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Abstract

Background: The detection of regulatory regions in candidate sequences is essential for the understanding of the
regulation of a particular gene and the mechanisms involved. This paper proposes a novel methodology based on
information theoretic metrics for finding regulatory sequences in promoter regions.

Results: This methodology (SIGMA) has been tested on genomic sequence data for Homo sapiens andMusmusculus.
SIGMA has been compared with different publicly available alternatives for motif detection, such as MEME/MAST,
Biostrings (Bioconductor package), MotifRegressor, and previous work such Qresiduals projections or information
theoretic based detectors. Comparative results, in the form of Receiver Operating Characteristic curves, show how, in
70% of the studied Transcription Factor Binding Sites, the SIGMA detector has a better performance and behaves more
robustly than the methods compared, while having a similar computational time. The performance of SIGMA can be
explained by its parametric simplicity in the modelling of the non-linear co-variability in the binding motif positions.

Conclusions: Sequence Information Gain based Motif Analysis is a generalisation of a non-linear model of the
cis-regulatory sequences detection based on Information Theory. This generalisation allows us to detect transcription
factor binding sites with maximum performance disregarding the covariability observed in the positions of the
training set of sequences. SIGMA is freely available to the public at http://b2slab.upc.edu.

Background
The information encoded in genetic sequences is
expressed by means of a gene regulation process, which
begins with a gene transcription step. The binding
between specific proteins and their target sites in DNA
is a key step in the control of the transcription process.
These proteins – transcription factors (TF) – recognise
specific motifs in DNA known as Transcription Factor
Binding Sites (TFBS) or cis-regulatory sequences. The
prediction, identification and detection of cis-regulatory
sequences is a key factor in understanding gene regula-
tion and in inferring regulatory networks [1, 2]. TFBS are
usually very short (5 to 20 base pairs long) and highly
degenerate, which gives rise to an extremely difficult iden-
tification problem due to low statistical power, as short
sequences are expected to occur at random every few hun-
dred base pairs. Due to their high variability, a consensus
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sequence approach for detection is insufficient. There
is also evidence that this variability exhibits correlation
between positions among the regulatory sequence [3, 4],
and that this correlation could contain information which
would help reduce the false positive rate and increase the
sensitivity of a detector [5].
Due to the importance of identifying cis-regulatory

sequences, much effort has been devoted to mapping the
binding sites for a large set of transcription factors. An
important recent project is the ENCODE (Encyclopedia
of DNA Elements) project, which has been able to map
4 million regulatory regions in the human genome, open-
ing new possibilities for computational methods [6]. Motif
detection methods may be classified in different ways,
depending on the approach adopted. Some reviews focus
on the biology of motif discovery in regulatory regions
[7, 8], whereas other publications focus more on the rep-
resentation of the motifs: consensus-based methods and
alignment-based methods [9]: consensus-based meth-
ods use word algorithms which consider binary hit/no-
hit values [10, 11], and alignment-based methods use
a set of alignment sequences with binding evidence to
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assign putative motifs to a candidate sequence. These
latter methods could be classified as either numerical
or stochastic models: numerical models are based on a
mathematical representation of the nucleotides, whereas
stochastic models, which are probably the most popular
methods, are based on Position Weight Matrices (PWM)
or Position Specific Weight Matrices (PSWM) [12]. A
PWM is a matrix of scores corresponding to the fre-
quency of the sequence symbols for each binding site
position. The PWMs allow the capture of the variabil-
ity over a sequence of nucleotides from a set of binding
site positions [13], although there is the implicit assump-
tion of independence between the residues of the aligned
sequencematrix. PWM representations have been used in
several algorithms to discover over-represented patterns
from candidate sequences [14].
As noted above, statistical studies have shown the

dependence among binding site positions variability. The
common strategies for incorporating these dependencies
within motif detectors include the extension of the PSSM
approach to include pairs of correlated positions [15, 16],
mth order Markov chains (HMM) [17, 18] and Bayesian
Networks [19–22]. HMM can model the position interde-
pendencies as long as high order HMMs, or a Bayesian
approach are used but, in order to train any of both
methods model sufficiently well, a huge training set of
sequences would be required (± 1000 or more sequences
per model).
A popular method, based on some of the previous work,

is MEME/MAST, which provides an improved detection
performance [23]. MAST is part of the MEME suite and
uses a Q-FAST algorithm for finding motifs. Although
these strategies may perform well in some datasets, they
have shown certain limitations in the number of depen-
dencies which may be considered between positions, in
their ability to model dependencies between more distant
positions, and in the large number of parameters which
need to be adjusted in the models [3].
Previous work by our group proposed a paramet-

ric detector using the Rényi Entropy for binding site
detection [24]. This measurement allowed us to build
variable-sensitivity detectors modulated by the Rényi
order – this assumed independence between binding site
positions. A first approximation for modelling the corre-
lation among binding site positions, known as Qresiduals,
used a linear embedding to represent the set of bind-
ing site sequences [5] and employed a residuals-based
approach as the detection statistic. Other non-related
work modelled the pure correlation between binding site
positions through non-linear correlations based on the
variation of mutual information [25].
Statistical pattern recognition has also been applied

to identification of sequence motif. Luo et al. [26] pro-
pose to use discriminant analysis for the prediction of

Transcription Start Sites (TSS). From non-parametric
measure, similar to Shannon information, Luo et al. [26]
provide information about the variance observed in the
dataset. This strategy has good performance for the bind-
ing motif detection when the motif positions are not
correlated among them. But, this measurement does not
allow modelling the dependencies among motif positions.
In this paper, we propose a generalisation of a non-

linear model based on Information Theory, which allows
modeling DNA contact by the protein and the biologi-
cal interaction among binding sites using a small train-
ing set of sequences (5–50 sequences model). This new
approach aims at a trade-off between the good generalisa-
tion properties of pure entropy methods and the ability of
position-dependencymetrics to improve detection power.
The performance of the proposed detector method,

named SIGMA (Sequence Information Gain based Motif
Analysis), is compared with different computational
methods for binding site detection: MEME/MAST [23],
Biostrings [27], MotifRegressor [28], Qresiduals [5] and a
previously published set of algorithms based on informa-
tion theory [24, 25].

Methods
The information gain has been measured for each TFBS
by means of two parametric uncertainty estimators. The
rationale is based on the idea that the total informa-
tion gain of a set of true TFBS aligned sequences will
change according to the similitude of the new candidate
sequence to that set (Fig. 1). The first estimator mea-
sures the total amount of information change produced
by assuming position independence, whereas the sec-
ond estimator measures the total amount of change of
per-position mutual information (capturing pure correla-
tion among binding site positions). Both estimators are
computed by a parametric uncertainty measurement.
Let us consider a set of I aligned sequences (si) with

binding evidence M = {si, i = 1, · · · , I}, and the same set
including a candidate sequence sc, S = sc ∪ M. Follow-
ing Fig. 1, let a be the coordinate corresponding to the set
M, with axes determined by the two measures previously
mentioned. When a new candidate sequence is consid-
ered in S, both measures will vary to b or g depending
on the nature of the candidate sequence. When the candi-
date sequence is a binding site sequence, (b,) the variation
on the information will be not significant. However, when
the candidate sequence is a genomic sequence, (g), the
amount of information will vary significantly. With a suf-
ficient training set, this information gain space can be
split in two regions, genomic and binding, by means of
a simple discriminant analysis which will define a deci-
sion boundary, as highlighted as a dashed line in Fig. 1.
The decision boundary shape is the result of applying
non-linear function.
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Fig. 1 Information gain space defined by means of the variation on the information. X-axis on the graph shows the total amount of information
change produced by assuming position independence. Y-axis shows the total amount of information change produced by assuming the correlation
among positions. (black square symbol) Training matrix, (red square symbol) Training matrix with genomic sequence, (green square symbol) Training
matrix with binding sites sequence. The broken line is the decision boundary

Information content measures
We have employed as parametric uncertainty measure-
ments the Rényi entropy and Rényi Divergence (also called
α-Divergence) [29], which are defined as:

Hq(X) = 1
1 − q

log2
4∑

i=1
p(Xi)

q (1)

Dq(X;Y ) = 1
q − 1

log2
4∑

i=1

4∑

j=1
P

(
Xi,Yj

)qQ
(
Xi,Yj

)1−q

(2)

where Xi and Yj are the nucleotides {A, T, C and
G} at different DNA sequence positions, P(X,Y ) =
p(X,Y ),Q(X,Y ) = p(X) ∗ p(Y ) and the q is the Rényi
order which modulates the probability of occurrence of
each symbol. p(X,Y ) is the joint probability of X and Y,
p(X) and p(Y ) are the marginal probability. Both mea-
surements (Hq(X) and Dq(X;Y )) depend on q which is a
positive real number (q �= 1)and both are non-negative
for all q ≥ 0. This parametrisation allows the building
of a variable-sensitivity detector exploiting the statisti-
cal properties of the Redundancy, R, where R is defined
as [24].
The measurement of the variation when the candidate

sequence is added to the set has been computed using two
heuristic functions, see (Eqs. 3 and 4). These functions

depend on two parameters, γ and ω, which measure the
difference between redundancies, Eq. 5, and divergence,
Eq. 6, between the set of aligned sequences without the
candidate sequences, si, and with candidate sequence, M.
These are estimated as described in Maynou et al. [24].
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where, γi and ωi are

γi =
∣∣∣RMi

q − RSi
q

∣∣∣ (5)

ωi =
∣∣∣DMi

q − DSi
q

∣∣∣ (6)

where L is the number of nucleotides in the binding
region, M is the aligned set of sequences with binding
evidence and i is a specific column ofM. RM

q is the redun-
dancy, normalized depending on the maximum entropy
on the set of aligned sequences, whereas RS

q contains
the equivalent parametric entropy when the candidate
sequence is assumed to belong to the set. The redun-
dancy profile is a L-dimensional vector, where L is the
total number of positions of the binding site. DM

q is the
divergence matrix of the set of aligned sequences and DS

q
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Fig. 2 The essential steps in the training and detection process are shown for the SIGMA algorithm

is the divergence matrix considering the training matrix
with the candidate sequence. The main diagonal is set to
zero in each of these matrices, DM

q and DS
q. The varia-

tion in the information is therefore calculated by means
of γ and ω and q-values are optimised at the validation
stage within the range (0, 2]. As q increases, the noise
included in the redundancy signal also increases [24].
From q-values higher than 2, signal-to-noise ratio is not
optimal.
For a genomic sequence, the order of the system will

decrease the values of γ and ω, whereas for a bind-
ing sequence the order of the system will not be altered
substantially. Each candidate sequence will therefore be
characterised by the pair (x = (ρ, η)) and classified as
genomic or binding bymeans of a Quadratic Discriminant
Analysis (QDA), as shown in Fig. 6. The decision bound-
ary, H(y), is defined from the distribution of the variation
on the information, x, for each class, genomic or binding,
in the information gain space.
Binding site detection by means of the SIGMA algo-

rithm can be summarized as follows, see Fig. 2:

1. Given a set of aligned sequences with binding
evidence M, estimate the redundancy profile RM

q and
the Rényi Divergence DM

q Eqs. (1) and (2).
2. Given a new candidate sequence, re-estimate both

values assuming the candidate sequence belongs to
M, RS

q and DS
q,.

3. Compute the variation on the information x = (ρ, η)
as defined in Eqs. (3) and (4).

4. Quadratic Discriminant Analysis is applied to the
information gain space from the set of computed
features.

5. Steps 3 and 4 are iterated over for each candidate
sequence.

Additionally, for characterisation of the results we
define a heuristic magnitude C, related to the Complex-
ity of M, in order to characterise the degree of pure

Table 1 Summary of the transcription factors analysed for the
Homo sapiens organism obtained from Jaspar database

TF Family Base Sequences

ELK4 Ets 9 20

ETS1 Ets 6 40

NFATC2 REL 7 26

MYCMAX bHLH 12 21

E2F1 E2F 8 10

MAX bHLH 12 17

NFIL3 bZIP 11 23

NFE2L2 bZIP 11 20

INSM1 Zinc finger 12 24

CREB1 bZIP 12 16

Irf2 IRF 18 12

FOXO3 Forkhe 8 13

HLF bZIP 12 18

NFKappaB REL 10 38

MZF114 Zinc finger 6 20

ESR1 HNR 9 18

FOXD1 Forkhe 8 20

MZF1513 Zinc finger 10 16

Ap1 bZIP 7 18
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Table 2 Summary of the transcription factors analysed for the
Musmusculus organism from Jaspar database

TF Family Base Sequences

Pax2 Homeo 8 31

FOXO3 Forkhe 8 13

NFkappaB REL 10 38

ARID3A ARID 6 27

EBF1 bHLH 25 10

En1 Homeo 11 10

NR3C1 HNR 18 9

Egr1 Zinc finger 11 15

Ap1 bZIP 7 18

Runx1 Runt 11 26

CREB1 bZIP 12 16

AhrARNT bHLH 6 24

Pdx1 Homeo 6 31

NFATC2 REL 7 26

Lhx3 Homeo 13 20

ARNT bHLH 6 20

ELF5 ETS 9 44

correlation between the variability of binding site posi-
tions in M, see (Eq. 7). C computes element by ele-
ment the ratio between divergence value, where Dq|i,j
is the element of Dq at row i and column j, and
maximun entropy, Hmax without to considerer the main

diagonal. The average of the ratios define the complexity
ofM.

C =
∑N

i,j=1 Dq|i,j
N ∗ (N − 1) ∗ Hmax

; i �= j (7)

where D is the parametric uncertainty measurement con-
sidered, N is the size of the binding sites, q is the Rényi
order and Hmax is the maximum entropy for the set of
probabilities p(X) and p(y), see section “Database descrip-
tion”. C is a value between 0 and 1. When C is close to 1,
the degree of correlation among binding site positions is
high.

Database description
Data has been obtained from the Jaspar database [30],
http://jaspar.genereg.net/ (see Tables 1 and 2).
The JASPAR Core provides non-redundancy and

high-quality alignment matrices for each transcription
factor [30]. Results have been computed with back-
ground genomic sequences from the Eukaryotic Promoter
Database (EPD) [31], using the EPD version based on the
EMBL release 105 (sept 2010). The background loci cho-
sen were EP74078(+)HsRPS9P2+ for Homo sapiens and
EP07119(+)MmIgk0MPC11 forMus musculus.

Optimization
To apply SIGMA methodology to TFBS detection over
genomic sequence, we should calculate the variation of
the information, Eq. 4, as many times as the length of
the sequence I (typically millions nucleotides). Given

Fig. 3 Left: Rényi Divergence, DM
q=1, considering all possibles correlations between binding site positions. Right: DM

q=1 considering only significant
dependences between binding site positions after applying the error finite sample correction. Black boxes mean maximum correlation and white
boxes mean zero correlation between binding site positions

http://jaspar.genereg.net/
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Fig. 4 For each pair of positions i and j we calculate a joint probability matrix, Bi,j,xi ,xj , using all possible combinations of {A, C, G and T }

a sequence position, we must calculate the divergence
between the binding site positions. This means that we
must compute L∗(L−1)

2 times the joint probability for each
training matrix, where L is the total number of binding
site positions in M. The running time of the algorithm
depends on the length of the candidate sequence and
on the number of binding site positions.The run time is
therefore linear in the length of the input sequence and
quadratic in the length of the binding site L.

T(L) ∈ O
(
L2

)
(8)

The optimization algorithm is based on considering
only the correlated binding site positions. The η function
has been calculated considering only the Rényi-divergence
of the correlated binding site positions (showing positive
correlations) through a screening on the possible positive
dependencies between these positions.
Any two binding site positions are considered to be

correlated if the Rényi divergence score is bigger than
the error finite sample. This error yields to a bias on
the uncertainty parametric measurement caused by esti-
mating the probability using the nucleotide frequencies
[24]. After the screening, we only compute based on the
correlated positions of the training matrix as shown in
Fig. 3.
For each pair of positions (i, j) in M where i, j =

{1, . . . , L}, the joint probability for all the possible combi-
nations of (xi, xj) = {A, C, G and T} are precomputed and
stored in a 4 × 4 matrix. We construct a library

(
Bi,j,xi,xj

)

of sixteen 4 × 4 matrices containing all the possible joint

probability values for each pair of positions i and j (as
illustrated in Fig. 4).
For each new candidate sequence, we have to consider

only the symbols matching correlated positions and read
the joint probability value from the lookup table Bi,j,xi,xj .
The Rényi divergence and the discrimination function, η
are then computed from these values. The estimated total
number of significant transcription factor site dependen-
cies in Homo sapiens and Rattus novergicus is approxi-
mately 50% and 37% [32]. In this way, the computing time
can be reduced by approximately an order of magnitude.

Validation
In order to build a model for each set of binding site
sequences, the SIGMA detector has been characterized
by means of leave-one-out cross validation (loo-cv). Each
method has its own characteristic parameter. The range
of the parameter used is different for each detector, see

Table 3 Summary of the characteristic parameters and the range
considered for the validation of each computational method used

Method Parameter Range

SIGMA Rényi Order (0, 2]

MEME/MAST Length Motif (L) [1, L]

Qresiduals Principal Components [1, 10]

Entropy Rényi Order (0, 2]

Divergence Rényi Order (0, 2]

Biostrings Not Applicable Not Applicable

MotifRegressor Length Motif (L) [1, L]
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Fig. 5 Left to right: Entropy and Divergence performances against Complexity (degree of correlation between binding site positions) for a set TF of
different organisms ((blue times symbol) Homo sapiens , (red triangle symbol) Drosophila melanogaster, (green cross symbol) Rattus norvegicus,
(black circle symbol) Musmusculus). Entropy performs better for low Complexity. On the contrary, Divergence performs better for large Complexity

Table 3. The detector performance depends on the value
of these parameters which have been selected employing
loo-cv. Taking as a criteria a heuristic magnitude, νauc.
This parameter has been computed from the mean and
variance of the area under the N ROC curve (AUCN ) [5],
which will be maximised for all methods.

νauc = μauc ∗ (1 − σauc) (9)

where μauc and σauc are the mean and the variance of
AUCN . νauc is a value between 0 and 1. When νauc is close
to 1, the mean is close to 1 and the variance is close to 0.
From the performance data, we have calculated the

mean and standard deviation of the AUC for each tran-
scription factor and method by means of the outer loo-cv.
This process has been repeated for all the TFs listed in
Tables 1 and 2.

Fig. 6 Empirical representation of the concept depicted in Fig. 1. Left to right: Information Gain when candidate sequences are inserted in the
Transcription Factor Binding Sites Irf2 and HLF for the Homo sapiens organism. Black points correspond to candidate sequences which are true
binding site sequences. Grey points correspond to candidate sequences which are false binding site sequences
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Fig. 7 Top to bottom: Box plot of the AUC and its variation for the studied transcription factors for the Homo sapiens andMusmusculus organisms
using different computational methods: (black square symbol) MAST, (red square symbol) SIGMA, (green square symbol) Divergence, (blue square
symbol) Entropy, (cyan square symbol) Qresiduals, (pink square symbol) Biostring, (yellow square symbol) MotifRegressor. The background sequences
used have been EP74078(+)HsRPS9P2+ for the Homo sapiens and EP07119(+)MmIgk0MPC11 for theMusmusculus
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Fig. 8 Top to bottom: Performance of each algorithm ((black circle symbol) MAST, (red triangle symbol) SIGMA, (green cross symbol) Divergence, (blue
times symbol) Entropy, (cyan diamond symbol) Qresiduals, (pink down-pointing triangle symbol) Biostring, (yellow diamond symbol) MotifRegressor) is
shown through νauc , (Eq. 9), for a set of TFBS for theMusmusculus and Homo sapiens organisms. When νauc is close to 1, the mean is close to 1 and
the variance is close to zero. For each TF, the best computational method will be that for which νauc is closest to 1
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Results and discussion
We first show a characterisation of how the perfor-
mance of the individual algorithms based on Entropy
and Divergence depends on the complexity properties of
the training matrix (M) C, (Eq. 7), see Fig. 5. The per-
formance of these algorithms will vary on C depending
on the design of each algorithm and the true correla-
tion between positions found for each set of binding
sequences. As one would expect, the total Entropy algo-
rithm has a better behaviour with low values of C,
whereas a Divergence based approach improves its per-
formance when C is large. The SIGMA approach is
partially based on both measurements and aims at find-
ing a trade-off between both approximations in order to
maximise the performance over the full dynamic range
of C.
Figure 6 shows an example of real case where each

input sequence is represented as a point in (ρ, η) coor-
dinates. This set of samples includes genomic or binding
sequences as shown in the figure. It is clear from the figure
that both variables are contributing to the separation of
the true binding site sequences.
The performance of SIGMA, MEME/MAST, Qresiduals,

Entropy, Divergence, Biostrings and MotifRegressor has
been compared against the same set of TFs under the same

validation conditions described in the previous section.
In Fig. 7, it can be observed that the mean and standard
deviation depend both on the Transcription Factor and on
the method considered. The performance among all the
methods has been compared by means of the νauc param-
eter described in Eq. (9). In Fig. 8, the νauc parameter is
shown for each transcription factor andmethod. Based on
the νauc values, in approximately 70% of the TFBS under
study, SIGMA shows better performance than the other
methods. In 20% of the TFs, the performance of the others
methods is better than that of SIGMA. In the remaining
cases, the SIGMA performance is similar to one or several
of the computational methods considered. In most cases,
the mean AUC is close to one and the variance is approx-
imately zero, which suggests that SIGMA also behaves
more robustly than other methods, as seen in Tables 4
and 5.
We computed a Wilcoxon rank-test [33] in order to

estimate whether the improvement in performance is sta-
tistically significant. The null hypothesis was that the
AUC distributions between SIGMA and other methods
were the same and the alternative hypothesis was that
the AUC distributions were different. The level of signifi-
cance is represented by −log10(pvalue). Any pvalue > 0.05
is shown in bold, see Tables 6 and 7). In most cases, it

Table 4 Results for the set of computational methods considered for each TF of the Homo sapiens organism. The νauc is defined
through the mean and variance of the AUCN using a cross-validation method. Given a TF and method, νauc is chosen with maximum
mean and lower variance in the AUCN

νAUC

TFBS MEME/MAST Qresiduals SIGMA Entropy Divergence Biostrings MotifRegressor

ELK4 0.99923 0.99993 1 1 0.99961 1 0.99566

ETS1 0.98621 0.98845 0.99707 0.98533 0.99473 0.99508 0.99415

NFATC2 0.98291 0.98915 0.97952 0.97091 0.94311 0.98284 0.98263

MYCMAX 0.9951 0.98872 0.98823 0.98187 0.96281 0.99178 0.98581

E2F1 0.99991 0.99963 1 0.99915 0.99685 0.99958 0.99566

MAX 0.99968 0.99743 1 0.99741 0.99275 0.99852 0.98583

NFIL3 0.9992 0.9994 0.99256 0.99558 0.999823 0.99917 0.98408

NFE2L2 0.98975 0.93901 0.98573 0.94418 0.96973 0.99974 0.9845

INSM1 0.99993 0.99891 1 0.99741 0.9906 0.99842 0.98885

CREB1 0.99965 0.99763 1 0.99793 0.99962 0.99953 0.99567

Irf2 0.99995 1 1 1 0.99773 0.99995 0.98817

FOXO3 0.99638 0.99817 1 0.99688 0.95549 0.98567 0.9915

HLF 0.99943 0.99343 1 0.99155 0.98706 0.99113 0.99216

NFkappaB 0.99987 1 1 1 0.98657 0.98256 0.98217

MZF114 0.99387 0.97925 1 0.97751 0.98682 0.98743 0.98775

ESR1 0.99962 0.99901 1 0.99725 0.98974 0.98903 0.9957

FOXD1 0.99814 0.99436 1 0.99043 0.99549 0.99787 0.99133

MZF1513 0.99719 0.97549 1 0.98534 0.9833 0.98193 0.98585

Ap1 0.98465 0.97231 1 0.97121 0.95825 0.97469 0.99445
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Table 5 Results for the set of computational methods considered for each TF of theMusmusculus organism. The νauc is defined
through the mean and variance of the AUCN using a cross-validation method. Given a TF and method, the νauc is chosen with
maximummean and lower variance in the AUCN

νAUC

TFBS MEME/MAST Qresiduals SIGMA Entropy Divergence Biostrings MotifRegressor

Pax2 0.89161 0.96215 0.98572 0.96323 0.94998 0.98245 0.93971

FOXO3 0.98005 0.97719 1 0.93721 0.91796 0.97079 0.972

NFkappaB 0.92656 0.99944 0.982322 0.99949 0.99723 0.99939 0.96767

ARID3A 0.99757 0.99764 1 0.99771 0.99548 0.99753 0.98933

EBF1 0.80379 0.99787 1 0.9964 0.99593 0.99769 0.95929

En1 0.85943 0.90921 1 0.93119 0.94558 0.8736 0.96797

NR3C1 0.91904 0.98873 1 0.99017 0.98844 0.95811 0.94069

Egr1 0.99983 0.99996 1 0.99956 0.99826 0.99969 0.961

Ap1 0.98823 0.97044 1 0.99828 0.99672 0.96902 0.98861

Runx1 0.99937 0.99891 0.99323 0.99601 0.99743 0.99951 0.93645

CREB1 0.99997 0.99953 1 1 0.99958 0.99987 0.97698

AhrARNT 0.87593 0.99816 1 0.99828 0.99672 0.99721 0.99901

Pdx1 0.93796 0.99565 0.99499 0.99669 0.97722 0.99871 0.94051

NFATC2 0.91883 0.98219 0.98581 0.95394 0.934316 0.93503 0.9475

Lhx3 0.99961 0.99924 0.98846 0.99862 0.99852 0.9981 0.97183

ARNT 0.99998 0.99935 1 0.99945 0.99945 0.9999 0.9999

ELF5 0.98992 0.99045 0.98593 0.99641 0.99593 0.99453 0.97089

Table 6 The level of significance corresponding to −log10 (pvalue) calculated using the Wilcoxon-rank test for the Homo sapiens
organism. The null hypothesis is that the AUC distributions between SIGMA and the other computational methods are the same and
the alternative hypothesis is that the AUC distributions are different. pvalue > 0.05 is in shown in bold

−log10(pvalue)

TFBS Qresiduals MEME/MAST Entropy Divergence Biostrings MotifRegressor

ELK4 1.58 1.46 5.80 9.41 9.48 9.60

ETS1 3.48 7.55 7.96 7.52 7.51 7.85

NFATC2 0.71 7.61 2.81 5.21 9.48 9.59

MYCMAX 2.25 7.59 2.31 7.83 7.55 9.60

E2F1 1.58 7.12 2.33 3.12 7.56 9.6

MAX 3.73 4.16 2.66 5.13 5.10 6.46

NFIL3 1.20 6.10 1.19 6.05 6.21 7.82

NFE2L2 1.20 4.10 0.80 2.98 4.35 5.11

INSM1 2.33 8.63 1.20 2.08 8.95 10.11

CREB1 2.31 8.47 1.20 1.20 8.47 8.68

Irf2 0.80 6.79 3.37 6.14 6.78 6.89

FOXO3 2.31 6.11 5.63 5.20 6.48 8.26

HLF 3.38 4.45 0.80 1.20 2.08 6.02

NFkappaB 1.20 6.87 3.40 6.50 6.83 6.96

MZF114 7.52 13.95 10.99 3.90 14.11 9.65

ESR1 1.95 6.10 3.74 5.43 6.11 7.81

FOXD1 1.95 1.32 1.20 1.09 7.11 8.22

MZF1513 6.10 3.72 3.41 3.78 3.71 4.32

Ap1 4.75 13.51 2.67 3.03 13.5 17.14
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Table 7 The level of significance corresponding to −log10(pvalue) calculated using the Wilcoxon-rank test for theMusmusculus
organism. The null hypothesis is that the AUC distributions between SIGMA and the other computational methods are the same and
the alternative hypothesis is that the AUC distributions are different. pvalue > 0.05 is in shown in bold

−log10(pvalue)

TFBS Qresiduals MEME/MAST Entropy Divergence Biostrings MotifRegressor

Pax2 3.40 10.11 0.81 1.20 9.89 11.37

FOXO3 2.66 4.06 4.06 4.06 4.06 4.13

NFkappaB 7.14 8.80 5.65 4.88 9.13 11.08

ARID3A 10.05 2.68 0.17 0.17 2.68 9.5

EBF1 6.78 3.09 3.52 5.61 3.73 14.27

En1 4.06 4.82 2.66 5.10 5.10 6.47

NR3C1 3.37 5.79 0.80 1.20 4.53 7.14

Egr1 1.20 2.15 2.43 2.14 2.15 7.89

Ap1 4.75 4.76 2.66 4.76 4.76 4.89

Runx1 4.75 10.65 10.21 10.21 10.23 12.7

CREB1 1.57 3.71 3.01 2.66 3.71 3.72

AhrARNT 1.19 3.80 6.35 11.04 11.13 11.36

Pdx1 2.06 9.15 0.80 0.80 9.15 9.59

NFATC2 0.21 0.66 3.67 0.05 4.25 15.46

Lhx3 4.47 5.78 0.80 0.80 5.47 7.36

ARNT 0.80 0.48 0.45 1.78 0.45 11.28

ELF5 2.37 2.20 6.15 9.48 9.48 9.57

can be observed that the difference between the AUC
distributions is significant.
The computational time of SIGMA was compared with

the set of computational methods considered. The C code
for Qresiduals, Entropy and Divergence using the model
obtained in validation and MEME/MAST (Version 4.4.0)
was used and has been made publicly available. The run
time was obtained in comparison with randomly gener-
ated candidate sequences of 1500 nucleotides. The total
time has been calculated from 100 iterations of each algo-
rithm. The averages of the computational times in detec-
tion for the set of TF considered ofHomo sapiens (Tables 4
and 5) are shown in Table 8.

Table 8 Per CPU, the total run time was calculated on a 2.3 GHz
Intel Core 2 Duo P8600 computer with 4 GB RAM

Method Run time (s) sd (s)

SIGMA 0.132 0.007

Qresiduals 0.119 0.006

Entropy 0.051 0.003

Divergence 0.081 0.004

MEME/MAST 0.019 0.001

Biostrings 0.004 0.0001

MotifRegressor 0.144 0.02

Conclusions
A new methodology based on a discriminant analysis
of two information theoretic measures has been pro-
posed for binding site detection. The variation on the
information has been measured through two paramet-
ric uncertainty measurements (the Rényi entropy and
Rényi divergence). The method focusses on the variation
in these information measures when a new sequence is
assumed to belong to a training set of sequences with
known binding properties.
This methodology allows us to detect cis-regulatory

sequences with maximum performance disregarding the
co-variability observed in the positions of the training
set of sequences. SIGMA has been characterised on the
detection problem for a large set of transcription fac-
tors and compared with different motif detection algo-
rithms. AUC distributions have been calculated which
show that there is a statistically significant difference
between SIGMA performance and the performance of the
other methods. In approximately 70% of the cases con-
sidered, SIGMAhas exhibited better performance proper-
ties, at comparable levels of computational resources, than
the methods with which it was compared.
As you can see through the heuristic parameter, SIGMA

method is more robust than the other methods. A model
based on both parametric uncertainty measurements can
be useful to detect cis-regulatory sequences. But when the
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number of the positions involved in the binding sites pro-
cess is small, the SIGMA performance is comparable with
the rest of the computational methods.
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