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Abstract

Background: Amplicon re-sequencing based on the automated Sanger method remains popular for detection of
single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels) for a spectrum of genetics
applications. However, existing software tools for detecting intra-individual SNPs and InDels in direct amplicon
sequencing of diploid samples are insufficient in analyzing single traces and their accuracy is still limited.

Results: We developed a novel computation tool, named DiSNPindel, to improve the detection of intra-individual
SNPs and InDels in direct amplicon sequencing of a diploid. Neither reference sequence nor additional sample was
required. Using two real datasets, we demonstrated the usefulness of DiSNPindel in its ability to improve largely the
true SNP and InDel discovery rates and reduce largely the missed and false positive rates as compared with existing
detection methods.

Conclusions: The software DiSNPindel presented here provides an efficient tool for intra-individual SNP and InDel
detection in diploid amplicon sequencing. It will also be useful for identification of DNA variations in expressed
sequence tag (EST) re-sequencing.
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Background
Single nucleotide polymorphisms (SNPs) and insertion-
deletion polymorphisms (InDels) have become the most
commonly used DNA markers because they are co-
dominant, abundant within the genome and amenable to
flexible genotyping techniques [1, 2]. They could be
derived from a number of sources, including re-sequenced
polymerase chain reaction (PCR) amplicons, genomic
libraries and expressed sequence tag (EST) datasets [3].
From these, although genomic and EST resources, in
large scale in particular, tend to be produced with the
aid of next-generation sequencing (NGS), amplicon re-
sequencing based on the automated Sanger method
remains popular for a spectrum of genetics applications.

For instance, Sanger sequencing of PCR fragments is
needed to reveal sequence variations among races and/or
lines in a specific gene (e.g., tb1 gene in Zea mays [4]);
also, the candidate gene/region mapping strategy repre-
sents a more feasible alternative to random whole-genome
SNP mapping in association studies for species with lim-
ited linkage disequilibrium (e.g., trees [5]), of which the
candidate SNPs have to be generated with Sanger sequen-
cing. In addition, Sanger sequencing is still the method of
choice for DNA marker development in cases that the
budget is limited and the number of markers required is
not very large.
Amplicon re-sequencing can be performed via sub-

cloning or direct sequencing [6]. Sub-cloning method
results in single-strand sequence in each trace file (chro-
matogram), and SNPs and InDels are thus identified
between or among traces using alignment approaches
[7]. However, direct sequencing involves generally both
strands (alleles) of a diploid, and double peaks will
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present for a single base position in case of a SNP and
for nearly all positions subsequent to an InDel, which
have to be distinguished using specific algorithms. As
sub-cloning is time-consuming, laborious and expensive,
direct sequencing has been the preferred assay. To date,
several tools have been developed to detect intra-
individual SNPs and InDels in direct amplicon sequen-
cing of diploid DNA samples, including those recently
developed packages Mutation Surveyor (http://www.
softgenetics.com/mutationSurveyor.html), novoSNP [8]
and PolyPhred [6, 9]. However, these packages are insuffi-
cient in analyzing solely single sequencing traces. For
example, all the above packages require a reference
sequence, which would be a constraint when no reference
sequence is available, such as an intron region in EST re-
sequencing. In particular, PolyPhred combines multiple
individuals (e.g., ≥ 8) to guarantee essential accuracy, inha-
biting its utility for single samples, such as either parent of
an F1 or backcross population that serves in plants and
animals as the common mapping pedigree and segregating
markers have to be originated from the heterozygous
parent(s). In addition, a more recently reported package
PrimeIndel [10] can detect InDels without a reference
sequence, but it needs two sequences derived from the
double peaks within a certain range, which could be tedi-
ous. Moreover, the accuracy in single trace detection is
still limited for the existing software tools (see Results
below).
In this paper we present a novel computational tool that

enables automatic detection of intra-individual SNPs and
InDels in direct amplicon sequencing of a diploid sample
needless of a reference sequence. Because wave noises
impaired the quality of a sequence trace and were directly
correlated with the false-positive and missed SNP rates
[6, 8], we introduced Haar wavelet transformation [11]
to decompose the wave (base) signal of a trace file at
multiple-level resolution and filter out the noise of high-
frequency sub-signals. The Haar wavelet approach is
advantageous in simplicity, small CPU time and highly
accurate and fast transformation [12] and appears very
attractive in image coding, edge extraction and binary
logic design [13]. Subsequently, we used simulated data to
train Levenberg-Marquardt (LM) algorithm [14, 15] based
back-propagation neural networks (BPNN [16, 17]) for
intra-individual SNP diagnosis and also used real trace
data to test the performance of the trained algorithm.
BPNN is advantageous in non-linear perception, self-
learning, self-adaption and generalization ability [18]. LM
is a modified method for training BPNN that can improve
greatly the back-propagation convergence speed and the
prediction accuracy [19]. Finally, for intra-individual InDel
detection, we employed a stepwise allelic base alignment
algorithm to compare dynamically the primary and sec-
ondary base calls downstream of a potential InDel. We

benchmarked our method, termed DiSNPindel, with other
detection packages (Mutation Surveyor, novoSNP, Poly-
Phred and PrimeIndel) and showed that improved accur-
acy was achieved with two real datasets tested.

Implementation
Overview
DiSNPindel is implemented with the main sequential
steps for SNP detection: ‘1. Open a file’, ‘2. Find SNPs’,
‘3. Manual modification (optional)’ and ‘4. Save result’,
each corresponding to a button or box on the interface
(Additional file 1: Figure S1). If continuous double peaks
are found, the ‘Switch to Indel detection’ button can be
clicked to ‘Indel detection’ interface, where ‘3. Find Indels’,
‘4. Manual modification (optional)’ and ‘5. Save result’
were designated for the specific functions (Additional file
1: Figure S2).
DiSNPindel is a stand-alone package programmed in

Matlab R2011b and LabWindows/CVI 9.0. It runs on
Windows platform and can deal with multiple traces
(.ab1 and/or .scf files), each being analyzed in an inde-
pendent panel that is switchable between SNP and InDel
interfaces. The method is composed mainly of four pro-
cedures, namely, noise filtering, feature extraction, SNP
diagnosis and, if applicable, InDel diagnosis. Figure 1
summarizes the overall structure of DiSNPindel.

Noise filtering
The Haar wavelet transformation [11] was used to de-
compose a peak (wave) signal into a low-frequency and
a high-frequency sub-signals. While the high-frequency
sub-signal would be removed as noises, the low-frequency
sub-signal was subjected to further decomposition. The
decomposition equation is:

f tð Þ ¼ An þ
Xn

i¼1

Di

where f(t) is the original signal, A is the approximation
of low-frequency sub-signal (or further sub-signal), D is
the details of high-frequency sub-signal (or further sub-
signal) and n is the number of decomposition levels.
More details of the Haar functions together with their
parametric notations could be seen in literature, e.g.,
Stanković and Falkowski [13].

Feature extraction
For each chromatogram wave, horizontal distance, height
and half-wave width were sampled from the primary (top)
peak and, if applicable, the secondary (lower) peak, to
represent the uniqueness of a wave position. Distance,
height ratio and half-wave width ratio between the double
peaks were then extracted as wave features efficient for
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subsequent diagnoses. Figure 2 shows the three features
extracted from double peaks at a wave position.

Intra-individual SNP diagnosis
Intra-individual SNPs were diagnosed with LM algorithm
[14, 15] based BPNN [16, 17], which consisted of three
layers: an input layer (the wave features), a hidden layer
and an output layer (the score; Fig. 1). Using simulated
within-individual SNP data, the LM-BPNN was trained
for the output layer to meet a SNP score specification.
A total of 590 within-individual SNP samples synthetic

of a wide range of the three wave features were simulated,
including 443 and 147 for training and validation, respect-
ively. An output value of each sample was generated using
a fuzzy reasoning method [20, 21] and de-fuzzified to a
score within the range 1–100.
LM-BPNN training was performed using the following

weights and thresholds assumed for the three input, ten
hidden and one output vectors (Fig. 1),

a) The weight vector between the first input
neuron and the ten neurons of the hidden layer:
[w(1,1)

1 w(1,2)
1 … w(1,10)

1 ],

b) The weight vector between the second input
neuron and the ten neurons of the hidden layer:
[w(2,1)

1 w(2,2)
1 … w(2,10)

1 ],
c) The weight vector between the third input

neuron and the ten neurons of the hidden layer:
[w(3,1)

1 w(3,2)
1 … w(3,10)

1 ],
d) The threshold vector of the hidden layer:

[b(1)
1 b(2)

1 … b(10)
1 ],

e) The weight vector between the ten neurons
of the hidden layer and the output layer:
[w(1,1)

2 w(2,1)
2 … w(10,1)

2 ], and
f ) The threshold of the output layer: [b(1)

2 ].

In practice, the thresholds [b(1)
1 b(2)

1 … b(10)
1 ] and [b(1)

2 ] were
treated as specific weights [w(0,1)

1 w(0,2)
1 …w(0,10)

1 ] and [w(0,1)
2 ],

respectively. To determine the weight w(i,j)
k (i = 0, …, 3;

j = 1, …, 10; k = 1, 2), the LM algorithm is used

Δw ¼ − JT wð ÞJ wð Þ þ μI
� �−1

J wð Þe yð Þ

where w is the weight vector, Δw is the deviation of w,
J(w) is the Jacobian matrix of vector w, μ is a coefficient,

Fig. 1 The overall structure of DiSNPindel. Haar wavelet transformation [11] was used to filter out the high-frequency noisy sub-signals of a base
peak (wave). Three features were extracted from the primary and secondary peaks at a base position, namely, horizontal distance, vertical height
ratio and half-wave width ratio, which were then inputted into LM-BPNN for intra-individual SNP diagnosis. The LM-BPNN contained three, ten
and one neurons (vectors) in the input, hidden and output layers, respectively. Intra-individual InDel diagnosis was conducted using a stepwise
allelic base alignment algorithm

Fig. 2 Three features extracted from double peaks (waves) at a base position. L, M and R indicate the positions of the left bottom, the middle
top and the right bottom of a wave, respectively. a The horizontal distance (|x1 − x4|). b The vertical height ratio (|y1|/|y4|). c The half-wave width
ratio [(|y1 − y2| + |y1 − y3|)/(|y4 − y5| + |y4 − y6|)]
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I is the identity matrix, and e(y) is the error. The learn-
ing steps are as follows.

1. Values between 0 and 1 were randomly assigned for
initial weights and thresholds assuming a maximum
error ε = 0.1.

2. Compute the BPNN output, e.g., yk ¼
X10

i¼1

viwi þ b21ð Þ
for the kth sample, where v is the input vector,
w is the weight vector, and b(1)

2 is the threshold
of neuron yl. The error is thus calculated as
ek = dk − yk, where dk is the score calculated from
the simulated data.

3. Compute the sum of square errors V wð Þ ¼
XN

i¼1

e2k ,
where N is the number of samples.

4. If V(w) < ε, turn to step 7 below. Otherwise,
compute the Jacobian matrix J(w).

5. Compute Δw using the LM equation as stated
above.

6. Let w(t + 1) =w(t) + Δw and compute the new sum
of square errors V(w(t + 1)) similarly as in step 3
above. If V(w(t + 1)) <V(w(t)), set V(w(t)) =V(w(t + 1)),
w(t) =w(t + 1) and μ = μ/β (β is a correction factor)
and turn back to step 4; Otherwise, suppose μ = μ · β
and turn back to step 5.

7. Reach the optimal weights and end the training
process.

Finally a true SNP was trained to a score ≥75, a vague
SNP to a score smaller than 75 but no less than 60, a false
SNP to a score smaller than 60 but no less than 20, and a
strongly false SNP to a score <20. In addition, using
another set of 147 simulated samples, the performance of
the trained LM-BPNN was tested.
A six-grade classification was established for the con-

venience of SNP diagnosis (Fig. 3), that is, grade 1 with a

score ≥ 75 (a true SNP), grades 2–4 being 60 ≤ score < 75
(a vague SNP), grade 5 being 20 ≤ score < 60 (a false SNP)
and grade 6 with a score < 20 (a strongly false SNP).
Grades 2–4 were further distinguished with the number
of noisy waves (height and width more than 70 and 50 %
of the secondary peak, respectively), that is, grades 2 (a
true SNP), 3 (a possibly true SNP) and 4 (a possibly false
SNP) with no more than one, two and more than two
noisy waves around, respectively. Grades 1 and 2 could be
a high threshold for SNP diagosis while grades 3 and 4
could be a relaxed threshold. Meanwhile, each SNP de-
tected could be manually modified.

Intra-individual InDel diagnosis
A stepwise allelic base alignment algorithm was employed
for intra-individual InDel detection. A maximal InDel size
was set at 30 bases according to Bhangale et al. [9]. The
presumed primary and secondary peak sequences were
compared for a given region dominated with continuous
double peaks, supposing an interval of m (m = ±1, ±2, …
or ±30) bases to reach the maximal matchability and
allowing for base transposition between top and secondary
peaks at a potentially misleading position. The final m
value indicates an InDel of the m bases, and its signal + or
– represents the presence of an insertion or deletion as
compared to the alternative sequence.

Datasets
As there was no ‘standard’ dataset tested with earlier
detection tools, we benchmarked our software DiSNPin-
del with the three packages Mutation Surveyor, novoSNP
and PolyPhred using a set of 62 Eucalyptus EST amplicons
(Additional file 2) for SNP detection, which had been
directly sequenced for wet-lab validation of a total of
66 SNPs associated with cleaved amplified polymorphic
sequence (CAPS) markers in one or both parents of
an F1 mapping population [22].
We also compared the performance of DiSNPindel

with the four packages Mutation Surveyor, novoSNP,
PolyPhred and PrimeIndel for InDel detection using 77
directly sequenced amplicons (Additional file 2) that
contained intra-individual variation in simple sequence
repeats (SSR) in either or both of the parents of an F1
mapping population [23].

Results
Noise filtering
After several rounds of trials, three levels of decompos-
ition were finally applied, in which the high-frequency
sub-signals at all levels were filtered out and the final
low-frequency sub-signal (A3) was reserved to display
the base position and the peak features. Figure 4 shows
the low-frequency sub-signal at each level of the decom-
position process.

Fig. 3 The six SNP grades classified based on the score and noisy
peaks around. The score range for each grade was shadowed in
black. Description of the number of noisy peaks around was stated
on the column for grades 2–4

Deng et al. BMC Bioinformatics  (2015) 16:343 Page 4 of 8



Intra-individual SNP diagnosis
Totally 110 iterations were performed for LM-BPNN
training. The mean squared error (MSE) decreased rapidly
and reached a stably low level after about 13 iterations in
the training and validation, indicating a strong conver-
gence (Fig. 5). In particular, the best performance in valid-
ation was reached in 42 interations (MSE = 0.1559; Fig. 5).
Similarly, MSE reached rapidly a stably low level in the
test procedure (Fig. 5).
We compared our software with Mutation Surveyor,

novoSNP and PolyPhred (v6.18) in intra-individual SNP
diagnosis. As Polyphred was limited in analyzing a single
trace, it did not detect any SNPs for all the ranks (1–6)
and was excluded from subsequent comparisons. Of the
total of 66 CAPS-related SNPs validated experimentally,
our software showed the highest rate of found SNPs and
the lowest rate of missed SNPs even at the highest thresh-
old when compared to the relaxed thresholds of novoSNP
and Mutation Surveyor. For instance, the found SNP rate
was 90.9 % (60/66) at grade 1 in DiSNPindel, much higher
than that of the most relaxed threshold in novoSNP
(37.9 % at score 1) or Mutation Surveyor (30.3 % at high

sensitivity; Table 1, Additional file 3: Table S1). Moreover,
no SNP found by novoSNP and/or Mutation Surveyor was
missed by DiSNPindel even at relatively higher grades.
Furthermore, DiSNPindel enabled detection of four CAPS-
SNPs subsequent to InDel (Additional file 1: Figure S3).
Also, DiSNPindel outperformed novoSNP and Mutation

Surveyor in efficacy of detection on all the SNPs identified
manually from 50 relatively high-quality traces out of the
62 amplicons. DiSNPindel showed the lowest rate of
missed SNPs at all the thresholds (Fig. 6, Additional file 3:
Table S2) and the highest rate of true SNPs at a rela-
tively low rate of false positives (Fig. 7, Additional file 3:
Table S2).

Intra-individual InDel diagnosis
As compared with Mutation Surveyor, novoSNP, Poly-
Phred (v6.18) and PrimeIndel, except Polyphred that
could not detect any InDels, DiSNPindel resulted in the
highest true InDel rate (53.1 %) but the least missed
(22.2 %) and false positive (0 %) rates, plus the highest rate
(24.7 %) of size-correct but base-wrong InDels (Table 2,
Additional file 3: Table S3). Only one true InDel (trace

Fig. 4 Approximation of the low-frequency sub-signal at three decomposition levels in the Haar wavelet transformation. a The original signal f(t).
b The low-frequency sub-signal A1 generated at the first level of decomposition. c The low-frequency sub-signal A2 generated at the second level
of decomposition. d The low-frequency sub-signal A3 generated at the third level of decomposition
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eSSR509P2F; Additional file 3: Table S3) detected by Mu-
tation Surveyor was missed by DiSNPindel and three true
InDels (traces eSSR348P1F, eSSR479P1F and eSSR650P1F;
Additional file 3: Table S3) detected by novoSNP and/or
Mutation Surveyor were determined with correct size but
wrong bases in our software.

Discussion
Resequencing based on the Sanger method has been the
gold standard for discovery of DNA polymorphisms in a
specific genomic region, given that the relatively high
error rates in NGS reads will cause inevitably false SNPs
[24, 25]. In case of SNP and InDel discovery within an
individual (heterozygote), attentions are mostly paid to a
single sequence trace file of PCR amplicon rather than
multiple traces with additional individuals. In this regard,
our method focusing on a single trace irrespective of refer-
ence sequence represents a considerable advance towards
automated within-individual SNP and InDel identification
in a diploid.

Table 1 Comparison of software performance in intra-individual
SNP detection

Softwarea Grade or score
thresholdb

Found SNPs (%) Missed SNPs (%)

DiSNPindel 1 60 (90.9 %) 6 (9.1 %)

2 61 (92.4 %) 5 (7.6 %)

3 61 (92.4 %) 5 (7.6 %)

4 63 (95.4 %) 3 (4.6 %)

5 63 (95.4 %) 3 (4.6 %)

6 63 (95.4 %) 3 (4.6 %)

novoSNP 18 0 (0.0 %) 66 (100.0 %)

13 11 (16.7 %) 55 (83.3 %)

9 16 (24.4 %) 50 (75.6 %)

6 19 (28.8 %) 47 (71.2 %)

3 25 (37.9 %) 41 (62.1 %)

1 25 (37.9 %) 41 (62.1 %)

Mutation
surveyor

Medium sensitivity 20 (30.3 %) 46 (69.7 %)

High sensitivity 20 (30.3 %) 46 (69.7 %)

The numbers of found and missed SNPs were experimentally verified with 66
CAPS-associated intra-individual SNPs originating from 62 single traces [22]
aPolyPhred did not detect any SNPs at ranks 1–6 and was thus excluded from
the comparison
bGrade 2, score 13 and medium sensitivity could be a high threshold for
reliable SNP detection in DiSNPindel, novoSNP and Mutation Surveyor,
respectively, where Grade 4, score 6 and high sensitivity could be a
low threshold

Fig. 5 Performance in training, validation and test of the LM-BPNN. The mean squared error decreased rapidly to a stably low level in training,
validation and test, indicating a strong convergence of all the three procedures. The best performance was reached at 42 interations in
validation (MSE = 0.1559)

Fig. 6 Missed SNP rates for 50 relatively high-quality single traces [22]
by DiSNPindel, novoSNP and Mutation Surveyor at different grade or
score thresholds. PolyPhred missed all the SNPs at all the ranks (1–6)
and was excluded from the comparison. More data were given in
Additional file 3: Table S2. MS: medium sensitivity; HS: high sensitivity
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As shown herein, our software outperformed other
contemporary methods in accuracy of intra-individual
SNP and InDel detection. The better performance can
be largely attributable to the effective algorithm for SNP
diagnosis and, accordingly, the accurate allelic compari-
son for InDel determination. To our knowledge, wavelet
transformation and BPNN are for the first time intro-
duced for studies of the kind. Besides eliminating the
need for reference sequence, the significantly improved
accuracy in both SNP and InDel detection by DiSNPin-
del indicates that our novel algorithm provides a reliable
and efficient alternative for automated detection of se-
quence variations. In addition, DiSNPindel could result
in consistent diagnoses from different runs of the same
sequencing trace.
Though DiSNPindel is designed to detect new SNPs

and InDels within an individual, it can be used to geno-
type multiple samples, with each output saved in a txt file.
Moreover, the output sequences could be aligned for mul-
tiple sample comparison using a third-part program, e.g.,
Clustal W [26].

Based on the setting of six confidence grades in SNP
detection, DiSNPindel allows the choice of threshold to
distinguish between true and false positives, thereby en-
abling a tradeoff between missed and erroneous SNPs.
For instance, the true, false positive and missed SNP
rates were 97.0, 29.2 and 3.0 %, respectively, at a high
threshold of grade 2, but were 98.5, 42.9 and 1.5 %, re-
spectively, at a lower threshold of grade 4 (Figs. 6 and 7,
Additional file 3: Table S2). A proper threshold value
may depend on practical application [6, 8]. Nevertheless,
the relatively high false positive rate even at a high thresh-
old suggests the necessity of manual review, especially for
certain circumstances such as mutation detection and
clinical diagnosis [6]. Moreover, as the false positive rate is
directly correlated with the sequence trace quality [8],
optimization of PCR condition and sequencing primer
could be helpful to reduce the false positive rate.

Conclusions
In this report, a novel yet efficient tool was proposed for
intra-individual SNP and InDel detection in diploid
amplicon sequencing. It will also be useful for identifica-
tion of DNA variation in EST re-sequencing. The pro-
posed tool does not require a reference sequence or
additional samples. Moreover, as compared with existing
detection methods, it can improve largely the true SNP
and InDel discovery rates and reduce largely the missed
and false positive rates. In addition, the tool can be used
to genotype multiple samples.

Availability and requirements
DiSNPindel (as of version 1.0) is freely available to all
readers at http://www.ritf.ac.cn/sitecn/FZBJKYCG/1377.
html.
Project name: DiSNPindel
Project home page: http://www.ritf.ac.cn/sitecn/FZBJ
KYCG/1377.html
Operating system(s): Windows XP or higher
Programming language: Matlab
License: none
Any restrictions to use by non-academics: none

Fig. 7 True SNP versus false positive SNP rates investigated for 50
relatively high-quality single traces [22] by DiSNPindel, novoSNP and
Mutation Surveyor. PolyPhred missed all the SNPs at all the threshold
ranks (1–6) and was excluded from the comparison. More data were
given in Additional file 3: Table S2

Table 2 Comparison of software performance in intra-individual InDel detection

Softwarea True InDels (%) Size-correct InDels with wrong bases (%) Missed InDels (%) False positive InDels (%)

DiSNPindel 43(53.1 %) 20 (24.7 %) 18 (22.2 %) 0 (0.0 %)

novoSNP 6 (7.4 %) 7 (8.6 %) 68 (84.0 %) 34 (72.3 %)

Mutation surveyor 7 (8.6 %) 7 (8.6 %) 67 (82.8 %) 26 (65.0 %)

PrimeIndel 15 (18.5 %) 10 (12.3 %) 56 (69.1 %) 0 (0.0 %)

The numbers of true, size-correct but base-wrong, missed and false positive InDels were detected with 77 single traces containing SSR-associated InDels [23]. More
data were given in Additional file 3: Table S3
aPolyPhred did not detect any InDels and was thus excluded from the comparison

Deng et al. BMC Bioinformatics  (2015) 16:343 Page 7 of 8

http://www.ritf.ac.cn/sitecn/FZBJKYCG/1377.html
http://www.ritf.ac.cn/sitecn/FZBJKYCG/1377.html
http://www.ritf.ac.cn/sitecn/FZBJKYCG/1377.html
http://www.ritf.ac.cn/sitecn/FZBJKYCG/1377.html


Additional files

Additional file 1: Figure S1. A SNP detection interface in software
DiSNPindel (http://www.ncbi.nlm.nih.gov/nucest/CB967984). Figure S2.
An InDel detection interface in software DiSNPindel. Figure S3.
CAPS-SNPs subsequent to InDel could be identified by software
DiSNPindel. (PDF 266 kb)

Additional file 2: Test Data. (ZIP 9355 kb)

Additional file 3: Table S1. Found and missed SNPs out of the 66
CAPS-associated intra-individual SNPs from 62 single traces [22] by
four software packages DiSNPindel, novoSNP [8], Mutation Surveyor
(http://www.softgenetics.com/mutationSurveyor.html) and PolyPhred
[6, 9]. Table S2. True, false positive and missed SNPs by four software
packages DiSNPindel, novoSNP [8], Mutation Surveyor (http://www.
softgenetics.com/mutationSurveyor.html) and PolyPhred [6, 9] for 50
amplicons previously directly sequenced [22]. Those sequencing traces
with no detection results shown in novoSNP and/or unmatched with
reference sequence in Mutation Surveyor were excluded. Table S3.
InDels detected by four software packages DiSNPindel, novoSNP [8],
Mutation Surveyor (http://www.softgenetics.com/mutationSurveyor.html),
PolyPhred [6, 9] and PrimeIndel [10] for 77 previously directly sequenced
amplicons that contained within-individual variation in simple sequence
repeats [23]. (XLS 399 kb)
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