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Abstract

Background: Genomic data production is at its highest level and continues to increase, making available novel
primary data and existing public data to researchers for exploration. Here we explore the consequences of “batch”
correction for biological discovery in two publicly available expression datasets. We consider this to include the
estimation of and adjustment for wide-spread systematic heterogeneity in genomic measurements that is unrelated
to the effects under study, whether it be technical or biological in nature.

Methods: We present three illustrative data analyses using surrogate variable analysis (SVA) and describe how to
perform artifact discovery in light of natural heterogeneity within biological groups, secondary biological questions
of interest, and non-linear treatment effects in a dataset profiling differentiating pluripotent cells (GSE32923) and
another from human brain tissue (GSE30272).

Results: Careful specification of biological effects of interest is very important to factor-based approaches like SVA.
We demonstrate greatly sharpened global and gene-specific differential expression across treatment groups in stem
cell systems. Similarly, we demonstrate how to preserve major non-linear effects of age across the lifespan in the
brain dataset. However, the gains in precisely defining known effects of interest come at the cost of much other
information in the “cleaned” data, including sex, common copy number effects and sample or cell line-specific
molecular behavior.

Conclusions: Our analyses indicate that data “cleaning” can be an important component of high-throughput
genomic data analysis when interrogating explicitly defined effects in the context of data affected by robust
technical artifacts. However, caution should be exercised to avoid removing biological signal of interest. It is also
important to note that open data exploration is not possible after such supervised “cleaning”, because effects beyond
those stipulated by the researcher may have been removed. With the goal of making these statistical algorithms more
powerful and transparent to researchers in the biological sciences, we provide exploratory plots and accompanying R
code for identifying and guiding “cleaning” process (https.//github.com/andrewejaffe/StemCellSVA). The impact of
these methods is significant enough that we have made newly processed data available for the brain data set at
http://braincloud.jhmi.edu/plots/ and GSE30272.
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Background

High-throughput experiments are commonplace in mo-
lecular biology and aim to identify genomic measure-
ments associated with clinical phenotypes and biological
mechanisms. Microarrays and next generation sequencing
are popular measurement tools for these experiments and
assay tens of thousands of genes at once. Typically, data
normalization and preprocessing approaches reduce tech-
nical variability [1, 2] but there often remain high levels of
systematic heterogeneity in the data which can obscure
biological phenomena under study. Because its impact is
often severe, understanding of such heterogeneity should
be an integral part of processing and exploration of gen-
omic data.

Much of this underlying variability is observed to be
systematic with the order in which samples are proc-
essed, and therefore is commonly referred to as “batch
effects” [3]. There are currently two general classes of
“batch” correction methods: those that use linear model-
ing when batches are known or assumed (e.g. ComBat
[4]) and those that attempt to identify and control for
potential batch effects (e.g. surrogate variable analysis
[SVA] [5], remove unwanted variation (RUV) [6], among
others). While uncorrected “batch effects” still appear in
published high-throughput data, an additional, more
subtle, yet perhaps more common issue has arisen: the
incorrect or imprecise definition of biological enquiry
during “cleaning” of genomic data, resulting either in the
removal of important biological signal, or the retention
of unwanted latent variability. It is important to note
that all of these algorithms depend on well-designed
studies to properly identify these “batch effects”, i.e.
where the outcome of interest is balanced across poten-
tial batches, as in randomization procedures—otherwise,
it is difficult to attribute variance in the data to “batch”
or biology of interest [7].

The first class of batch correction methods may miss
artifacts due to biology, and unannotated technical vari-
ation, while the second class of factor-based estimation
may remove biological variation of interest. Here we
present three illustrative data analyses using SVA (as a
surrogate for almost any factor-based approach) and de-
scribe how to perform artifact discovery in light of nat-
ural heterogeneity within biological groups, secondary
biological questions of interest, and non-linear treatment
effects. We do this using two publicly available gene
expression datasets, one from differentiating pluripotent
cells, and another in the developing and aging human
brain. Our analysis indicates that artifact discovery is an
important component of high-throughput analysis pipe-
lines but caution should be exercised in supervising the
discovery of artifacts to avoid removing biological signal
of interest. In particular, researchers should be aware
that many biological effects of potential importance can
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be removed if they are not explicitly protected during
the cleaning process.

Methods

A summary of SVA

Regardless of data processing methods used, an explicit
definition of the precise biological question under study
is particularly crucial in genomics investigation. Using
SVA formalizes this process in that this “biological
model” is an explicitly defined mathematical model
passed to SVA. Effects specified in this model are pre-
served while systematic heterogeneity that affects many
measurements unrelated to these effects are identified
and subsequently adjusted for in subsequent statistical
analyses. This approach has previously been shown to
result in more accurate and stable gene rankings, im-
proved false discovery estimation and correct p-value
distributions [5]. Under this framework, the biological
effects interrogated in the data must be limited to those
specified in this model as passed to the SVA algorithm.
If this is not the case, effects of interest may be treated
as latent heterogeneity and removed from the data. The
impact of researchers’ conception of the biological
enquiry on the nature of possible discovery should not
be underestimated in this process.

SVA’s purely data-driven methods for the estimation of
and adjustment for unwanted systematic variance take
particular advantage of the breadth of high-dimensional
genomics data. The algorithm does not require a priori
information about what variables measured by the re-
searcher might represent a “batch effect”. By using the
structure of thousands of measures uncorrelated to the
effect under study, SVA estimates unwanted effects
and allows sculpting of a dataset to focus on an ex-
plicitly defined biological effect. This is important as
commonly-used “batch” variables, such as microarray
scan/hybridization date, are likely surrogates for unmeas-
ured variables that are better estimated by the data them-
selves [3]. To determine the number of surrogate variables
(SVs) to estimate (where more SVs reflects a higher degree
of correction applied to the data) the SVA algorithm can
take user input, or use an automated approach via permu-
tation testing to estimate the number of SVs present in
the data. The correct usage of SVA has the potential to
increase statistical power when analyzing experimental
data, but note that while increasing the number of SVs
reduces the variability in the dataset, it may also reduce
variability in the direction of the effect of interest based
on the iterative algorithm used to estimate the SVs.

To best assess the biological effect of interest, all esti-
mated SVs, along with the defined “biological model” are
included for the adjustment of data in downstream dif-
ferential expression statistical analyses [8]. We note that
the SVA algorithm can permit correlation between these
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SVs and the outcome of interest [5]. Model selection
that removes surrogate or measured variables will lead
to p-values that are smaller than their true value (anti-con-
servative biases) [5], greatly increasing probability of identi-
fying false positives. Additionally, SVs can be regressed out
of the data to obtain “cleaned” data for visualization (as we
do in this report), however differential expression statistics
should not be performed on this “clean” data, as this too
can lead to anti-conservative bias resulting from between-
sample correlation being introduced by regressing out the
SVs and from inflating variance partitioning related to the
effect of interest, as the total variance of the system has
been reduced without being taken into account during the
linear modeling. We also suggest incorporating a priori
biological data, when available, into the evaluation of data
“cleaning” by any method, with the goal of using known
biology as an additional guide in this process (as we also
do in examples here).

Results

Batch correction increases ability to detect defined effects
First, we analyze gene expression data from differentiat-
ing pluripotent cells [9] (GSE32923) using the principles
outlined above as a guide in applying SVA to focus on
particular biological effects in the data. These analyses
illustrate how the details of defining biological enquiry
in the “cleaning” process impact discovery on both a glo-
bal and gene-specific level. Human pluripotent cell lines
were differentiated towards neuroectodermal and mesen-
dodermal fates. Biological replicates (duplicates) for each
cell line in each condition were collected after 8 days of
differentiation and hybridized to Agilent G4112F arrays to
measure gene expression. Data were preprocessed and nor-
malized using the ‘limma’ R package [10] with background
correction and quantile normalization (Additional file 1).

Following normalization and preceding any “cleaning”
of the data principal component analysis (PCA) is useful
to gain a global perspective on the structure of the data
(Fig. 1). While the first principal component (PC) reflects
the differences between treatments (Fig. 1a), the second
PC correlates strongly with processing data (Fig. 1b). This
is common in gene expression data [11, 12].

To perform SVA here, we define the biological model
as the average change in gene expression associated with
each treatment (model coded in R as: “expression ~
treatment”, where treatment has 3 levels: undifferenti-
ated, mesendoderm or neurectoderm). Hence, SVA will
preserve this mean effect while removing other system-
atic heterogeneity in the data that effect many measures
uncorrelated with this mean effect. After performing
SVA and subsequently regressing out the 27 automatic-
ally determined SVs in this dataset, biological patterns
are clearer in this global expression landscape (Fig. 1c).
Now, the 1st PC constructs an axis of differentiation
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primarily towards a mesendodermal fate (it is of interest
that the neuroectodermal fate also moves through this
dimension). The 2nd PC identifies an axis that is exclu-
sively represented in neuroectodermal differentiation.
Importantly, these samples no longer cluster by process-
ing date, indicating that SVA has successfully accounted
for the batch effects while preserving biological signal
(Fig. 1d). When combined with precise biological and
technical data, these dimension-reducing plots provide a
starting point for evaluating both global patterns of biol-
ogy across the samples under study as well as the extent
of technical variation in the data.

We now turn from the impact of this “cleaning” pro-
cedure on global gene expression patterns to individual
genes. We compared the results of gene-level contrasts
between neuroectodermal and mesendodermal differenti-
ation with and without SVA (Fig. 2 and Additional file 2:
Figure S1). Genes expected to be differentially expressed
by these treatments, such as PAX6 [13], are significant
without, but much more significant with SVA (Fig. 2a and
b). We also highlight one gene, OLFML1, that has not pre-
viously been associated with neuroectodermal differenti-
ation and which is non-significant before SVA (Fig. 2c¢)
but very significant after (Fig. 2d). The majority of con-
trasts between neuroectodermal and mesendodermal dif-
ferentiation are more significant after applying SVA
(Additional file 2: Figure S1). Here, incorporating SVs as
adjustment variables in individual-gene models reduces
within treatment variability by assigning unrelated variance
to the identified latent heterogeneity, hence increasing the
power to identify biological differences. Furthermore, the
relative ranks of genes previously reported to be involved
with neuronal (Additional file 3: Figure S2A) and mesendo-
dermal (Additional file 3: Figure S2B) differentiation are
relatively preserved before and after SVA, demonstrating
the relative stability of likely true positive effects.

It is crucial to note here that by defining the biological
effect of interest to be the average change in expression
with treatment, SVA removes many individual sample-
specific expression traits. For example, there are multiple
cell lines which do not induce PAX6 expression in the
neuroectodermal differentiation condition (Fig. 2a), but
this is not observable after SVA (Fig. 2b). This is desir-
able if the goal is to estimate the mean effect of each
treatment, but detrimental if expression phenotypes of
individual cell lines are of interest (see discussion for
additional details).

We note that similar reductions in technical variability
are seen with the “ComBat” empirical Bayes batch cor-
rection approach [4], which also can also utilize an explicit
definition of biological enquiry (Additional file 4: Figure
S3A and B). However, the empirical Bayes method places
less emphasis on the biological model, mostly reducing
global variation even without specifying a biological model
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Fig. 1 Global transcriptional landscape in differentiating pluripotent cells. PCA of expression data from differentiating pluripotent cells prior to
SVA colored by differentiation treatment (a) and microarray scan date (b, left panel). The first PC shows a strong effect of treatment, while the
second PC is related to “batch”: boxplots of the second PC indicate strong association with scan date (b, right panel). PCA following estimation
and removal of SVs again colored by differentiation treatment (c) and microarray scan date (d, left panel). Both the first and second PC now show
systematic association with differentiation, and the second PC no longer shows systematic change with scan date (d, right panel). Letters are also
used to distinguish individual scan dates in (b) and (d)

(e.g. using an intercept-only model, Additional file 4:
Figure S3C and D). On the gene-level, ComBat produced
smaller p-values on average (65.8 and 72.7 % of probes
had smaller p-values under ComBat compared to SVA
for the neuroectodermal versus mesendodermal fates,
and neuroectodermal versus the undifferentiated state,
respectively).

Batch correction may remove secondary effects of interest

In Figs. 1 and 2, our biological model included only a treat-
ment effect. If we are interested in exploring additional
effects, this initial model specification is not complete.
Analysis of additional effects requires their explicit inclu-
sion in the biological model along with the primary effect
of interest. Statistical analysis can then be applied to the

data while incorporating the latent factors identified by the
SV analysis.

For example, if we are also interested in gene expres-
sion differences between the two sexes in the data
depicted in Figs. 1 and 2, failure to include a “sex” vari-
able in the biological model passed to SVA results in the
removal of many sex effects in the data (Fig. 3a—c). Sex
is correlated with the expression of multiple genes, and
therefore appears as latent systematic heterogeneity to
the SVA algorithm. The gene RPS4Y1 (ribosomal protein
S4, Y-linked 1) is on the Y-chromosome, and therefore
only expressed in males. In the expression data analyzed
without SVA, cell lines derived from males have over
256-fold increased expression of this gene (>8 units in
the log2 scale; Fig. 3a). However, after removing the
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Fig. 2 SVA improves power to identify differentially expressed genes. a PAX6 shows significant differential expression between mesendodermal
and neurectodermal differentiation before SVA (p=1.77 x 10%) and b this effect becomes more significant following SVA (p =482 x 107>%). ¢
Prior to SVA, OLFMLT is not identified as being differentially expressed between differentiation conditions (p =823 x 10™°), but d is highly significant
after properly controlling for unwanted latent heterogeneity with SVA (p =449 x 10~?). Expression values are on the log, scale. Statistical significance
was derived from a moderated t-statistic comparing expression in the mesendodermal differentiation condition versus that in the neurectodermal
differentiation while also allowing variability to be explained by the undifferentiated condition (e.g. condition was categorical with 3 groups). Individual

cell lines are represented on the X-axis. Gene expression on the Y-axis is depicted in quantile normalized, log2-scale intensities

effects of the SVs derived from a treatment-only biological
model (without including sex as a factor, i.e. using the bio-
logical model used to generate Figs. 1 and 2), this effect
disappears entirely (Fig. 3b). Therefore, in order to pre-
serve sex differences for exploration, a sex variable should
be included along with treatment in the biological model
for surrogate variable estimation (Fig. 3¢c; model coded in
R as: “expression ~ treatment + sex”).

We explore another example at the GSTTI1 gene
(glutathione S-transferase theta 1), which has common
copy number variants (CNVs) in human populations
[14] that are associated with GSTTI expression differ-
ences and local genetic structure of neighboring genes
GSTT2 and GSTT2B [15]. The expression data analyzed
without SVA suggests three different copy numbers (0, 1
and 2) at this gene (Fig. 3d) which are validated with
SNP microarray intensities in a subset of these samples
(Additional file 5: Figure S4). Without accounting for
GSTT! copy number (i.e. using the treatment-only

biological model from Figs. 1 and 2) SVA removes the
expression differences related to GSTT1 CNV’s (Fig. 3e).
However, accounting for copy number at this location in
the biological model passed to SVA retains the copy
number effect in the data (Fig. 3f; model coded in R as:
“expression ~ treatment + CNV”).

Hence, when directed to preserve only the effect of
treatment, SVA finds and removes wide-spread system-
atic expression effects associated with both sex and
GSTTI copy number (among many other effects). This
serves as a positive control indicating that SVA can suc-
cessfully identify these known effects in expression data.
This is also a cautionary note, reinforcing the notion that
analyses must remain within the bounds set by the bio-
logical question defined at the outset of the data “clean-
ing”. Hence, any re-analyses of existing data with new
questions requires an entirely novel re-processing of the
data to address these new questions, not simply the calcu-
lation of additional statistics on the same processed data.
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of treatment obscures other true biological effects. The RPS4YT gene is differentially expressed by sex (a). However, when the biological model
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When the effects defined in SVA include sex, the difference by sex is preserved in the data (c). Similarly, with GSTT1, copy number variation has a
large impact on gene expression (d) which is removed by SVA under a treatment-only biological model (e). Including a term for GSTT1 copy
number in the biological model passed to SVA preserves the effect (f). Individual cell lines are represented on the X axis. Gene expression on the
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Here we can clearly see how strong an impact our prior
conception of the biological system can have on discovery
in genomics data.

Batch correction may remove non-linear expression
patterns

Next, we re-analyzed an existing dataset measuring gene
expression in the dorsolateral prefrontal cortex region
(DLPEC) of the brain across the human lifetime. [16].
Data was processed and normalized as previously de-
scribed [16]. Briefly, background correction and loess
normalization were performed on raw two-channel in-
tensity data, and low quality probes were removed from
subsequent analysis, leaving 30,176 probes on 269 sam-
ples across the lifespan (fetal through the aged).

Patterns of gene expression across age are dynamic
and non-linear: the largest changes occur during fetal
life and infancy, and decrease in magnitude with age
[16]. Here we expand on the previous modeling of age
patterns across the lifespan in several key ways: 1) We
applied splines to capture non-linear gene expression ef-
fects while ensuring patterns of gene expression are con-
tinuous across the lifespan The previous analysis used
age by decade interaction terms, which are not necessar-
ily continuous. 2) We estimated and adjusted for a much
higher number of SVs. The previous analysis used only 2
SVs, here we allowed SVA to automatically determine
this number: 31 SVs were used. This much increased

“cleaning” further tuned this dataset to age effects (no
doubt at the expense of many other effects such as those
assessed in Fig. 3). Hence, this newly processed data
should only be used for the estimation of canonical,
mean patterns of expression across the lifetime. 3) We
regressed out SVs while allowing the effects of age and
mean gene expression (the intercept) to remain in the
data. Previously, SVs were regressed out while ignoring
possible correlation between SVs and age, potentially ob-
scuring some age effects.

We applied three related spline models to the dataset,
which were A) A linear spline with a knot at birth [2° of
freedom], i.e. a line fit to expression across age in fetal
life, and a second line fit to expression across age in
postnatal life. B) A 2nd degree basis spline with a knot
at birth [3° of freedom], i.e. a curve fit to expression
across age in fetal life, and a second curve fit to expres-
sion across age in postnatal life. C) A 2nd degree basis
spline with knots at birth, 1, 10, 20 and 50 years [8° of
freedom], i.e. a curve fit to expression across age within
each age range between these knots. Each model also
allowed an offset at birth, because there were no samples
in the third trimester of fetal life.

We applied SVA to the normalized raw data under
each model described above, allowing each to have its
own set of SVs, which were regressed out of the data to
remove their effects for visualization. The impact of each
different model employed with SVA is depicted globally
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using PCA (Fig. 4) and at the individual gene level
(Fig. 5). Consistently, increasing model complexity and
flexibility produces PC’s which are more dynamic across
age with the least variance within age (variance within
age in model A>B>C, and dynamics across age in
model A <B<C; Fig. 4). These effects are increasingly
clear in deeper PC’s. It is of particular interest that this
increased power to identify global patterns in the data is
achieved while maintaining higher fidelity to the original
normalized data: In ~2/3 of the ~30 K probes measured,
the adjustment to the data made by SVA under model C
is less than that made by SVA under either of the other
models (Additional file 6: Figure S5).

Inspection of the impact of these different models on
SVA’s adjustment of individual gene data demonstrates
that increased flexibility in modeling effects can result in
both higher fidelity to the original data and the increased
ability to distinguish specific dynamic patterns (Fig. 5):
Models A and B introduce greater adjustments to the
original normalized data than model C. Model C, however
effectively reduces within age variance while preserving a
gene expression pattern apparent in the normalized data in
which dynamics are limited to the range of birth-10 year.
While perhaps reducing some variance, both models A
and B produce a pattern of expression across age where
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dynamics are spread from birth-50 year, demonstrating the
increased resolution of pattern identification possible with
the more flexible model C. This newly processed data is
available along with original raw data at the GEO reposi-
tory: GSE30272.

Conclusions

Using SVA, ComBat or related tools that require the
precise definition of biological enquiry can increase the
power to identify specific signals in complex genomic
datasets. However, especially when high levels of correc-
tion are used (e.g. when the automatic number of SVs
generated by SVA is used), biological discovery is directly
limited by researchers’ prior conception of the system
under study. Hence, we must be precise and deliberate in
the design and analysis of experiments and the resulting
data, and also mindful of the limitations we impose with
our own perspective.

Here we have discussed primarily how to focus as
much as possible on a single narrowly defined question.
Methods such as SVA can also be used in the more open
exploration of genomics data. For this, the definition of
the biological model of interest would have to be designed
specifically for flexibility, to allow more diverse effects to
coexist in the SV-adjusted data. Perhaps equally important
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would be the reduction of the amount of “cleaning” per-
formed. In the use of SVA this would be done by temper-
ing the number of SVs identified and used for the
adjustment of the data so that large components of un-
wanted heterogeneity can be removed while leaving intact
a broad range of biological effects to explore. We do note
that performing SVA does not necessarily produce overly
optimistic results, as the SVA algorithm allows for poten-
tial correlation between the primary variables and esti-
mated latent variables. Regardless, this is a balancing act
that necessarily entails iterative data processing and
assessment of global and gene-specific impacts of the ana-
lysis, and can be guided by perspectives and plots that we
illustrate in this report.

While we have primarily explored the SVA batch cor-
rection algorithm, we note comparable global and gene-
level results using the ComBat batch-correction algorithm
[4] within the stem cell dataset. However, as the ComBat
algorithm requires categorical “batch” variables, we could
not optimally implement it in the brain dataset - several of
the top principal components associated with the quanti-
tative RNA integrity numbers (RIN), suggesting that tissue
quality likely induces “batch’-like effects in the data.
Similarly, while we view the Remove Unwanted Variation
(RUV) algorithm [6] a natural extension of the SVA algo-
rithm, we found that many housekeeping genes [17],

typically used as “negative control genes” in the algorithm,
were differentially expressed by differentiation in the stem
cell dataset (Additional file 7: Figure S6) and develop-
ment/birth in the brain dataset, highlighting the difficulty
in selecting an a priori set of negative controls required by
the algorithm. The selection of “negative control genes”
that associate with the outcome of interest has a similar
effect as SVA model misspecification displayed in Fig. 3.
Without studies dedicated to the identification of expressed
yet outcome-independent genes within the system under
study, the selection of such control genes is quite difficult,
although recent work has suggested that the approach may
be robust to the specific choice of control genes [18],
particularly when technical replicate samples have been
generated [19].

The analysis structures described here focus on mean
effects across all samples studied. Analysis of experi-
ments in dynamic systems including replicates of a wide
diversity of individual subjects and well-characterized
genomes will be necessary to move beyond the study of
average population effects, into functional genomics
where we may begin to estimate the impact of individual
genomes on precise molecular and cellular phenotypes. In
this context, the use of data “cleaning” must be used with
extreme caution as it can remove a great deal of informa-
tion from genomic data as we have demonstrated here.
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Code
All code for processing, analyzing and visualizing is avail-
able at: https://github.com/andrewejaffe/StemCellSVA.

Additional files

Additional file 1: Supplementary Methods and Supplementary Figure
Legends. (DOCX 19 kb)

Additional file 2: Figure S1. Transcriptome-wide changes in differential
expression from SVA. (A) Log fold change for neurectodermal (KSR)
versus mesendodermal (FBS) treatment effects before (y-axis) and after
(x-axis) SVA. (B) Variance in regression model for treatment effect before
and after SVA. (C) -log,q p-values from moderated t-statistics calculated
using the log fold changes in (A). Dot color in each panel identifies genes
depicted in Fig. 2 — PAX6 is blue and OLFMLT is red. (PDF 2226 kb)

Additional file 3: Figure S2. Gene ranks before and after SVA. Ranks of
genes (by p-value) for (A) mesendodermal and (B) neuroectoderal
differentiation conditions before and after SVA. Highlighted genes are (A)
MBNL2, ZHX1, TOM1L2, HGSNAT, SSFA2, FKBP9, PARVA, LRRC8B, NPM3,
SNURF, RTN3, EIF5A2, CUTC, SALL2 and (B) TSPAN31, BBSTO0,
TARBP1,C170rf69, ABI2, NRCAM, SCG5, SMAD7, CORO2A, SLC25A24 which
have been previously implicated in each differentiation condition.

(PDF 1764 kb)

Additional file 4: Figure S3. Global transcriptional landscape in
differentiating pluripotent cells using ComBat [4]. PCA of expression data
from differentiating pluripotent cells prior to ComBat colored by
differentiation treatment (A) and microarray scan date (B, left panel). The
first PC shows a strong effect of treatment, while the second PC is
related to “batch”: boxplots of the second PC indicate strong association
with scan date (B, right panel). PCA following shrinkage again colored by
differentiation treatment (C) and microarray scan date (D, left panel). Both
the first and second PC now show systematic association with
differentiation, and the second PC no longer shows systematic change
with scan date (D, right panel). Letters are also used to distinguish
individual scan dates in (B) and (D). (PDF 304 kb)

Additional file 5: Figure S4. Raw copy number estimates via microarray
intensities. (A) log R ratios and (B) B-allele frequencies from lllumina SNP
microarrays for the various cell lines in the expression dataset. A log R ratio of
0 indicates 2 copies of the gene, which also corresponds to B-allele
frequencies near 0, 0.5, and/or 1. (PDF 297 kb)

Additional file 6: Figure S5. Model comparison density plots. (A) SVA
Model C versus Model A, (B) SVA Model C versus Model B, and (C) SVA
Model B versus Model A. Each panel contains one point per probe, and
groups of nearby points are shaded by density. Note that each model
is relative to a model of no SVA, so that that Y-axis: log;o(2(Model

1 - None)?) - log;o(Z(Model 2 - None)?) and X-axis: (log;o(Z(Model

1 - None)?) + log;o(Z(Model 2 - None)?)/2 which roughly translate into
the typical "MA” plot in the microarray literature [20]. The dashed black
line is 0 and the solid red line corresponds to the mean difference in
model fits. Numbers indicate how many points are above and below 0.
(PDF 1057 kb)

Additional file 7: Figure S6. Distribution of differential expression
signal at housekeeping genes. Housekeeping genes (solid lines) have
very significant T-statistics for differentiation conditions suggesting they
would be poor “control” genes for an algorithm like Remove Unwanted

Variation (RUV) [6]. (PDF 18 kb)
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