The functional similarity scores of the miRNAs
within these two classes of test sets were computed
using the PPImiRFS method. The statistical analyses are
shown in Fig. 3. The results support our hypothesis: the
miRNAs responding to identical types of stress have
greater functional similarity scores than those not
responding to identical types of stress.

Performance evaluation of PPImiRFS
To evaluate the performance of the proposed PPImiRFS
method for scoring the functional similarity between
miRNAs, the ability of our method to identify

functional similarity was tested on experimentally veri-
fied miRNA-stress association data. First, 126 high
quality, experimentally verified miRNA-stress associa-
tions were manually extracted from the literature. The
miRNA pairs responding to identical types of stress
were regarded as the positive test cases. A miRNA pair
was composed of any two different A. thaliana miR-
NAs, and a total of 91378 miRNA pairs were obtained.
The miRNA pairs in the same family, in the same clus-
ter and in response to the same types of stress were ex-
cluded from the 91378 miRNA pairs. The remaining
pairs were used as negative test cases. For each positive
test case, 99 negative test cases were randomly selected
from the above negative test cases, and the functional
similarity scores of all cases were calculated with PPI-
miRFS. Next, we prioritized the computed scores of each
positive test case with those of the negative test cases.
Therefore, for each positive test case, a prioritization list
of 100 miRNA pairs was generated. In total, 324 ranking
lists were obtained, each with 100 prioritizations. Add-
itionally, the true positive (TP) and false positive (FP) rates
were both calculated at different thresholds based on the
324 ranking lists. The true positive rate (also called the
sensitivity or recall rate in some fields) measured the pro-
portion of the actual positives that were correctly identi-
fied as such, i.e., the proportion of the positive test cases
that were ranked above a given threshold. The specificity
(occasionally called the true negative (TN) rate) measured
the proportion of negatives that were correctly identified
as such, i.e., the proportion of negative test cases that were
ranked lower than a given threshold. For example, if the
threshold is 5, the TP is the proportion of real positives
that are ranked above 5 in 324 lists, and the TN is the pro-
portion of negatives that are ranked lower than 5. If there
are 10 thresholds, there are 10 sets of TPs and TNs. Fi-
nally, a receiver operating characteristic (ROC) curve was
plotted based on the results of the true positive and false
positive rates, and the area under the curve (AUC) was
calculated. The AUC was regarded to be a standard meas-
ure of the performance of PPImiRFS. If the value of the
AUC was 100 %, the scores of the positive test cases were
all ranked first in the ranking lists. A higher AUC value
was indicative of higher PPImiRFS performance. AUC
values were calculated based on each of the three
constructed WPPINs. The proposed PPImiRFS method
achieved AUC values of 84.15 %, 79.49 % and 79.07 %
based on BP, CC and MF terms, respectively. The experi-
mental results of our performance evaluation suggest that
the PPImiRFS method can recover miRNA pairs respond-
ing to identical types of abiotic and biotic stress and effi-
ciently quantify the relationship between the miRNAs.
These results also reveal that the performance of PPI-
miRFS on the WPPIN weighted using the BP term
exceeded that using MF or CC terms. The three ROC

Table 4 Statistical analysis results of functional similarity of the
intracluster, intercluster and randomly selected miRNAs

Methods Intra-inter-random
(p-value)

Intra-inter
(p-value)

Intra-random
(p-value)

PPImiRFS (BP) 1.5538E-39 4.04E-15 3.88E-18

PPImiRFS (CC) 7.2078E-48 1.57E-11 3.20E-15

PPImiRFS (MF) 2.0064E-30 9.86E-14 8.14E-16

miRFunSim 9.0311E-22 9.54E-18 1.07E-16

GOSemSim 3.81E-140 1.28E-13 1.57E-20
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curves are shown in Fig. 4. In the next section, the results
based on BP terms will be compared with existing
methods.

Comparison with existing similar methods
Recently, several computational methods have been pro-
posed for quantifying the functional similarity scores of
miRNAs. In this section, we selected two methods, miR-
FunSim and GOSemSim, for comparison with the pro-
posed PPImiRFS method. miRFunSim is used to calculate
the functional similarity between miRNAs based on the
PPI data, and it only utilizes the structural features of PPI
networks. One report has found that weighted PPI net-
works are more effective than unweighted PPI networks
[32]. Because the GO data are incomplete, there are many

null values in the result of GOSemSim, thereby affecting
its performance. The proposed PPImiRFS not only con-
siders the structural features of the PPI network but also
includes the GO similarity weighting, which may allow it
to overcome the deficiencies present in the above two
methods.
By analyzing the ROC curves and corresponding AUC

values, these three methods were compared. The miRFun-
Sim and GOSemSim methods were tested on 126 high
quality, experimentally verified A. thaliana miRNA-stress
associations to calculate the functional similarity scores
for every miRNA pair associated with identical types of
stress. The comparison, shown in Fig. 5, demonstrates
that PPImiRFS performs better than miRFunSim and
GOSemSim.

Fig. 3 Average functional similarity scores of miRNA pairs in response to identical types of stress and randomly selected miRNA pairs. The red
arrow represents the average functional similarity score of the miRNAs in response to identical types of stress. The normal distribution curve
represents the distribution of the average functional similarity scores of the negative test datasets

Fig. 4 ROC curves from PPImiRFS based on the three orthogonal
ontologies Fig. 5 ROC curves from the three computational methods
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Similarity scores calculated using the three methods
were used along with various clustering algorithms to
cluster 427 miRNA sequences. The clustering results
can be evaluated by using the 47 families as benchmark
clusters. The performances of the three methods can be
compared using the assessment results. The functional
similarity scores of the 91378 miRNA pairs constructed
from the 427 miRNAs were calculated by PPImiRFS,
miRFunSim and GOSemSim, and then three weighted
miRNA networks were constructed. Through an experi-
ment comparing eight network clustering algorithms in
clusterMaker [33] (Affinity Propagation Cluster, Auto-
SOME Network Clustering, Cluster Fuzzifier, Connected
Components Cluster, Fuzzy C-Means Cluster, MCL
Cluster, SCPS Cluster and Transitivity Clustering) and
ClusterONE [34], we discovered that ClusterONE and
Connected Components Cluster could obtain better re-
sults than the other clustering algorithms, and these two
methods were therefore selected to cluster the 427 miR-
NAs. The basic parameters used for ClusterONE were
as follows: for PPImiRFS and miRFunSim, the minimum
size was 2, and the minimum density was 0.45; for
GOSemSim, the minimum size was 1, and the minimum
density was 0.85. ClusterONE predicted 57, 77 and 75
clusters for PPImiRFS, miRFunSim and GOSemSim, re-
spectively. The edge weight cutoff values of Connected
Components Cluster were 0.4, 0.55 and 0.9 for PPImiRFS,
miRFunSim and GOSemSim, respectively. The numbers
of clusters predicted with Connected Components Cluster
for PPImiRFS, miRFunSim and GOSemSim were 50, 51
and 6, respectively. The evaluation metrics used by refer-
ence [35] were then applied to evaluate the cluster results.
The evaluation metrics comprise precision, recall, F-
measure, sensitivity, positive predictive value and accur-
acy. The evaluations of ClusterONE and Connected
Components Cluster are shown in Figs. 6 and 7.

Figure 6 shows the comparisons of the PPImiRFS with
other methods when ClusterONE is used. The proposed
method outperformed the two previous methods, with
the exception of its slightly lower sensitivity. Figure 7
shows the comparisons of the PPImiRFS with other
methods when Connected Component Cluster is used.
Although the highest precision and sensitivity were
achieved in the network constructed with GOSemSim,
this occurred because the number of clusters predicted
was very small, including an impossibly large cluster
containing 393 miRNAs. Therefore, most of the miRNAs
in the benchmark clusters were included in this very
large cluster, giving a very high sensitivity, and most of
the members of other clusters were in the same family,
meaning that they appeared in the benchmark clusters,
giving a relatively high precision. Therefore, the network
computed with GOSemSim was not truly better than
those generated using PPImiRFS and miRFunSim.
In conclusion, the PPImiRFS method is more effective

and reliable for quantifying the relationships between
miRNAs than other available similar methods.

Case study
In this section, we quantified the relationship between
miRNAs in response to high salt content (abiotic stress)
and the TMV-Cg virus (biotic stress) using the PPI-
miRFS method. The miRNAs responding to TMV-Cg
were divided into two sets: the seed miRNAs and the
test miRNAs. We combined the test mRNAs with the
remaining A. thaliana miRNAs (with the exception of
the miRNAs responding to TMV-Cg) as the final test
miRNA set. Next, functional similarity scores were cal-
culated between every miRNA in the seed miRNA set
and every miRNA in the final test miRNA set. Finally,
we ranked all of the miRNA pairs according to their
scores. We retrieved the most miRNAs (with the

Fig. 6 Comparative performance of ClusterONE based on the networks constructed with PPImiRFS, miRFunSim and GOSemSim
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exception of miR823) when we set the threshold to 0.5.
We also predicted several new miRNAs that are likely to
respond to the TMV-Cg virus, including miR165 [36, 37],
miR156 [34, 38], miR418, miR160 [36, 38], and miR393
[36, 37, 39]. Next, the same experimental method was
used on miRNAs responding to high-salt conditions. We
retrieved all of these miRNAs with a threshold of 0.5. We
also predicted several new miRNAs that are likely to re-
spond to high-salt conditions, including miR418, miR166
[36, 40], miR160 [36, 38], miR841 [41], miR169 [37, 42,
43]. Although these new miRNAs have not been reported
to respond to high-salt conditions or TMV-Cg in the miR-
Base database, several of them have been verified to re-
spond to other types of stress. These cases will be further
verified by biological experiments in the future. The par-
tial results are shown in Table 5, and the complete results
are available in Additional file 5.

Availability of PPImiRFS
To our knowledge, most of the existing methods men-
tioned previously have not been implemented as publicly

available software packages. Therefore, their availability
is limited. In this study, we not only introduced a novel
computing method but also implemented a publicly
available software package. This software package is
composed of a main program, data pre-processing pro-
grams, and A. thaliana data. PPImiRFS is a console appli-
cation programmed in C++, and the data pre-processing
programs are implemented in Perl and R. The target gene
sets of the miRNAs of the species to be inferred and the
WPPIN data are required before the software can be run.
The current version of the software package includes the
necessary datasets for A. thaliana, and we will integrate
datasets from additional species into future versions of the
software. If users are interested in applying the current
version of the software package to other species, all the
necessary programs for generating the required datasets
are provided. To use the software, users only need to in-
put a file that includes their miRNA pairs of interest. The
functional similarity scores of these miRNA pairs will be
calculated automatically, and a file will be created that
contains all of the functional similarity scores of the
miRNA pairs in the input file. Our software was tested on
a PC (2.5 GHz cup, 2 GB RAM) and required 0.13 h,
1.11 h and 6.00 h to finish with input files of 100, 1000
and 5000 miRNA pairs, respectively. The software is avail-
able at https://github.com/kobe-liudong/PPImiRFS.

Conclusions
In this study, we proposed a novel computational
method to quantify the functional similarity between a
pair of plant miRNAs based on a PPIN with GO term se-
mantic similarity weights. For the convenience of other re-
searchers, we implemented our proposed method as a
publicly available software package for local use. This
study revealed that the functions of miRNAs responding
to the same type of stress (abiotic or biotic) appeared
more similar using the proposed method than those of

Fig. 7 Comparative performance of the Connected Component Clusters based on the networks constructed with PPImiRFS, miRFunSim and
GOSemSim

Table 5 Top 5 prediction results for miRNAs responding to
high-salt conditions and TMV-Cg stress

Stress miRNA Score

High-salt ath-miR418 0.932

ath-miR166 0.929

ath-miR160 0.908

ath-miR841 0.892

ath-miR169 0.816

TMV-Cg ath-miR165 1.000

ath-miR156 0.939

ath-miR418 0.932

ath-miR160 0.908

ath-miR8177 0.899
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miRNAs not responding to the same type of stress. By
computing the functional similarity scores of intrafamily,
interfamily and randomly selected miRNAs and intraclus-
ter, intercluster and randomly selected miRNAs, the miR-
NAs in the same family or cluster were shown to have
higher functional similarity scores. These results suggest
that our method can correctly identify the functional simi-
larities and differences between miRNAs in different
groups. Furthermore, in a comparison with other similar
computational methods, our proposed method achieved
the most effective and reliable performance.
Qualifying the functional similarity of miRNAs is

based on a PPIN and predicted target gene sets, and the
utilized plant PPIN has very low coverage and is often
associated with high rates of false positives and false
negatives. In addition, the predicted targets often have
high false positive rates. Thus, our method will achieve
higher performance as the quality of the PPIN increases,
and improved target prediction methods are proposed.
Lastly, PPImiRFS can be applied to any plant species
with a PPIN and GO data.
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