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Abstract

Background: Measuring the extent of shared ancestry between individuals or organisms is important in many fields,
including forensic science, conservation genetics and animal breeding. The traditional approach is to calculate the
expected degree of relatedness between individuals in a pedigree. This assumes that the founders of the pedigree are
non-inbred and unrelated to each other, which is rarely the case. In contrast, molecular data allow measurement of
actual relatedness without knowledge of a pedigree. Methods to do this have been proposed, but generally do not
take the lengths of the genomic regions shared between individuals into account.

Results: Two measures based on the extent of haplotype sharing between genomes are proposed. The intercept
measure B estimates the fraction of shared genome between individuals, and the product measure C is closely related
to the numerator relationship matrix A. Both are based on a model for the joint distribution of markers at the
haplotype level. The two measures are compared to the pedigree-based measure A and to vanRaden's G, a frequently
used molecular measure, using a set of data comprising 5037 dairy cattle. The comparison criteria include the ability
to capture genealogical relatedness and the prediction accuracy obtained when used in genomic prediction. Both B
and C explain around 95 % of the variation in A, whereas G explains around 6 %. G captures genealogical relatedness
poorly, particularly for distantly related individuals (second cousins or farther). Both B and C tend to be larger than A
but this can be ascribed to the assumption of non-inbred unrelated founders. Using C in linear mixed models results

improved prediction accuracy.

in slightly higher prediction accuracy than G, and using B results in slightly lower prediction accuracy.

Conclusions: The two proposed measures of relatedness capture genealogical relatedness well, outperforming
vanRaden'’s G in this respect. When used in genomic prediction models, the product measure leads to slightly
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Background
Estimating the extent of shared ancestry between individ-
uals or organisms is central to many fields. Examples range
from forensic science [1], studies of population structure
[2, 3], and conservation genetics [4], to the mixed lin-
ear models used in genomic prediction and genome-wide
association studies [5, 6].

Following Malécot [7], measures of relatedness between
two individuals are generally formulated in terms of the
coefficient of coancestry, which is the probability that for
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a randomly selected gene, two alleles, one taken at ran-
dom from each individual, descend from a single ancestral
gene — that is, the probability that the alleles are identical-
by-descent (IBD). Similarly, a measure of inbreeding for
an individual is defined as the probability that the two
alleles of a randomly selected gene are IBD [7]. When
a pedigree is available, probabilities that two alleles are
IBD from common ancestors within the pedigree can be
calculated, and from these the classical measures of relat-
edness and inbreeding can be derived. The calculations
typically assume that the founders are unrelated and not
inbred, which is rarely the case. The measures depend on
the choice of pedigree, and represent expected rather than
realized relatedness and inbreeding, since they cannot
incorporate the randomness inherent in meiosis.
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With the advent of high-scale genotyping technologies
such as single nucleotide polymorphism (SNP) arrays,
it is possible to estimate realized relatedness directly
from molecular data without knowledge of genealogy,
and a variety of ways to do this are available [8, 9].
These generally take the form of genome-wise averages
of single-SNP statistics, which have the disadvantage of
not taking the lengths of genomic regions shared between
two individuals into account [8]. In Section “Methods,’
two novel measures based on the extent of haplotype
sharing are described, and their properties studied. In
Section “Results” the methods are applied to a set of data
from dairy cattle, and compared to the classical pedigree-
based measure and a measure due to vanRaden [10] that
is widely used in animal breeding. Section “Software”
describes the software used and Section “Discussion”
gives a brief discussion.

Methods

The methods developed in this paper are based on the
following conceptual framework. The genome is divided
into a series of physical intervals, and the variant DNA
strings that may occur in the intervals are denoted seg-
ments. To each interval corresponds a set of segments that
may occur in the interval, and these sets do not overlap: a
segment that may occur in one interval may not occur in
another. With some abuse of terminology one may iden-
tify the intervals with genes, and the possible segments
with alleles. A specific genome is regarded as a collec-
tion of segments, and measures of relatedness between
genomes are constructed in terms of similarity between
such collections. For this the concept of a multiset is
needed.

Multisets

A multiset [11] is a generalization of the concept of a
set that, unlike a set, allows multiple instances of its ele-
ments. The multiplicity of an element is the number of
instances of the element in the multiset. For example,
[2 figs, 5 pears, 3 plums] is a multiset in which the element
fig has multiplicity two. Note the use of square brackets
[] to distinguish multisets from ordinary sets using curly
brackets {}. A multiset corresponds to an ordinary set if
the multiplicity of every element is one or zero.

Multiset intersection is a generalization of set intersec-
tion. The intersection of two multisets is formed by taking
the minima of the multiplicities of the corresponding
elements in the two multisets. For example:

[2 figs, 5 pears, 3 plums] N [1 fig, 10 pears, O plums] =
[1 fig, 5 pears, 0 plums].
The sum and product multiset operators, represented

by + and x respectively, use the straightforward element-
wise operations, for example:
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[2 figs, 5 pears, 3 plums] + [1 fig, 10 pears, 0 plums] =
[3 figs, 15 pears, 3 plums], and

[2 figs, 5 pears, 3 plums] x [1 fig, 10 pears, 0 plums] =
[2 figs, 50 pears, O plums].

The cardinality of (number of elements in) a multiset
A is written |A|. Some useful properties of the operators
include the equations

|A+ B| = |A| + |B|,
Ax[B+C] = [AxB]+[Ax (],
A+[BNC] =[A+BIN[A+(C],
that hold for any multisets A, B and C [11].

Two measures of genomic relatedness

As described above a genome is taken to be composed
of a collection of segments, taken from a larger pool of
segments S. Let G; represent the genome of individual i,
regarded as a collection of segments s in S. Since there
may be duplicates, G; is a multiset. Let x;; represent the
multiplicity of segment s in G;.

Let there be p intervals (loci). For s € S, let I(s) €
{1,...,p} indicate the interval associated with segment s.
At each interval, an individual genome has two segments,
corresponding to its two haplotypes. Thus each genome
has in all 2p segments.

A natural definition of the similarity of two individuals is
the fraction of genome that they share. So for individuals
i and j the intersect measure of their similarity is defined
as the cardinality of the intersection of the two genomes,
divided by the total number of segments:

bj = |GiNGj|/2p
= ins A Xjs/2p, (1)
seS
where x Ay is the minimum of x and y. Since |G;| = 2p, we
have b;; = 1foralli. Foralliandj,0 < b;; < 1.Also b;; =0
iff G; and G; have no common segments, and b;; = 1iff G;
and G;j are identical.

The product measure is defined similarly using the
product operator:

cj = |1G; x Gj|/2p
= Z xisxjs/zp' (2)
seS
We have 0 < ¢;; < 2 for all i and j, with ¢; = 0 iff G; and
G; have no common segments. In matrix terms C = (c;)
can be written as C = XXT/2p where X = (x;) is the

N x |S| matrix of multiplicities.
To relate the two measures, note that when x and y take

values in {0, 1,2}, xy is given by (1) 8 (1) (2), and x A y by
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indicator function. It follows that

,s0xy = 2(x Ay) —I(x =y = 1), where I is the

Cij = 2]91']' — Kij» (3)
where k;j, a measure of shared heterozygosity, is defined as
kij = #{s € S : xis = xj5 = 1}/2p.

When x € {0,1,2}, x2 = x + 2I(x = 2), so

Cii = Z x%/2p

seS
1+f;

where f;, a measure of homozygosity of individual i, is
fi=#{se S x5 =2}/p.

To relate C to the numerator relationship matrix [12],
let 6;; be the coefficient of coancestry between individ-
uals i and j, that is, the probability that for a randomly
selected gene, two alleles, one taken at random from each
individual, are IBD [7]. Define #; similarly as the proba-
bility that for a randomly selected gene, two alleles, one
taken at random from each individual, are identical, that
is, identical-by-state (IBS). For k = 1,...,p, write the
two segments of individual i at interval k as (sfl,sfz), and
similarly (sllfl,s]]fz) for individual j. Then for i # j,

Z Kisxjs = I (sf-(l = s}kl) +1 <st = s]/»‘z) +1 (sf‘z = s1k1>

seS:l(s)=k
+1 (sz = S]I'(Z)’
so from (2)
2pc; = Z I <sf»<1 = sﬁ) +1 (sf‘l = slkz) +1 (sf-‘z = s]]fl)
k=1...p

+1 (sf2 = slkz) .
(4)

Note that #;; is the probability of an event randomly cho-
sen from the 4p identities on the right-hand side of Eq. (4).
Hence ¥ = 2pc;j/4p, and so ¢;; = 28. Thus ¢;; is twice
the IBS-sense coefficient of coancestry ;.

Similarly, let 6; be the coefficient of inbreeding for
individual i, that is, the probability that for a randomly
selected gene, the two alleles are IBD [7], and let %; be the
corresponding IBS-sense quantity. When i = j, we obtain
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2pcii = Z I (S{-(l = Sﬁ) + 1 (Sfl = Si‘(z) +1 (Si*(z = Sifl)

k=1..p

+1(sh =sh) 5)

= 3 2 (sh =sh)+2u (s =) ©)
k=1..p

= Z (2 +21 (551 = Sf'(z)) (7)
k=1..p

so ¢;; = 1 + ¥, and f; is the IBS-sense coefficient of
inbreeding ¥;.

The additive, or numerator, relationship matrix is
defined as A = (a;;) where

Lo [1+e ifis
V7| 2605 otherwise
and as just shown

o 14+ 9;
G= 2094

ifi=j
otherwise
hence C and A are conceptually closely related. An

assumption behind this assertion is discussed in
Section “Discussion”.

Defining the segmentation

To define the segmentation a statistical model in the form
of an acyclic probabilistic finite automaton (APFA) [13] is
used. Such models allow the extent of haplotype sharing
within and between genomes to be quantified, and under-
lie the Beagle program [14, 15] that is widely used for
processing high-dimensional SNP data. Phase estimation,
imputation and model selection are performed simulta-
neously, using the algorithm described in [15]. Beagle
is highly efficient, taking only a few minutes to process
each chromosome for the data described in Section “Data
and computations’, and performs well: for example, impu-
tation accuracy rates generally exceed 97 % in cattle
data [16].

An APFA is represented as a directed multigraph A =
(V,E), where V is a vertex set and E an edge set: a small
example is shown in Fig. 1. This is a model for the joint
distribution of p = 20 markers at the haplotype level. To
each edge in E is attached a probability, such that the sum
of probabilities of the outgoing edges from each vertex in
V is one. Each haplotype corresponds to a path through
the graph from the root (the leftmost vertex) to the sink
(the rightmost vertex). The probability of a haplotype is
the product of the probabilities of the edges in its root-to-
sink path. See further [17, 18].

In [14, 15] the haplotypes that traverse a given edge are
known as a haplotype cluster. Here a different perspective
is adopted. The edges of the APFA are taken to repre-
sent chromosomal segments, that is, we set S = E. So if
two haplotypes traverse the same edge in an interval they
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locus
Fig. 1 A simple APFA. An APFA A = (V,E) for p = 20 markers. It has
|V| = 65 vertices and |E| = 91 edges. The colour of the edges
denotes the allele associated with the edge (red is “0" and blue is “1").
To each edge is attached a probability (not shown here)

are taken to share the same DNA in that interval, and if
they traverse different edges, they are taken not to share
DNA in that interval. The data may be represented as an
N x |E| matrix X taking values in {0, 1,2}, whose (i, j)th
element specifies the multiplicity of segment j in individ-
ual i. The variables corresponding to the columns of X
are called haplomarkers, and X is called the haplomarker
design matrix.

Figure 2 illustrates recombination under the model of
Fig. 1. The two haplotypes of an individual correspond to
two root-to-sink paths in the graph, and recombination
is seen as crossing-over between the paths. If the individ-
uals represented in Fig. 2 are taken in the order mother,
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father and offspring, we find the relationship matrices
1.000 0.750 0.650
0.750 1.000 0.675
0.650 0.675 1.000

B and C to be B and C

1.000 0.750 0.875

0.750 1.000 0.900

0.875 0.900 1.450
shared between the two haplotypes (red dashed lines) in
the offspring genome, so the homozygosity of this individ-
ual is 0.45.

. There are, for example, nine edges

Expected relatedness

Consider first three individuals, i, j, and k, where i and
j are the parents of k. We examine how the parent-
offspring relatedness measures depend on the relatedness
of the parents. Specifically, expressions for the expecta-
tions of the parent-offspring relatedness conditional on
the parental relatedness will be derived.

During meiosis the genomes G; and G; are first parti-
tioned into two gametes, say G; =[H] + H?] and G; =
[H! + H?] such that |H}| = |H?| = |H!| = |H?| =
p. The partitioning process (segregation) is complex and
stochastic, but only properties that are invariant to this
are considered here. Then the genome Gy =[ H} + H]?k] is

formed where H} is either Hi1 or Hl.z, and H,* is either Hj1

or sz, and the four combinations are equiprobable. Thus

4E(IGi x Gy|) = |G; x [H} +H,1] [ +1G; x [H} +H}] |
+1G; x [HE + 1|1 +1G: x [H + 1]
= |[G: x H'] + [Gi x H}] +[Gi x H+ [G,- x sz]
+[Gi x HZ] + [Gi x H} | +[Gi x 2] + [ G x 2]
=2(G; x G| +2IGi x G|

SO

E(cix) = (cii + cij) /2. (8)
Similarly

4E(Gy x Gy) = 8p +2|G; x G| (9)

Fig. 2 Recombination in an APFA. Maternal (a), paternal (b) and offspring genomes (c) are shown. In each genome, the maternal haplotypes are
shown as red solid lines, and the paternal as black dashed lines. The overlap is shown as red dashed lines. Two crossovers occur in the maternal line
and one in the paternal line: these are marked with “X"s
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s0
E(cp) =1+ ¢;/2 (10)
and
E(fi) = cij/2. (11)

Now consider four individuals, 4, i, j and k, where again
i and j are the parents of k, and where the relatedness
between #, i and j is known.

4E(|Gy x Gul) = |[H} + H!] xGy| + [[H} + H]] x G|
+ [} + H'1 xGyl + |[H + H}] x Gy
=2|G; x Gy| +2|Gj x G|,

SO

E(crn) = (cin + ¢jn) /2. (12)
An expression for the expectation of the intersect mea-
sure may be derived in a similar fashion:

E(bi) = E(bj) = 1/2 + ¢;/4. (13)
but I have not been able to derive an expression for E(byy,)
corresponding to (12).

Expressions (8), (10) and (12) are identical to those
used in the calculation of the numerator relationship
matrix using the algorithm of [19]. When only a sub-
set of individuals in a pedigree are genotyped, a hybrid
expected/realized relationship matrix R = (r;) exploiting
both pedigree and genomic information can be obtained
using the following simple modification to the algorithm.

Order the individuals so that parents precede their off-
spring and label them 1, ..., N. Write the subset of geno-
typed individuals as S, and for all i,j € S, set r;; = cy,
the realized genomic relatedness described above. For k =
1,...N, derive the relatedness between an individual k
and the preceding individuals as follows. When k ¢ S, set

Tk = 1+ 14/2

where i and j are the parents of k. If either or both i and
j are unknown (i.e., not in the pedigree) assume they are
unrelated, that is, use r;; = 0 in this calculation. For each
hefl,...,k—1},if {h,k} £ S, set

Tnk = T = (rip + 1) /2,

where again i and j are the parents of k. If i is unknown, use
rin = 0, and if j is unknown, use rj; = 0 in this calculation.

This algorithm adjusts the expected relationships down-
stream of S in the pedigree. An alternative method that
adjusts all the relationships outside of S is sketched in the
following subsection.
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Modifying A
This subsection describes an established technique that
is useful in various contexts. The individuals are parti-

(Au Au) and
Az |A2

All A12
A7l = (W) We regard A as a covariance matrix

and wish to construct a new A for which the marginal
covariance of group one is set to A};, and the conditional
(co)variance of group two, given group one, is kept the
same. That is to say, such that 412, A2! = (A12)T and A??
are retained. So we require that

11 12\ 1
Ao Al |* _(A +E|A
* ‘* AT ‘AZZ
where * denotes unspecified and E is an increment matrix

to be found. Using standard results on inverses of parti-
tioned matrices we obtain

tioned into two groups, so that A =

apy = (A" +E+a" (1422)*11421)71
and so
= (41) " - @™

is the required increment. Write the matrix obtained in
this way A = A|A7,. This technique is used when a sub-
set of individuals in a pedigree are genotyped, to compute
a hybrid expected/realized relationship matrix exploiting
both pedigree and genomic information [20, 21].

Results

In this section empirical comparisons are made between
the proposed relationship matrices B and C, the numera-
tor relationship matrix A derived from the pedigree, and
the matrix G of vanRaden [10].

Data and computations

The data used in this analysis are genotypes and
complex traits for 5037 Nordic Holstein bulls. The
5037 bulls were genotyped using a 50K chip and
then imputed with Impute2 [22] to 777K (HD), using
a reference panel of 1197 HD genotyped bulls. Five
traits are examined below: protein, fat, yield, body and
mastitis. These are de-regressed proofs (DRP) derived
from genetic evaluations in December 2013. A detailed
description of their definitions and derivations is avail-
able from the Danish Agricultural Advisory Centre
(https://www.landbrugsinfo.dk). The year of
birth of the bulls ranged from 1974 to 2009. The 3914 bulls
born until 2004 were taken to comprise the training set,
and the remaining 1394 bulls born from 2005 to 2009 were
taken to comprise the test set.
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The pedigree-based relationship matrix (A) for the 5037
bulls was derived from the Nordic Holstein pedigree of
year 2013 (which contains a total of 134832 animals) in the
standard way.

The genomic relationship matrix (G) following [10] was
calculated from the marker data, using

 Dok=p (i — ) (myge — )

if - - 14
& D k=t p 2 (1 — i) (14)

where M = (m;;) is the N x p marker design matrix whose
elements take values in {0, 1, 2}, and m1; is the mean allele
frequency of the relevant allele of the kth marker, that is,
mg = Y_,—1 n Mik/N. Thus the allele frequencies are set
to those in the current sample.

Beagle version 3.3.2 was applied to the unphased marker
data from the Holstein bulls, and the B and C matrices
were derived from the Beagle output files. Beagle uses two
tuning parameters, m and b. The larger the parameters,
the simpler the selected APFA. The settings m = 1 and
b = 0, suggested in [15, 18], were used below in the follow-
ing sections, except Section “Prediction”: here the settings
m = 4 and b = 0.2 suggested in [23] were used, since they
result in slightly better prediction accuracy.
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Relatedness and pedigree distance

In Sections “Two measures of genomic relatedness” and
“Expected relatedness” it was seen that there is a close
conceptual relationship between C and the numerator
relationship matrix A. This section examines empirically
the extent to which the measures capture the genealogical
relationships between individuals. This is done in several
ways.

In a crude but informative approach, the distance
between each pair of bulls may be calculated as the length
of the shortest path between the bulls in the pedigree.
For example, full- and half-sibs are at distance two, first
cousins are at distance four, and second cousins are at
distance six. Figure 3 shows sample densities of the four
measures broken down by distance for all pairs of ani-
mals. Corresponding summary statistics are shown in
Table 1.

The parent-offspring pairs are clearly identified by all
four measures, but for the more distant pairs there
appears to be least separation for the G measure. For the A
measure, distances of four and above are less than 0.2, with
a spike close to zero at distance 9, reflecting the assump-
tion of unrelated founders. There are distinct peaks for
most distances, indicating good separation between these.

] Distance
8 - — 1
B — 2
— 3
>
28 .
S 5
(=} 7 — 6
o 7
--- 8
w0 --- 9
o - AN
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
a
] Distance
8 - — 1
N — 2
— 3
>
281 .
S 5
(=} 7 — 6
o 7
--- 8
w0 --- 9
o -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
C

] Distance
8 — 1
N — 2
— 3
>

281 .
5 5
[=) T — 6
o 7
--- 8
0 --- 9

o -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
N Distance
8 — 1
N — 2
— 3

>

287 —
S " 5
o [. — 6
e 4 7
8
v 9

o -

02 04 06 08 1.0 1.2

g

Fig. 3 Sample densities of relationship measures by pedigree distance. Sample densities broken down by pedigree distance for four measures:
a the numerator relationship matrix; b the intersect measure; ¢ the product measure and g the genomic relationship measure of [10]
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Table 1 Summary statistics of relationship measures broken down by distance
A B G

Distance mean sd mean sd mean sd mean sd
1 0.562 0.026 0510 0.037 0.579 0.048 0.504 0.035
2 0328 0.035 0332 0.040 0377 0.049 0.252 0.052
3 0.195 0.042 0223 0.042 0.253 0.050 0.104 0.054
4 0.122 0.037 0.163 0.037 0.186 0.044 0.025 0.046
5 0.094 0.027 0.140 0.030 0.160 0.036 -0.002 0.033
6 0.082 0.024 0.130 0.029 0.148 0.034 -0.010 0.027
7 0.068 0.025 0.117 0.031 0.132 0.037 -0.012 0.024
8 0.046 0.023 0.092 0.034 0.103 0.039 -0.011 0.021
9 0.023 0.016 0.061 0.026 0.067 0.029 0.000 0.024

The B and C measures at distance four and above are
larger, being less than 0.3, also with good separation.
The G measures for distance five and above are centered
around zero, so about half of the values are negative,
and there is poor separation. This suggests that G per-
forms relatively poorly for distantly related individuals, say
second cousins or farther.

Comparison with pedigree-based relationships

The distance measure just described is crude since pairs
of animals at a given distance may be more or less related,
due to varying numbers and lengths of lineage paths
between them and common ancestors in the pedigree.
The A matrix takes this into account and is the natu-
ral pedigree-based measure. The upper three subplots of
Fig. 4 show smoothed scatterplots of A versus G, B, and
C, for all distinct pairs of animals in the data. It is seen
that the bulk of the points lie above the identity line in
the A versus G plot, and under the line in the A versus B,
and A versus C plots: that is, G tends to underestimate A
whereas B and C tend to overestimate A. See also Table 1.
Adjusted R? statistics based on simple linear regression
models with no intercept, as shown in Fig. 4, indicate that
G only explains around 6 % of the variation of A, whereas
both B and C explain around 95 %.

Comparison using consistency

The tendency for B and C to be larger than A could be
due to the assumption of non-inbred, unrelated founders
that underlies A: if this is false, deflated estimates of
relatedness and inbreeding would result. To examine this
possibility we use the technique described in Section
“Modifying A” to examine the consistency of B, C and G
with 4, in the following way. A random sample of 1000
animals from the genotyped Holstein bulls is taken, and
called group one. The matrices A|G11, A|B11 and A|C11
are derived and compared with the realized relationships,
that is, the off-diagonals of (A|G11)22 are compared with

those of Gy and so forth. The process is repeated for 10
random samples of size 1000. The three lower subplots in
Fig. 4 show the results. It is seen that B is highly consistent
with A: the realized relatedness measures in Byy are very
close to the adjusted values (A|B11)22. The same is true of
C. But G shows poor consistency with A: the realized relat-
edness measures in Gy tend to exceed the adjusted values
(AlG11)22.

Comparison of inbreeding coefficients

Finally, Fig. 5 shows smoothed scatter plots comparing the
inbreeding coefficients obtained from A with those from
G and C. It is seen that C explains 89 % of the varia-
tion in A whereas G explains only 42 %. The inbreeding
coefficients from A are non-negative, but negative val-
ues occur in G. The inbreeding coefficients from C are
consistently larger than those from A, which may reflect
assumptions of non-inbred unrelated founders underlying
A. To examine this, the consistency of the inbreeding coef-
ficients from C and G are compared using the method just
described: the results are shown in Fig. 5. The coefficients
from Cyp are slightly smaller than those from (A|C11)29.
Thus the difference may at least in part be due to assump-
tions of non-inbred unrelated founders. The consistency
of the inbreeding coefficients from G with those from A is
very poor. Estimates of inbreeding coefficients based on G
may be sensitive to choice of allele frequencies in the base
population [10].

Prediction

To compare the use of the relatedness measures in pre-
diction, breeding values were predicted using a genomic
restricted maximum likelihood (G-REML) model of the
form

y=1pu+g+e (15)

where y is the response vector, u is the overall mean, 1
is a vector of 1’s, g is a vector of breeding values, and e
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Fig. 4 Comparison of relationship coefficients of A with those of G, C and B. The three upper subplots show smoothed scatter plots of the
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10 replicates

is a vector of residuals. It is assumed that g ~ N(0, Vcrgz)

and independently e ~ N (0, Daez), where V is a relation-
ship matrix (i.e. A, B, C, or G), and D is a diagonal matrix
with elements dy, = (1 — r,%) / r,% to account for heteroge-
neous residual variances due to varying reliability r,% of the
complex trait y.

The analysis was performed with the package DMU
[24] applied to data from the training set, using the four
relationship matrices. To examine prediction using less
related individuals, a reduced training set was constructed
by excluding all sires and grandsires of any animal in the
test set from the training set. The prediction accuracy, that
is, the correlation between the predicted and observed
values in the test set, are shown in Table 2. It is seen that
C consistently has the highest prediction accuracy, though
the improvement over G is modest, of the order of 0.4 %
when the full training set is used, and 0.6 % when closely
related animals are excluded from the training set. In con-
trast, B has slightly less prediction accuracy than C for
both the full and the reduced training set.

Software
Beagle version 3.3.2 was used to select APFA on which the
measures are based. A C++ program, available from the

author, was written to construct the B and C relationship
matrices from Beagle output files. DMU [24] was used to
perform the REML analyses. The remaining computations
were performed using R: in particular, the A matrix was
computed using the pedigree package, and Figs. 1 and 2
were constructed using the gRapfa package [18].

Discussion

Two novel measures of relatedness based on shared hap-
lotypes were introduced in Section “Methods” The inter-
sect measure (B) is an estimate of the fraction of shared
genome, and the product measure (C) is closely related to
the numerator relationship matrix (4) [12].

The framework underlying the measures is that of a
diploid genome divided into intervals and segments (or
genes and alleles) in which it is assumed that segments
are not shared between intervals, so that the multiplic-
ity of each segment in a genome is in {0, 1, 2}. It would
be interesting to examine whether the measures can be
extended to polyploid genomes, and whether the assump-
tion of no shared segments, which cannot accommodate
phenomena such as gene duplication, can be relaxed.

The close conceptual relation between C and A rests
implicitly on an assumption that whenever two haplotypes
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share the same segment (in the APFA context, traverse
the same edge) their chromosomal segments are indeed
identical (IBS). This is a strong assumption, and most
likely only approximately true. Probably the reason that
the proposed measures capture genealogical relatedness
well here is that the APFA-based segmentation is in rea-
sonable accordance with this assumption. If the sample
size were small, a overly simple APFA would be selected,
leading to over-estimation of haplotype sharing. Similarly,

if segments were defined directly using the marker alleles
(say, with two segments per interlocus interval corre-
sponding to the alleles of a flanking marker), the assump-
tion would be violated, and the resulting measures may
be expected to capture relatedness poorly. If full-sequence
data are available, it would in principle be possible to
verify the assumption for the APFA-based segmenta-
tion, or perhaps to develop an improved segmentation
method.

Table 2 Prediction accuracy (correlation) for G-REML using the four relationship matrices

Full training set

Reduced training set

Trait A B C A B @ G
protein 0.498 0.661 0.670 0.667 0.219 0.556 0.562 0.559
fat 0474 0.625 0.651 0.643 0.220 0.526 0.556 0.549
body 0.490 0.567 0.570 0.565 0.377 0.518 0.526 0.512
mast 0454 0.572 0.585 0.581 0.298 0.504 0.513 0.514
yield 0.513 0.656 0.667 0.663 0.203 0.543 0.554 0.549




Edwards BMC Bioinformatics (2015) 16:383

In Section “Results” it was shown that the tendency for
Band C to be larger than A can be ascribed to the assump-
tions of non-inbred, unrelated founders that underlie A.
An alternative explanation could be that the segmenta-
tion method chosen here tends to overestimate the extent
of haplotype sharing. Further research into this would be
useful.

A comparison of the prediction accuracy in a mixed
linear model using the relationship matrices as covari-
ances found that C performed consistently better than
G, with an improvement of about 0.4 % when all avail-
able animals were used in the training set, increasing
to 0.6 % when close relatives were excluded. There is
intense interest in methods to improve prediction accu-
racy in genomic selection programmes [25], since small
improvements may represent substantial economic gains
for the breeding company, and the present methods may
contribute to this goal.

Note that as described above C takes the form XX /2p,
where X is the N x |E| haplomarker design matrix.
Hence the use of C in (15) is equivalent to the model
y = 1p + Xh + e with random haplomarker effects
h ~ N(0, I|E|og2) and independent error e ~ N (0, Daez).
From Eq. (14), G takes the form (M — 8)(M — 8)T/n
where M is the N x p marker design matrix, and § and
n are shift and scale constants. Although different shift
and scale transformations of the (haplo)marker variables
would lead to different relationship matrices, they would
not affect the predictive ability of the models [26]. So
in this sense the comparison between C and G in the
prediction context is between the predictive power of X
and M, rather than between the relatedness measures
per se.

It is straightforward to construct weighted versions of
the measures. Let wy,...,w, be a set of apriori given
non-negative numbers such that Zi:l...p w; = 1. These
could for example be proportional to inter-marker dis-
tances, or to probabilities of the existence of a quantitative
trait locus (QTL) in the respective interval in order to
quantify trait-specific relatedness. Expressions (1) and (2)
are replaced by )" ¢ wy(s) (xis A xj5) and Y~ . g Wi(s)Xis¥ss
respectively.

The present methods have a certain similarity of
approach to that of the Chromopainter program [27].
This seeks to explore admixture in SNP data sampled
from multiple populations. Given SNP data for a set of
recipient chromosomes, and for a set of donor chromo-
somes, it forms each recipient chromosome as a mosaic
of donor chromosomes, by applying the haplotype copy-
ing model [28] in a hidden Markov model framework.
This has been used to explore human migratory history
[29]. The present methods provide an alternative mod-
elling approach in which it is not necessary to prescribe a
donor/recipient ordering. A review of genomic similarity
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measures from the population structure perspective is
given in [30].

A natural way to display patterns of relatedness is to
apply principal coordinates analysis ([31], Chapter 14),
using — log(b;) as a distance measure between individu-
als i and j. Also the length of shared regions is informative:
on average, the longer the shared regions, the more recent
the ancestor(s). The location of the shared regions may
sometimes also be of interest, for example, when there is
knowledge of the location of genetic variants influencing
a complex trait.

Conclusions

Two novel molecular measures of relatedness based on
haplotype sharing are described. The intersect measure
estimates the fraction of shared genome between individ-
uals, and the product measure has a close conceptual rela-
tionship with the coefficient of coancestry. Both capture
genealogical relatedness well, outperforming vanRaden’s
G in this respect. When used in genomic prediction
models, the product measure leads to slightly improved
prediction accuracy.
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