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Abstract

Background: In recent years, hyperspectral microscopy techniques such as infrared or Raman microscopy have
been applied successfully for diagnostic purposes. In many of the corresponding studies, it is common practice to
measure one and the same sample under different types of microscopes. Any joint analysis of the two image
modalities requires to overlay the images, so that identical positions in the sample are located at the same coordinate
in both images. This step, commonly referred to as image registration, has typically been performed manually in the
lack of established automated computational registration tools.

Results: We propose a corresponding registration algorithm that addresses this registration problem, and
demonstrate the robustness of our approach in different constellations of microscopes. First, we deal with subregion
registration of Fourier Transform Infrared (FTIR) microscopic images in whole-slide histopathological staining images.
Second, we register FTIR imaged cores of tissue microarrays in their histopathologically stained counterparts, and
finally perform registration of Coherent anti-Stokes Raman spectroscopic (CARS) images within histopathological
staining images.

Conclusions: Our validation involves a large variety of samples obtained from colon, bladder, and lung tissue on
three different types of microscopes, and demonstrates that our proposed method works fully automated and highly
robust in different constellations of microscopes involving diverse types of tissue samples.
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Background
Comparing different microscopic images of one and the
same sample obtained from different microscopic plat-
forms is a major problem in many microscopic studies
[1]. In spectral histopathology [2, 3], for example, it is
common practice to first perform label-free microscopy
using Fourier Transform Infrared (FTIR) microscopy of
disease related tissue samples, and then apply classical
Hematoxylin and Eosin (H&E) staining for a ground-truth
annotation of the tissue sample by a pathologist. In dif-
ferent scenarios, a sample is first measured by Raman
microscopy, and subsequently immunohistochemically or
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histopathologically labeled and imaged under a conven-
tional light microscope [4, 5]. In yet another setting, the
sample may be simultaneously studied using Raman and
MALDI imaging [6]. In such procedures, a key step is to
align the two images from both microscopic modalities
as illustrated in Fig. 1, where the two images are overlaid
in a way that each spot in the sample is located at the
same pixel coordinate in both microscopic images. This
may involve different types of geometric transformations
such as translation, rotation, scaling, or in some cases
even non-linear distortions. Finding the correct geomet-
ric transformation for an overlay is commonly known as
image registration in the image processing literature.
More specifically, it is often the case that one micro-

scope allows to capture a large area, e.g. encompassing
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Fig. 1 Problem overview. The FTIR image is a multi-spectral image where each pixel is represented by an infrared absorption spectrum (Five sample
spectra shown). Typically, the FTIR microscopic image captures a small subregion of the complete H&E stained tissue section, turning the
registration problem into a template matching problem

a complete sample, whereas the second microscopy plat-
formmay only capture a smaller specific region of interest.
Following common image processing terminology, this
setting leads to a template matching problem.
Clearly, a reliable, efficient, and fully automated algo-

rithmic approach suitable for template-matching regis-
tration tasks in different constellations of microscopes
will mean a great simplification of data analysis in cross-
microscopy studies and is thus the core motivation of this
contribution.
For certain cross-modality microscopic image regis-

tration tasks, specific approaches have been proposed
previously. Schaaff et al. [7] proposed a semi-automated
approach for registering secondary ionmass spectrometry
(SIMS) images against optical images. Their registration
approach has been used recently by Bocklitz et al. [6] to
register Raman microscopic images against mass spectro-
metric MALDI-TOF images. In another recent study [8],
the authors have utilized an automated image registration
approach for registering FTIR images of tissue microarray
(TMA) cores against H&E images. However, these previ-
ously proposed methods are either not fully automated, or
they are targeted towards specific sample conditions such
as the registration of round-shaped TMA cores and thus
have not been validated on a broad basis of different types
of samples and microscopy platforms.
Image registration becomes more challenging when

dealing with conventional histopathological thin-section
slides, which cover relatively large areas of few square cen-
timeters. The complete slide can be captured routinely
and with high resolution as an H&E image using micro-
scopes or specialized slide scanners. When dealing with
vibrationalmicroscopy, it is often the case that the spectral

image only captures a small region of interest (ROI) of the
sample, turning the registration problem into a template
matching problem. Note that template matching in gen-
eral is muchmore challenging than global registration. On
the one hand, the search space of transformations to be
explored is larger than for global registration, thus mak-
ing template matching computationally more expensive.
On the other hand, the target function needs to be much
more specific towards the correct registration position, as
a larger search space will also leave more space for false
registration positions.
Our contribution deals with the problem of regis-

tering a vibrational microspectroscopic image against
a histopathologically H&E stained image in a template
matching setting, as illustrated in Fig. 1. The vibrational
microspectroscopic image is a hyperspectral image where
each pixel is represented by either an infrared absorption
spectrum acquired by FTIR spectroscopy or an emis-
sion spectrum acquired by a Coherent Anti-Stokes Raman
Spectroscopy (CARS) microscope. Each pixel spectrum
is represented as a high dimensional vector of opti-
cal absorptions at several hundred wavenumbers, which
overall represent the biochemical status of the sample
at the corresponding pixel location. The conventional
histopathological image is obtained a light microscope
after H&E staining of the sample, yielding an image in
RGB color space.
In some specific cases, it has been demonstrated that a

foreground-background separation can be utilized for reg-
istration. In both the H&E image and the spectral image,
it is relatively easy to identify areas not covered by sam-
ple, which will be regarded as background, while all other
positions in the image will be regarded as foreground.



Yang et al. BMC Bioinformatics  (2015) 16:396 Page 3 of 14

This leads to binary versions of both the H&E and the
spectral image, which can be used for registration. In
some cases such as individual TMA cores, foreground-
background separation is morphologically informative
(e.g. due to the structure of cracks or holes in the sam-
ple), so that it will be a sufficient basis for registration [8].
Under these circumstances, registration can be achieved
with relatively simple standard registration algorithms. In
many cases, in particular when dealing with subregions
of whole-slide images, foreground-background separation
may not be sufficient, so that registration will require
more advanced computational techniques on images
that carry more information than merely a foreground-
background segmentation. In fact, subimage registra-
tion in whole-slide-images constitutes the focus of our
contribution.

Introduction
Vibrational Microspectroscopy and Spectral Histopa-
thology Several microscopy techniques have been estab-
lished in recent years to capture spectra of molecular
vibrations at high spatial resolution. Most notably, Fourier
Transform Infrared (FTIR) microscopy allows to charac-
terize optical absorption of biological samples through
absorption spectra covering the infrared part of the opti-
cal spectrum. Each pixel thus is represented by an infrared
spectrum, which is characteristic for the biochemical sta-
tus of the sample at the corresponding pixel location
at a spatial resolution of a few microns. It has been
shown in many types of tissue including colon [3, 4], lung
[2, 9], cervix [10] or skin [11] that the infrared spec-
tra obtained by FTIR microscopy are highly characteris-
tic to resolve tissue structure and identify areas affected
by diseases such as cancer. The application of vibra-
tional microspectroscopy for diagnostic purposes has also
been termed spectral histopathology (SHP). SHP involves
computational learning of spectral properties, which are
usually obtained by overlaying histopathologically anno-
tated H&E stained images with the corresponding FTIR
microscopic image. This clearly involves an image regis-
tration step, which to date has in general been conducted
manually.
Beyond FTIR microscopy, other types of vibrational

microspectroscopy have been utilized for diagnostic and
other purposes. Most notably, Raman and CARS micro-
scopes allow to characterize biological samples based
on optical emission spectra at a spatial resolution of
several hundred nanometers. While Raman microscopy
captures spectra along a broad spectral scale in a rela-
tively time consuming process, CARS microscopy allows
to capture selected parts of the spectrum, e.g. at few
dozens of wavenumbers, at high speed, making it suit-
able for characterizing sufficiently large regions within
tissue samples.

Terminology It is common practice in histopathology to
capture the complete sample within one large H&E image.
Conversely, the spectral image is often only captured
within a relatively small subregion of the H&E image, thus
turning the registration problem into a multimodal ver-
sion of what is typically referred to as a template matching
problem. We adapt the corresponding terminology and
will treat the spectral image as the template, which will be
considered as the fixed image, while the stained image will
be themoving image undergoing transformation. The aim
is to find a geometric transformation that maps the coor-
dinates from the spectral image to the stained image. Since
scale bars are typically available for both images, the H&E
stained image can be rescaled to match the resolution of
the FTIR image, so that the admissible class of transfor-
mations are rigid motions composed of a translation in x
and y direction and a rotation. Sometimes, a small degree
of scaling is required to adjust minor uncertainty about
the scale bar information which may get lost during image
acquisition for technical or other reasons.

Area-based vs. feature based registration Existing
approaches to image registration can be classified into
two categories according to their essential strategies [12],
namely area-based (or intensity-based) approaches on
the one hand and feature-based (or landmark-based)
approaches on the other hand. The area-based strat-
egy assigns a fitness to each possible transformation
[13, 14]. Measuring the fitness of one specific transfor-
mation is accomplished by the means of a scoring func-
tion or metric, which in most cases takes into account
all pairs of overlapping pixels between the two images.
The feature-based strategy first extracts the salient struc-
tures, i.e., the features [15, 16], of an image and esti-
mates the transformation by matching feature pairs
[17, 18]. For registration across different modalities, how-
ever, it is generally challenging to obtain identical feature
points across both types of images using state-of-the-art
approaches to feature point identification, as indicated in
Additional file 1: Figure S2. Area-based matching meth-
ods are usually considered more accurate since they use
more available image information [19], although they can
be slow in practice even when dealing with a simple trans-
formation type. Computational efficiency issues become
even more pronounced in our setting focused on template
matching.

Components of area-based registration An area-based
registration procedure usually contains four major com-
ponents [13]: 1) A metric which is a similarity measure
of how well two images overlap under a particular trans-
formation. 2) The geometric transformation represents
the spatial mapping of the coordinates of points from
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one image to the other. 3) The interpolator is used to
evaluate transformed image values at non-grid positions.
4) An optimizer searches the optimization space defined
by the parameters of the transformation to find the best
transformation. In the sense of an optimization prob-
lem, the metric and the interpolator define the objective
function that needs to be optimized; the transformation
class defines the domain of definition; and the optimizer
searches this domain for an optimal value of the objective
function.

Challenges in cross-modality image registration
Challenges in registering vibrational microspectroscopic
images against their H&E stained counterparts arise
from the inherently different traits of these two types of
microscopy. Spectra obtained from FTIR, Raman or CAR
microscopes, on the one hand, are highly specific for dif-
ferent tissue components and thus allow to resolve tissue
structure reliably. On the other hand, vibrational spec-
tra, in particular FTIR spectra, exhibit very low variability
across different samples, individuals, or even FTIR micro-
scopes of different manufacturers [3], making vibrational
microspectroscopy an ideal tool for resolving tissue struc-
ture. However, vibrational microspectroscopic images are
inherently high-dimensional, as each pixel is represented
by a vector containing extinctions or emissions at usu-
ally several hundred wavenumbers. H&E images, on the
contrary, are usually available as RGB images and thus
low-dimensional in nature. Processing H&E images com-
putationally is yet complicated by inhomogeneities result-
ing from tissue preparation and staining, leading to a
very variable range of contrasts and other parameters
covered within collections of H&E stained images. The
two modalities also display tissue structure on different
scales of resolution. While the pixel resolution of FTIR
microscopic images is around 5 μm, H&E stains can be
measured with a resolution close to the diffraction limit of
few hundred nm.
The major difficulty of the registration task is that the

two modality signals are different in dimensionality and
carry very different information. The colors in the H&E
stained image, on the one hand, display the response of
the tissue components to staining by hematoxylin, which
tends to stain nuclei, and eosin, which stains cytoplasm.
The absorptions captured in an FTIR spectrum as well as
the emissions in a Raman or CARS spectrum, on the other
hand, represent an integral snapshot of the biochemical
components at a given pixel location. Clearly, the two sig-
nals represent information of inherently different origin,
so that typical measures of correlation fail to reflect sim-
ilarity relevant for registration appropriately. (Additional
file 1: Figure S1).
Thus, the relationship between H&E staining colors

and the spectra is generally enigmatic in the sense that

diverged spectra do not necessarily mean bigger color
differences in the image. In theory, two locations with
identical spectrum can possibly have quite different stain-
ing patterns and vice versa even in a hypothetical scenario
without noise or artifacts.While it has been demonstrated
recently [20] that using an infrared image, the sample
can “virtually stained” by inferring an image visually sim-
ilar to a corresponding H&E image. However, similarity
is in general not sufficient for registration (see Additional
file 2: Figure S6), beside requiring tissue-specific training
of regression classifiers.

Overview of contributions
Utilizing Presegmentations A major novelty of our
approach is to utilize discrete presegmentations of both
the spectral and the H&E image obtained from clus-
tering the pixel spectra or intensities. The only exist-
ing approaches reduce information in both modalities to
binary foreground-background segmentation, which dis-
regards most information contained in the images and
thus may severely limit the robustness of registration.
On the other hand, it is well-established that cluster-
ing unveils tissue structure in FTIR, Raman and CARS
images relatively well in general, and is in fact commonly
used for spectral image segmentation. While supervised
or interactive [21, 22] approaches are known to achieve
segmentations that display biologically relevant structures
more accurately, such approaches require either prior
knowledge or manual interactions, contradicting our goal
of achieving a fully unsupervised registration. It is also
known that hierarchical clustering represents tissue struc-
ture better than non-hierarchical approaches [21], but at
the cost of significantly higher demands in running time
and memory.

Sparse Search Optimizer Another challenge is consti-
tuted by the size of the images involved. Images of a
complete H&E stained microscopy slide will comprise
tens of millions of pixels even after a coarse reduction
of resolution. Vibrational microspectroscopic images also
tend to involve large amounts of data, as they involve
hundreds or thousands of spectral components. Due to
the large amounts of data involved, computational effi-
ciency is a crucial issue, in particular for the optimization
approaches that are part of corresponding registration
approaches. To address this issue, we propose a sparse
search optimization strategy.

Self-registration based initial radius estimation The
sparse search optimizer requires initial coarse-level grid
points in transformation space. We propose a novel
approach to estimate an optimal distance between grid
points based on self-registration of the template image.
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Methods
Biological sample materials and preprocessing
FTIR image acquisition and sample preparation In
total nine histological sections from colon, lung and blad-
der tissue were prepared following procedures established
in previous work [3] by first taking FTIR microscopic
images on an Agilent Cary microscope, and subsequently
performing H&E staining using an Olympus BX41micro-
scope. FTIR image spectra were preprocessed using the
resonance Mie scattering correction procedure by Bassan
et al. [23]. Subsequently, following [3], the wavenumber
scale was adjusted.
For identifying background spectra, two different

approaches were employed. The first approach utilized
the procedure introduced in [3], where confounded spec-
tra are identified by different layers of filtering and clas-
sification at the level of resonance Mie corrected spectra.
All pixel spectra rejected on the grounds of these steps
were regarded as background pixels, the remaining pix-
els as foreground. For some of the samples, background
separation was conducted on the basis of raw uncorrected
spectra. In this case, each pixel was assigned the integral
absorption throughout the complete infrared spectrum.
In the resulting intensity image, a cutoff intensity was
automatically determined, so that all pixels exceeding this
cutoff were considered foreground and the remaining pix-
els considered background. The latter approach in general
identifies areas not covered by sample more accurately,
but requires spectral information on two different levels,
namely both the raw spectra and the resonance Mie scat-
tering corrected versions for further processing. Note that
the latter approach cannot be conducted on spectra after
the resonance Mie scattering correction, as the resulting
spectra appear implicitly normalized, so that background
spectra exhibit a high degree of integral absorption.
For preprocessing the H&E images, a first step reduced

the resolution of the H&E image to the resolution of the
FTIR image using the imresize function of the Matlab

image processing toolbox. The second step was to adjust
color cast which is commonly observed in H&E stain-
ing images due to the variability of the H&E staining and
image acquisition procedure. In order to eliminate color
cast, we first estimate a color vector representing the back-
ground color which in theory should be pure white since
no light is absorbed in the absence of the tissue by a simple
thresholding (Additional file 1: Figure S3). Then we sub-
tract this color vector in the Optical Density space [24], so
that the color of the stained images are corrected. Finally,
we set all colors close to the color vector to pure white
which indicates the background.

CARS image acquisition and sample preparation
CARS-microscopy was performed on a commercially
available setup (TCS SP5 II CARS; Leica Microsystems,
Heidelberg, Germany) based on a picosecond-pulsed laser
system which generated two synchronized, colinearly
aligned beams and using an inverted confocal microscope
as described before [5]. To focus the laser beam, a HCX
IRAPOL (25X/0.95W; LeicaMicrosystems) objective was
used. The typical pixel dwell timewas 32 μs per pixel, with
34 s per image, 1024×1024 pixels, a 300 μm× 300 μm
area and a pixel resolution of 300 nm. The CARS intensity
in the C-H stretching region from 2700 to 3000 cm−1 was
measured with a spectral resolution of 5 cm−1 to obtain
spectra. For details, we refer to the equivalent CARS setup
described in [5].

Segmentation of images We applied k-means clustering
with the k-means++ seeding [25] scheme to obtain pre-
segmentations of the FTIR spectral image. A correspond-
ing presegmentation of the H&E image was obtained
by clustering the three-dimensional RGB vectors of all
foreground pixels. Examples of the resulting index color
images of two corresponding FTIR and H&E regions are
displayed in Fig. 2. Whenever not specified otherwise, we

(a) FTIR image (b) H&E image

Fig. 2 Index color images acquired by k-means clustering. a Index image of the spectral image using k = 8; (b) index image part of the
corresponding area in the stained image using k = 10. Black color corresponds to background; the cyan square in the spectral image is caused by a
measurement artifact. Obviously, no one-to-one correspondence between the color indices of the two images exists. The mutual information of
these two images is 0.5145, while the entropies of two images are 3.1196 and 2.9664, respectively. Note the background segmentation is not
perfect, e.g. in the spectral image, the orange segment should be identified as background
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presegmented whole slide images into a default number of
k = 10 clusters, and smaller ROIs in the FTIR images into
k = 8 clusters.

Registration strategy
We describe our registration approach following the
four main components of an area-based registration
procedure.

Transformation and interpolation In general, we allow
registration under the group of similarity transforma-
tions, i.e., translation, rotation, and scaling to transform
the moving image. Whenever applicable, this was fur-
ther restricted. If precise scale bar information was avail-
able on both images, transformations were restricted to
rigid motions (rotation and translation); in case rough but
imprecise scaling information was available, the scaling
factor was limited to a suitable interval close to a factor of
1. Sometimes, either a precise prior knowledge or a rough
estimate of the rotation was available. In these cases,
either pure translation or translation plus a restricted
interval of rotations (e.g. ±30 degrees) was allowed. Some
existing registration approaches are too slow to achieve
registration under rigid motions in practice. Thus, when-
ever necessary, transformations were restricted to transla-
tions for efficiency reasons.
When dealing with geometric transformations on pixel

images, an interpolation of the transformedmoving image
is conducted, as pixels in transformed coordinates over-
lap several neighbouring pixels of the original image. As
our registration approach relies on index color images
obtained from presegmentations, nearest-neighbour inter-
polation (i.e. taking the index color from the closest trans-
formed pixel in the transformed image pixel coordinates)
is the straightforward choice.

Metric We propose restricted mutual information as a
registration metric closely related to the weighted ver-
sion of mutual information proposed earlier [26]. This
measurement serves as a universal metric for measuring
nonlinear correspondence with the prior knowledge that
certain index pairs, in our case indices representing back-
ground in each modality, should or should not match each
other.
Conventional mutual information (MI) is an obvious

choice in order to measure the nonlinear correlation
between two index color images (where the index value
itself does not contain information). Yet, when using
mutual information in a template matching registra-
tion, we encounter the problem of background attraction,
where MI tends to score highest in large segments rep-
resenting image background not covered by sample (see
Additional file 2: Figure S1). In order to utilize both the

known foreground-background matching and the non-
linear correlation between signal segments, we introduce
restricted mutual information that can incorporate cer-
tain prior knowledge into mutual information. Restricted
mutual information is based on interpreting mutual infor-
mation as a matching score that uses the observed joint
probability distribution as scoring scheme (see Additional
file 2: Section A.1). Under this interpretation, we mod-
ify mutual information to incorporate prior knowledge
about matching indices between the two images by adjust-
ing the joint probability estimated from data. In our case,
this adjustment is based on the assumption that indices
X = 0 and Y = 0 represent background pixels in both the
spectral and the H&E image.
Now, restricted mutual information adjusts the prob-

abilities p(i, j) according to background information
through an adjustment factor α through defining

Pα(X|Y = 0) = (1 − α)P(X|Y = 0),

Pα(Y |X = 0) = (1 − α)P(Y |X = 0),

Pα(X = 0,Y = 0) = (1 − α)P(X = 0,Y = 0) and

+ α P(X = 0 ∪ Y = 0),

where P(X = 0∪Y = 0) = P(X = 0)+P(Y = 0)−P(X =
0,Y = 0), and we conveniently define pα(i, j) := Pα(X =
i,Y = j).
Here, the adjustment factor α is treated as a parameter

of the registration pipeline. We denote the modified joint
probability as Pα(X,Y ) as our restricted scoring scheme
that incorporates our prior knowledge. Then joint entropy
indicates the quality of the matching and can be defined as

Hα(X,Y ) = − log
∏m

i=1 Pα(X = A(i),Y = B(i))
m

= −
∑

x∈X

∑

y∈Y

p(x, y) log pα(x, y),

so that we can define restricted mutual information as

Iα(X,Y ) = H(X) + H(Y ) − Hα(X,Y ).

For details regarding restricted mutual information, we
refer to Additional file 2: Section A.1.

Optimizer A main challenge when dealing with subre-
gion matching is that the space of potential transfor-
mations is very large, so that an exhaustive search that
assesses the target function for essentially every possi-
ble transformation will be prohibitively slow. To address
this issue, in particular in the light of large image sizes in
histopathology applications, we developed a sparse search
optimizer which in practice requires only a small part of
the search space to be evaluated.
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The sparse search optimizer follows a straightforward
approach that is illustrated in Fig. 3 and detailed in
Additional file 2: Section A.2. The algorithm succes-
sively computes subsets of equidistant grids with radius
r decreasing in each iteration. In the next level of detail,
only those grid points are kept which have a high-scoring
neighbour under target function f in the previous level.
A crucial step in the sparse search procedure is the

choice of the initial distance r0 between grid points on
the coarsest grid. If r0 is too large, the optimizer will fail
to detect the optimal solution. If, on the other hand, r0 is
too small, the efficiency advantage diminishes. In order to
avoid introducing r0 as a parameter, we propose a novel

and fully automated approach to determine r0 through
self-registration of the moving image against itself. Per-
forming this self-registration under one parameter of the
transformation space yields a peak in the target func-
tion under the neutral transformation. As detailed in
Additional file 2: Section A.2.2, the width of this peak can
be utilized to estimate r0.
The sparse search procedure can be seen as a general-

ization of the image pyramid [27], which is a commonly
employed multi-scale image representation strategy to
reduce the running time of registration procedures. In
practice, however, it is hard to use more than two or three
levels of a pyramid before important structures of the
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Fig. 3 Sparse search under 2D translation. The optimizer (fully described in Additional file 2: Section A.2) restricts the search space to all translations
indicated by non-dark-blue grid points. a Search space under initial radius r = r0 = 8 and threshold νthresh = 0.6 times the maximal intensity; (b)
Search space after second iteration with r = 4 and νthresh = 0.6 · 0.5; (c) third iteration with r = 2 and νthresh = 0.6 · 0.52; (d) final iteration with
r = 1, νthresh = 0.6 · 0.53. Panel (e) shows the complete score map of all possible translations. The efficiency of the optimizer results from the fact
that only few points of the complete score map need to be evaluated. While in this example, the grid radius r is treated identical for all parameters
of the transformation, we generally compute a separate radius for each parameter using self-registration based initial radius estimation
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image get lost [28]. The sparse search optimizer avoids
this problem by decomposing the search space rather than
the image itself. This allows a much higher degree of “sub-
sampling” as no image information for the metric will be
lost. With sparse search, we utilize image information on
a lower level while searching the transformation space on
a higher level.

Results and discussion
We extensively evaluated our registration approach in
mainly three scenarios. First, we assessed its performance
in subimage registration: We registered FTIR images dis-
playing subregions of histopathological slides, which were
captured completely in the H&E image. Second, we per-
formed whole-spot- registration of tissue microarrays. As
a third scenario, we demonstrate the performance of our
registrationmethod in the registration of a Coherent Anti-
Stokes Raman (CARS) microscopically imaged region of
interest within an H&E image of the same sample. A
fourth and less extensive assessment has been conducted
for full-slide registration, where both anH&E and an FTIR
image are given for a complete microscopic slide (sam-
ples S6–S9). As it turns out, in this scenario our proposed
method works reliably, as well as conventional registra-
tion approaches implemented in standard toolboxes such
as the Matlab imregister function or the ITK Insight Seg-
mentation and Registration Toolkit [13] (data not shown).

In the scenarios described above, we evaluated four
different registration approaches:

• RMI/sparse: We used restricted mutual information
between clustering-based presegmentations as
described above in combination with our newly
proposed sparse search optimizer.

• Binary RMI/sparse: We used restricted mutual
information in combination with binary
foreground/background segmentations and the
sparse search optimizer.

• Binary MS/gradient : We used a mean-squares metric
on binary foreground-background segmentations in
combination with a gradient optimizer, which
essentially corresponds to the approach proposed in
[8].

• Binary MS/evo: We assessed registrations under the
binary sum-of-squares metric in combination with an
evolutionary optimizer.

Two further approaches utilizing virtual staining
(VS/feature and VS/xcorr) are described and validated in
Additional file 2: Section A.3.
Table 1 shows an overview of the samples available for

evaluation. For samples (S6–S9), both the spectral image
and the stained image are acquired as whole-slide images.
As the availability of whole-slide FTIR images is rather
exceptional due to the high demand in measurement time

Table 1 Overview of the samples used for validation

Id Type Size (pixels) Number and sizes of spectral images

S1 Colon (1915 × 994) 7 (336×128), (240×128), (240×128), (240×
128), (240 × 128), (384 × 96), (288 × 160)

S2 Colon (2402 × 1872) 3 (240 × 160), (192 × 128), (288 × 128)

S3 Colon (1203 × 987) 6 (288×128), (288×160), (192×128), (288×
128), (192 × 32), (192 × 32)

S4 Colon (2666 × 1720) 5 (288×128), (336×128), (96×488), (288×
128), (96 × 488)

S5 Bladder (319 × 257) 1 (192 × 192)

S6 Bladder (3000 × 3615) 1 (2816 × 2432) (whole slide)

S7 Lung (5334 × 4000) 1 (3840 × 3712) (whole slide)

S8 Colon (3946 × 4200) 1 (2304 × 2688) (whole slide)

S9 Colon (4500 × 3551) 1 (4096 × 3804) (whole slide)

S10–S15 Lung (1392 × 886)–(2491 × 2227) 2–5 (212 × 354)–(618 × 237)

S16–S28 Bladder (1639 × 947)–(2985 × 1676) 3 (212 × 354)–(618 × 237)

TMA Colon 56 cores ∼ (375 × 375) (approx. size of one spot)

C1 Lung (825 × 825) 1 (1024 × 1024)

C2 Lung (1473 × 1845) 1 (1024 × 1024)

Spectral images for samples S1–S28 and TMA are available as FTIR images, while spectral images for samples C1 and C2 are CARS microscopic images. For samples S1–S28
and TMA, the resolution of the H&E images has been adjusted to approximately match the resolution of the corresponding FTIR images. Note that for the CARS samples C1
and C2, the spatial resolution of the CARS images is higher than the resolution of the H&E images, so that the CARS subregions involve significantly more pixels than the H&E
images, which cover a much larger area. This difference in resolution for CARS is resolved by taking into account scaling during registration. Full details on samples S10–S28
are provided in Additional file 1: Table S1
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and memory, we randomly selected large numbers of
subregions of the whole-slide FTIR image to assess our
subregion registration approach. A correct reference reg-
istration for these randomly selected subregions can be
obtained conveniently by registering the whole-slide FTIR
image against its H&E counterpart. For the remaining five
samples (S1–S5), spectral images were limited to several
ROIs of each respective sample. Each stained image is
resized according to the resolution of the spectral image
and the actual size of the tissue. For samples S1 and S2,
manual preregistrations were available as ground truth.
For samples S3–S5, it was possible to unambiguously
judge each registration position as correct or incorrect by
visual inspection.
If not explicitly stated otherwise, all evaluation results

refer to default parameters which were set as follows. The
number of clusters was set to ten in both the stained and
the spectral image whenever registering full images (or
complete TMA cores). Whenever dealing with a template
matching scenario, the stained images were segmented
into ten clusters, while the smaller spectral image was seg-
mented into eight clusters. As it turns out, our approach
is robust across a large range of cluster number values
(see Additional file 1: Table S3). The optimizer involves
two parameters k0 and δk (see Additional file 2: Figure
S3), which were set to 0.6 and 0.5 respectively, and the
initial radius r0 was estimated based on self- registration
as described above. The adjustment factor for restricted
mutual information was set to α = 0.25, which is within
a range observed to be robust across a large set of sam-
ples (Additional file 1: Table S4). The default limits of
the scaling factor are [ 0.8, 1.2], and rotations were lim-
ited to [−180, 180] for full registration and [−30, 30] for
template matching.

FTIR subregion registration
We validated our approach on the nine whole-slide sam-
ples S1–S9 listed in Table 1. In five cases (S1–S5), the FTIR
image was captured for one or few regions of interest as
subregions of the complete slide. For the remaining cases,
the complete slides were captured in the FTIR image. In
the latter case, we extracted a large number of random
cutouts of two different sizes (320×180 and 640×360 pix-
els) at different positions and small angels of rotation and
reconstructed the positions of these random cutouts using
our registration procedure. Corresponding registration
results are shown in Fig. 4, indicating both the robust-
ness of RMI/sparse compared to MS/gradient as well as
the efficiency advantage of the sparse search optimizer:
while exhaustive search exceeds acceptable running times
under rigid motions and can thus be evaluated only under
translations, the registration times for the sparse search
optimizer under rigid motions are within the order of
minutes for each ROI to be registered.

The registration accuracies were measured through
regression errors as shown in Additional file 2: Section
A.2.3. Corresponding errors of manual registration and
our RMI/sparse approach are compared in Additional
file 1: Table S2. As it turns out, the results of automated
registration can be considered more accurate thanmanual
registration when defining registration accuracy based on
regression errors (also demonstrated in Additional file 1:
Figure S4).
For sample S7, we extracted 100 such random cutouts

(320 × 180 in size) and compared the performance of our
approach with the MS/gradient approach proposed pre-
viously for registering TMA cores. As it turns out, our
RMI/sparse approach registers 84 out of these 100 regions
correctly, whereas the binary MS/gradient approach reg-
isters only 32 cores correctly, see Fig. 5. RMI/sparse also
turns out to be by far more robust than feature based
approaches or correlation-based approaches using virtual
staining, as shown in Additional file 2: Figure S7 and
Additional file 2: Table S1.
To assess robustness, we examined the results under

different numbers of clusters used in preprocessing and
under varying the adjustment factor α of the restricted
mutual information. An evaluation on 16 subregions
in four samples shows that registration works reliably
for an adjustment factor α in the range between 0.2
and 0.4 (Additional file 1: Table S4). Also, RMI/sparse
works reliably under a large range of values for k
around the default choice of k = 10 (Additional file 1:
Table S3).

Registering tissue microarray cores
We considered 56 cores captured as both FTIR and H&E
image from one TMA. Among the 56 tissue microar-
ray spots under consideration, the binary MS/gradient
approach produced 15 wrong registrations. Replacing the
gradient optimizer by an evolutionary optimizer in binary
MS/evo yielded 3 wrong results (Additional file 3). We
compared these results with our approaches RMI/sparse
with k = 10 clusters and binary RMI/sparse. In both
scenarios, one out of the 56 cores was registered incor-
rectly. A detailed result for one sample spot is shown
in Fig. 6. For detailed results we refer to Additional
file 3.
These results detailed in Additional file 3 suggest that

for the registration of TMA cores in general a rela-
tively simple approach is viable on the grounds of a
binary foreground-background segmentation. However,
the more sophisticated target function and optimizer uti-
lized in our proposed RMI/sparse framework (55 out of
56 correctly registered) yields correct registrations more
reliably than the previously proposed binary MS/gradient
(41 out of 56 correctly registered).
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7

samples
rotation pyramid level = 3 pyramid level = 2
limit correct time (min.) correct time (min.)

Exhaustive Search (translation only)
S2 [0] (1) 2/3 (2) 11.18 3/3 76.86

Sparse Search (translation only)
S2 [0] (3) 0/3 0.34 3/3 1.73

Sparse Search (rigid motion)
S1 [-30 30] 7/7 0.91 7/7 4.99
S1 [-180 180] 7/7 5.71 7/7 18.14
S2 [-30 30] 0/3 2.42 3/3 14.29
S2 [-180 180] 3/3 53.5
S3 [-30 30] 1/6 1.37 3/6 (5/6) 3.45
S3 [-180 180] 3/6 (5/6) 8.29
S4 [-180 180] 0/5 26.72
S5 [-180 180] 1/1 0.042

S10–S15 [-30 30] 15/21 84.96
S16–S28 [-30 30] 26/39 110.99

(1) Exhaustive search was considered under translation only for efficiency reasons. For sample S2, the correct rotation of all three spectral images of
sample S2 is zero and was thus used as reference case for exhaustive search under translation only;
(2) Note that high pyramid level can cause information loss. (3) Sparse search under translation only was considered to compare running time to
exhaustive search.

Fig. 4 Left. Registration result of seven regions-of-interest in Sample S1 using RMI/sparse. Yellow rectangles indicate the manually registered location,
black rectangles indicate the registration result. Right. Assessment of registration accuracy of regions of interest in samples S1–S5. The high running
time for exhaustive search on sample S2 despite limiting transformations to translation only demonstrates the need for improved search methods

CARS subregion registration
We applied our RMI/sparse registration pipeline on a sub-
region registration of a spectral image obtained by a CARS
microscope with the corresponding H&E image of the
same sample. Due to the high spatial resolution of CARS,
the region of interest contained in the spectral image
is much smaller, covering an area of roughly 300 μm
squared with 1024 × 1024 pixel spectra. For CARS spec-
tra, it is in general difficult to identify spectra belonging
to positions not covered by sample and thus representing
substrate only. H&E images were available with a pixel res-
olution of 2 μm and cover an area several times larger
than the ROI measured by CARS. Registration based on a
binary foreground-background segmentation is not pos-
sible in this case for two reasons — first, due to the lack
of a systematic approach to identify background spectra
in CARS images; and second, due to the small size of the
ROIs which may in fact be completely covered by sample
and thus not contain any background positions at all.
The spectrally measured ROI needed to be registered

against a region several times larger in the H&E image
(3364 × 2876 pixels). The index image of the spectral
image is obtained from performing k-means clustering
on the image spectra without further preprocessing. The
result of registration under similarity transformations (i.e.,
translation, rotation, and scaling) is displayed in Fig. 7,
illustrating the successful registration result.

Conclusion
We have demonstrated that our proposed RMI/sparse
approach allows robust, reliable and efficient registration

even in the scenario of matching subregions and across
different microscope constellations involving vibrational
microspectroscopic images. The robustness of our
approach across different sample types, different micro-
scopes, as well as changes in the parameters involved,
provides strong support that our method will be applica-
ble in a straightforward manner to data collected in other
labs and studies. This significantly simplifies the appli-
cation of vibrational microspectroscopy not just in the
context of spectral histopathology, where registration is an
elementary step for training spectral classifiers on a new
tissue type.
Achieving both efficiency and robustness required a

fair degree of adapting or improving existing approaches
towards image registration. In this context, there are sev-
eral novelties in our contribution. First, we could demon-
strate that performing registration using clustering-based
presegmentations of the image modalities involved is an
important key for reliable registration. This simple but
crucial observation may in fact be helpful if not indispens-
able for registration scenarios involving other, in particu-
lar multispectral or hyperspectral microscopy modalities.
A second contribution from the computational side is to
utilize restrictedmutual information as a registrationmet-
ric. Thirdly, as a further methodological contribution, we
could demonstrate that sparse grid based optimizers are
key towards efficiency when dealing with high resolution,
tissue sample sized data. While the sparse search opti-
mizer itself is straightforward, our self-registration based
estimation of the initial grid radius is key to facilitate fully
automated registration without requiring users to adjust
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Fig. 5 Results of subregion registration of random cutouts. Yellow rectangles indicate the ground truth registration location, black rectangles
indicate the registration result. Results of subregion registration of random cutouts in (a) cutouts of size 180 × 320 pixel spectra in sample S6; (b)
cutouts of size 360 × 640 pixel spectra in S6. Panel (c) shows Subregion registration using of our pipeline (84 regions registered correctly). Panel (d)
shows registration results of the binary MS/evo approach for the same 100 random cutouts (32 regions registered correctly). A corresponding
comparison involving further methods and random cutouts of three samples is shown in Additional file 2: Table S1

parameters. In summary, achieving the three-fold goal of a
robust, efficient and fully automated method required the
extension of existing registration approaches.
These methodological contributions promise to be of

value beyond the scenarios investigated in our contribu-
tion. Considering trends towards further diversification
of microscopy technology along with a simultane-
ously increasing trend to study samples across different

microscopy platforms, it is well conceivable that new
registration challenges will emerge. For such settings,
a conceptual lesson learned from our work is that all
components of a registration approach – preprocessing,
registration metric, optimizer and interpolator – need
to go hand in hand to achieve the required degree of
reliability. This will hold in particular for settings deal-
ing with the registration of samples from consecutive
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Fig. 6 Registration result of different methods for a single tissue microarray spot. The spot diameter is roughly 1.5 mm, and registration fails for both
MS/gradient and MS/evo, but works successfully for our newly proposed Binary RMI/sparse and RMI/sparse. Results on all 56 TMA spots are
summarized in the text and detailed in Additional file 3. In the first row of columns 3–6, green indicates foreground area in the FTIR image and
purple indicates foreground area in the H&E image, so that white areas indicate foreground overlap between the registered images

sections rather than using the identical sample, which will
exhibit non-linear differences in morphology. The same
also holds for registration problems dealing with advanced
alignments of three-dimensional data sets, which have
gained relevance in studying large-scale neural systems
such as whole brain images [29, 30] or atlases of model
organisms [31].
Recently, several other concrete scenarios dealing with a

combination of two microscopy techniques applied to one
and the same sample have been investigated. In fact, such
scenarios have been explicitly recognized as a potential
source of improved understanding of processes in bio-
logical samples [1]. Whenever two microscopy platforms
are involved, registration immediately becomes of rele-
vance, as the sample will need to be moved physically

from one microscope to the other. Reliable registration
algorithms greatly simplify experimental protocols, which
otherwise need to introduce physical landmarks on the
sample, which raises technical and experimental prob-
lems. Correspondingly, Masyuoko et al. [1] conclude that
“for maximal utilization of multimodal imaging data it is
crucial to develop efficient solutions for cross-platform
sample registry”. Our results strongly suggest that our
RMI/sparse registration framework will allow reliable reg-
istration results in other constellations of microscopes for
studies working across different microscopy platforms. In
fact, our approach works on the level of index images
obtained by rough clustering based presegmentations,
which are relatively easy to obtain for other currently pop-
ular microscopic platforms, in particular multi-spectral

C1 C2

Fig. 7 Registration of the four CARS microscopically captured regions of interest within H&E stains of the same respective sample obtained from
lung tissue
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and hyperspectral ones, such as Raman microscopy and
MALDI imaging [6].
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