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Abstract

Background: Because of the short read length of high throughput sequencing data, assembly errors are introduced in
genome assembly, which may have adverse impact to the downstream data analysis. Several tools have been
developed to eliminate these errors by either 1) comparing the assembled sequences with some similar reference
genome, or 2) analyzing paired-end reads aligned to the assembled sequences and determining inconsistent features
alone mis-assembled sequences. However, the former approach cannot distinguish real structural variations between
the target genome and the reference genome while the latter approach could have many false positive detections
(correctly assembled sequence being considered as mis-assembled sequence).

Results: We present misFinder, a tool that aims to identify the assembly errors with high accuracy in an unbiased way
and correct these errors at their mis-assembled positions to improve the assembly accuracy for downstream analysis. It
combines the information of reference (or close related reference) genome and aligned paired-end reads to the
assembled sequence. Assembly errors and correct assemblies corresponding to structural variations can be
detected by comparing the genome reference and assembled sequence. Different types of assembly errors can
then be distinguished from the mis-assembled sequence by analyzing the aligned paired-end reads using
multiple features derived from coverage and consistence of insert distance to obtain high confident error calls.

Conclusions: We tested the performance of misFinder on both simulated and real paired-end reads data, and
misFinder gave accurate error calls with only very few miscalls. And, we further compared misFinder with QUAST
and REAPR. misFinder outperformed QUAST and REAPR by 1) identified more true positive mis-assemblies with
very few false positives and false negatives, and 2) distinguished the correct assemblies corresponding to structural
variations from mis-assembled sequence. misFinder can be freely downloaded from https://github.com/hitbio/
misFinder.

Background
The high throughput sequencing (HTS) technologies [1, 2]
have been a major transformation in the way scientists ex-
tract genetic information from biological systems, revealing
limitless insight about the genome, transcriptome, and epi-
genome of many species. One major step of analysis is
combining the overlapped reads (fragments of DNA sam-
pled from genomes) to reconstruct the original genome se-
quence of the target species, called assembly. However, the

lengths of reads (typically 50–250 base pairs [3, 4]) gener-
ated by HTS technologies are much shorter than those of
the traditional Sanger sequencing (typically about 800 base
pairs [5]) and the sequencing error rate is usually
higher (1-2 % compared with 0.1 %). In addition, there
are many repetitive sequences along the genomes. All
the above features will make the assembling process
difficult and will introduce mis-assembled genome
sequence.
Many assembly methods [6–12] have been developed

to deal with these challenges and they have steadily im-
proved in recent years. However, the problem of mis-
assembly is still unsolved [13] and the assembly errors
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will have adverse impact to downstream analysis [14].
There are two main approaches for determining mis-
assembled sequences depending on whether we have a
similar reference genome for the target genome (the
genome we perform sequencing).

Reference-based approach
If the genome reference for the target organism is avail-
able, mis-assembled sequences, e.g., misjoins and errone-
ous insertions/deletions, can be detected by comparative
analysis of the reference sequence and the assembled gen-
ome sequence. However, a good genome reference is usu-
ally not available. When the target genome and the
reference genome are not the same, there are some differ-
ences caused by structural variations between them.
Mauve [15] regards these differences as assembly errors
directly without further analysis, which may affect the final
result (many false positive mis-assembly detections).
GAGE [14] and QUAST [16] regard these differences as
erroneous indels (i.e., erroneous insertions/deletions) or
misjoins. All these tools do not distinguish whether the
differences caused by assembly errors or by structural vari-
ations, therefore further analysis is required to determine
which differences are due to mis-assembly to prevent
introducing false error calls.

De novo approach
If a reference is unavailable, the alignment of the raw
reads to their assembly provides indirect measures of as-
sembly quality, e.g., high variation in coverage depth
alone mis-assembled sequence, inconsistent insert dis-
tance when aligning paired-end reads to mis-assembled
sequence, etc. This information can then be used to
detect single-base changes, repeat condensation or ex-
pansion, false segmental duplications and other mis-
assemblies. CGAL [17] and ALE [18] both produce a
summary likelihood score of an assembly. ALE also re-
ports four likelihood scores for each base representing
the probability that an assembly is correct. However,
they lack the ability to transform metrics to accurate
error calls [19]. REAPR [19] reports a single score for
each base for accuracy derived from just a few metrics,
such as the coverage depth distribution, it may tend to
introduce some false error calls since the real reads
data usually are uneven, and it also tends to break the
scaffolds in their gap regions by mistake (false errors).
Both reference-based and de novo approach may partially

solve the mis-assembly problem. However, reference-based
approach cannot distinguish real structure variations and
mis-assembled sequences while de novo approach can have
many false positive detections because of the uneven sam-
pling in real data. A better performance can be achieved by
combining both approaches in determining mis-assembled
sequences.

In this article, we present misFinder, a tool that aims
to identify the assembly errors with high accuracy in an
unbiased way (unbiased means that distinguish the as-
sembly errors and correct assemblies corresponding to
structural variations, without introducing false error de-
tections) and correct these errors at their mis-assembled
positions to improve the assembly accuracy for down-
stream analysis. It uses the reference (or close related
reference) to find the differences between the scaffolds
and the reference, and uses paired-end reads to validate
these differences to determine whether they are assem-
bly errors or correct assemblies corresponding to struc-
tural variations rather than regarding them as errors
directly with some biases. In order to distinguish the as-
sembly errors and correct assemblies corresponding to
structural variations, misFinder analyzes the patterns of
each type of assembly errors, and then applies multiple
features derived from coverage and consistence of
paired-end reads for these errors to obtain high
confident error calls and pinpoint the correct assemblies
corresponding to structural variations, thus resulting as-
sembly error calls with high accuracy in an unbiased
way.

Methods
The workflow of misFinder to identify assembly errors is
shown in Fig. 1. misFinder is based on BLASTN [20],
assembly (contigs/scaffolds), genome reference and
paired-end reads from Solexa sequencing technology are
its input, with aims to identify the mis-assemblies i.e.,
the assembly errors, and correct these errors to increase
the accuracy of the assembly. It consists of three major
steps: (1) Identify the differences between scaffolds and
reference using BLASTN alignment; (2) Compute the
breakpoints according to paired-end reads alignment in-
formation; (3) Validate the differences according to
paired-end reads alignment information to distinguish
the assembly errors and correct assemblies correspond-
ing to structural variations. The algorithm of misFinder
will be described in details in the following sections.

Identify differences between scaffolds and reference
Align scaffolds to reference
misFinder is based on the alignments of BLASTN (version
2.2.25+ and higher) [20], a well-established long-range
nucleotide sequence alignment program for producing ac-
curate long-range sequence alignments, which is particu-
larly suitable for capturing the scaffolds alignment
information. As BLAT [21] does not produce single hit for
distances >750 kbp [22], and according to our experi-
ments, it tends to break single well-aligned segments into
multiple small pieces as it produces gapped alignments,
and the most important, it may miss well-aligned seg-
ments sometimes, while these situations does not occur
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for BLASTN which is well-known and always tries to
produce continuous alignments as large as possible.
Therefore, we choose BLASTN as our long-sequence
alignment tool.
misFinder uses BLASTN in multiple threads approach

to compute the alignments, First, the scaffolds are
divided into equal-sized parts to run BLASTN independ-
ently with multiple threads; and then, the sub-
alignments for each thread are merged to generate the
whole alignment results for further analysis.

Obtain non-redundant alignments
If a scaffold is aligned to genome reference uniquely, we
keep its alignment information without additional re-
quirements. Otherwise, we select the several best aligned
segments that cover the whole scaffold, and other align-
ments are removed as they are short and redundant to
the alignment of the whole scaffold. As the alignments
from BLASTN are already sorted in descending order
according to their scores, so we first choose the best
aligned segment as the start segment, and select its adja-
cent segments one by one to the 3′ end of the scaffold
until no adjacent ones, and then the adjacent ones are
selected to the 5′ end of the scaffold in the same way.
For selecting the adjacent segment, the candidates
should have an overlap or a gap no more than 1 kbp by
default according to the BLASTN alignments, and select

the one of the minimal overlap or gap size. If there are
no adjacent segments, the segment that has the minimal
overlap or gap size according to the scaffold position is
selected. These selected segments cover the whole scaf-
fold and are placed according to their positions in scaf-
fold. Other unselected segments are redundant and are
removed.

Identify differences using BLASTN
After analyzing the non-redundant alignment informa-
tion of scaffolds generated by BLASTN, four kinds of
patters are observed (Fig. 2). Some scaffolds can per-
fectly match with reference (Fig. 2a), and there will be
no assembly errors within these scaffolds. Other three
most common kinds of differences, i.e., misjoin, inser-
tion and deletion, may be due to assembly errors
(Fig. 2b-d). The misjoin may be caused by joining
segments with large distance or different strands in gen-
ome, or by joining segments between different chromo-
somes (e.g., in eukaryotes) or between chromosome and
plasmid (in bacteria). The insertion/deletion may be
caused by incorrectly expanded/collapsed repetitive se-
quences during assembly, or may be caused by structural
variation between the target genome and reference gen-
ome. Note that the scaffold segments with no alignment
information are treated as insertion, and they may be
caused by sequencing errors or by novel sequences

Fig. 1 Workflow of misFinder. MisFinder consists of three major steps. (1) Identify putative mis-assembles. Scaffolds (contigs) and genome reference
are first used to generate the BLASTN alignments followed by the alignment processing that the redundant alignments will be removed, and then the
putative mis-assembles are identified according to their non-redundant alignments. (2) Breakpoint computation. Paired-end reads are aligned to the
scaffolds to make the breakpoints more accurate. (3) Mis-assembly validation. Putative mis-assemblies are validated according to the
alignment information of paired-end reads on scaffolds
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compared to the genome reference. BLASTN tends to
break the alignment at these regions of differences, and
these differences have high possibility to be assembly er-
rors. misFinder identifies these differences as putative
mis-assemblies which needs further validations to deter-
mine whether they are true assembly errors.

Compute breakpoints
After analyzing the alignments of the scaffolds to the
genome reference, three common types of mis-
assemblies, including misjoin, erroneous insertion and
erroneous deletion, are observed at the positions of dif-
ferences according to their alignment information. Be-
fore calling assembly errors, it is necessary to get the
scaffold regions which have differences that may contain
assembly errors for misjoin, erroneous insertion/deletion.
We call such scaffold region as breakpoint region with left
margin ML and right margin MR. According to our obser-
vations, the normal regions have well aligned read pairs
and relative even read coverage depth (Additional file 1:
Figure S1), and whereas for the three types of mis-
assemblies, they have different error patterns in their
breakpoint regions, which can be used for error calling
(see section “Validate assembly errors”).

Since the target genome and the reference genome are
not exactly the same, there are usually some differences
between them, i.e., structural variations (SVs). Therefore,
in order to distinguish assembly errors and correct
assemblies corresponding to structural variations,
paired-end reads are aligned to scaffolds to call the mis-
assemblies using multiple kinds of information extracted
from the paired reads data (see section “Validate assem-
bly errors”). Note that, for the reads fall into repeat re-
gions, their best alignments are randomly selected to
prevent the correct regions from having zero read cover-
age, and we call these reads with multiple aligned posi-
tions as multiple aligned reads, misFinder marks these
multiple aligned reads for further analysis.

Breakpoint region for misjoins
Misjoin in scaffold can be depicted in Fig. 3. For the
scaffold with misjoin, the whole scaffold will be di-
vided into several large segments after BLASTN align-
ment, and these segments can be aligned to different
reference regions respectively, with different strands
or long distance of distinct regions, e.g., more than
several kilo bases, or can be aligned to different chro-
mosomes (e.g., in eukaryotes) or between chromosome

Fig. 2 Overview of differences between scaffolds and reference according to BLASTN alignments. Solid lines indicate reference (top) and scaffolds
(bottom) respectively, red lines indicate unaligned segments, dashed lines between reference and scaffolds indicate alignment borders. a Scaffold
is perfectly aligned to the genome reference. b Insertion or deletion error in scaffolds. An insertion/deletion error in scaffold causes alignment
breaks, and the scaffold will be split into several aligned segments separated by the insertion/deletion error. c Misjoin in scaffold. Assembly errors
caused by joining distinct genome regions with large distance (top left), by joining segments which can be aligned to different reference strands
(top right), or by joining segments between different chromosomes (in eukaryotes) or between chromosome and plasmid (in bacteria) (bottom
left). The yellow solid line indicates the region of reverse strand of the reference region. d Scaffolds that have entirely no alignment information
(left) or have partial unaligned segments relative to the scaffold (right). We treat these situations as insertions that may be caused by assembly
errors or by novel sequences in target genome
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and plasmid (in bacteria). The misjoins are caused by
repeats which are not correctly resolved by assembly
algorithm.
As BLASTN usually produces some mismatched bases

around repeat margins ML and MR, misFinder trims the
segment tails containing mismatched bases to get the
margins ML and MR (Fig. 3). This repeat region between
ML and MR is a breakpoint region that may contain as-
sembly errors. For BLASTN alignments, the adjacent
two misjoined segments usually have some overlaps,
and it is observed that there are many multiple aligned
reads (reads with multiple aligned positions in scaf-
folds) in the region, and the scaffold should be split
into two small pieces if the breakpoint region contains
a misjoin assembly error.

Breakpoint region for erroneous insertions
Scaffolds usually have some erroneous insertions in the
middle, and they also usually have some unaligned seg-
ments at the ends, we treat all of the above two cases as

insertion errors, which can be illustrated in Fig. 4a-c.
For the insertion error at the end of scaffolds, the end
usually contains some erroneous bases, and there are
usually only single-end reads covering the breakpoint re-
gion without paired-end reads. For the insertion error in
the middle of scaffold, it has two flanking well-aligned
segments at both sides of it, and the paired-end reads
aligned on the two segments have a larger insert size
than normal regions. The insertion error has a break-
point region with margins ML and MR which can be
easily determined from alignments directly.

Breakpoint region for deletions
Scaffolds also usually contain some erroneous deletions
which can be illustrated in Fig. 4d. Unlike erroneous in-
sertion, the erroneous deletion is a missing sequence
with two well-aligned segments around it, and the
aligned paired-end reads on the two segments have a
shorter insert size than that of normal regions. The dele-
tion error also has a breakpoint region with margins ML

Fig. 3 Misjoin in scaffold. After aligning the misjoined scaffold to reference, it will be split into two sub-segments according to the alignment information,
and the two sub-segments are aligned with different reference strands or aligned to distinct regions with long distance. And these two sub-segments
overlap each other due to the repeat (middle thick red lines) whose erroneous tails around margins ML and MR will be trimmed

Fig. 4 Insertion/deletion error in scaffold. a-b An insertion error at scaffold end. There are usually only single-end reads can be aligned to the
erroneous ends. c An insertion error in the middle of two well-aligned segments whose paired-end reads have a larger insert size than normal
regions. d A deletion error in the middle of two well-aligned segments whose paired-end reads have a smaller fragment size than normal regions.
ML and MR are the left margin and the right margin for the insertion (or deletion) error, respectively
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and MR which can be easily determined from alignments
directly.

Validate assembly errors
After aligning paired-end reads to scaffolds, there are
several features that are different with the normal re-
gions for these putative mis-assemblies, including ab-
normal (high or low) coverage, some disagreements
(majority nucleotide differs no much with others), mul-
tiple aligned reads (reads with multiple aligned posi-
tions), fragment size difference (difference of distance of
two 5′ ends of a read pair and the library insert size),
and discordant read pairs (erroneous orientations or ab-
normal fragment size difference, e.g., >3 * standard devi-
ation). The mis-assembled regions typically have high or
low coverage (even zero coverage), much more discord-
ant read pairs than other normal regions. So that, the
putative mis-assemblies could be validated by using the
paired-end reads aligned to the scaffolds. The high cover-
age means that the breakpoint region has more than one
50-bp sub-region whose coverage is higher than 1.5 fold
of the average coverage of that scaffold, while the low
coverage means that it has more than one 50-bp sub-
region whose coverage is lower than 0.5 fold of the aver-
age coverage of that scaffold. And for the discordant
read pairs, we calculate the ratio of the discordant read
pairs and all the read pairs in the breakpoint region,
named discordant ratio, and the breakpoint region with
much more discordant read pairs usually has a high dis-
cordant ratio, say >0.1. And for the breakpoint region
larger than 500 base pairs, we calculate the discordant
ratio for each 500-bp sub-region.
As the single-cell data typically have highly uneven se-

quencing depth, we re-define the sub-regions of high
coverage and low coverage in the case of single-cell se-
quencing data. For a scaffold, we compute the average
coverage of each 50-bp sub-region, and then calculate
the mean coverage and standard deviation of the cover-
age of these sub-regions of the scaffold. The high cover-
age means that the breakpoint region has more than one
50-bp sub-region whose coverage is at least 1.5 fold of
the standard deviation higher than the mean coverage of
that scaffold, while the low coverage means that it has
more than one 50-bp sub-regions whose coverage is at
least 1.5 fold of the standard deviation lower than the
mean coverage of that scaffold.
Since different errors appear different patterns, we ap-

plied different methods to validate their correctness. The
misjoins could be validated using the abnormal coverage,
disagreements, multiple aligned reads, and the insertion/
deletion errors could be validated using the abnormal
coverage, discordant read pairs and the fragment size
difference.

Validate misjoins
After aligning paired-end reads to scaffolds, it is ob-
served that there are some differences between the
breakpoint region (repeat region) and other normal re-
gions around the margins ML and MR (Fig. 3, Additional
file 1: Figures S2-S3). The patterns of misjoins are
described as below.
In misjoin regions, there are usually some disagree-

ments and abnormal coverage around margins ML and
MR. This is caused by the repeats that come from differ-
ent genome regions which are incorrectly joined by
assembly algorithm. Even though one end of the paired-
end reads can be aligned to the scaffold, the other end
may be aligned with some mismatched bases which usu-
ally have the same position in scaffold (Fig. 3, Additional
file 1: Figures S2-S3). For a base in scaffold, there will be
many aligned reads covering it, the read count is called
coverage which consists of the counts of A, C, G and T,
respectively. If the majority nucleotide differs no much
with others, e.g., the percent of the majority <0.8, we call
the nucleotide in scaffold a disagreement. For misjoins,
there are usually some disagreements around breakpoint
margins ML and MR, whereas the normal regions usually
have no disagreements (Additional file 1: Figure S1).
Also, for the breakpoint region with margins ML and
MR, some nucleotides may also have abnormal high or
low coverage (even zero coverage), and these abnormal
coverage usually indicates assembly error.
After aligning paired-end reads to scaffolds, most of

the reads are uniquely aligned in normal regions, and
there are usually some multiple aligned reads in misjoin
regions with margins ML and MR (Fig. 3). This is also
caused by repeats, the repeat regions usually have more
multiple aligned reads than that of other normal regions.
Therefore, for a breakpoint region of misjoin, we com-
pute the percentage of the multiple aligned reads, named
multi-align ratio, to determine whether this difference is
caused by repeats. High values of the multi-align ratio
(e.g., >0.1) may indicate the assembly error.
Therefore, in summary, the putative misjoin is a vali-

dated assembly error if it satisfies at least one of the fol-
lowing two conditions: (1) it has abnormal coverage or
more than 1 disagreement; (2) the multi-align ratio is
high, say >0.1. Otherwise, it may be due to structural
variation that needs further analysis (see section “Distin-
guish correct assemblies corresponding to structural
variations”).

Validate insertion errors
After placing paired-end reads to their most likely loca-
tions in scaffolds and computing the breakpoint regions
of insertion errors (Fig. 4a-c), misFinder analyzes the
aligned reads around the breakpoint regions. For the in-
sertion error in the middle, misFinder identifies the
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paired-end reads whose two ends are aligned to the two
flanking sub-segments, and then calculates the fragment
size of the paired-end reads. If the difference of the frag-
ment size and the library insert size is close to the size
of the inserted sequence, e.g., <2 * standard deviation,
then it may indicate an assembly error. Moreover, it
may contain some disagreements, low coverage, and
many discordant read pairs with large fragment size
(Additional file 1: Figure S4). Therefore, in order to call
the assembly error with high confidence, the putative
insertion error in the middle of a scaffold is a validated
assembly error if: (1) the difference of the fragment size
and the library insert size is close to the size of the
inserted sequence, and (2) it satisfies at least two of the
following conditions: (i) it has disagreements; (ii) low
coverage; and (iii) many discordant read pairs with
large fragment size, e.g., discordant ratio > 0.1.
For the insertion errors whose differences of the frag-

ment size and the library insert size are not close to the
size of the inserted sequences, the length of inserted se-
quences are usually larger than the read length. They
usually have some disagreements in the breakpoint re-
gions, and we calculate the number of disagreements
per kilo base pairs in the breakpoint regions. Therefore,
these putative insertion errors in the middle of scaffolds
are validated assembly errors if they have more than one
disagreement per kilo base pairs in their breakpoint
regions.
Moreover, for the insertion error at the 5′/3′ end of a

scaffold, as it has no paired-end reads for most cases,
misFinder calculates the read coverage at the scaffold
end, and if there are some disagreements or zero-
coverage nucleotides, then it should be a true erroneous
insertion sequence.

Validate deletion errors
In contrast with insertion error, the deletion error has a
missing sequence in scaffolds (Fig. 4d). misFinder identi-
fies the paired-end reads whose two ends are aligned to
the two flanking sub-segments, and then calculates the
fragment size of these paired-end reads. If the difference
of the library insert size and the fragment size is close to
the size of the deleted sequence, e.g., <2 * standard devi-
ation, then it may indicate an assembly error. It may
contain some disagreements, high or low coverage (even
zero-coverage), and some discordant read pairs with er-
roneous orientation or small fragment size in the break-
point region (Additional file 1: Figure S5). Therefore, in
order to call the assembly error with high confidence,
the putative deletion error is a validated assembly error
if: (1) the difference of the library insert size and the
fragment size is close to the size of the deleted sequence,
and (2) it satisfies at least two of the following condi-
tions: (i) it has disagreements; (ii) high or low coverage

(even zero-coverage); and (iii) many discordant read
pairs with erroneous orientation or small fragment size,
e.g., discordant ratio > 0.1.
Similar with the insertion errors, for the deletion

errors whose differences of the fragment size and the
library insert size are not close to the size of the deleted
sequences, the length of deleted sequences are usually
larger than the read length. They usually have some dis-
agreements in the breakpoint regions, and we calculate
the number of disagreements per kilo base pairs in the
breakpoint regions. Therefore, these putative deletion er-
rors in the scaffolds are validated assembly errors if they
have more than one disagreement per kilo base pairs in
their breakpoint regions.

Distinguish correct assemblies corresponding to
structural variations
After validating the potential mis-assemblies, assembly
errors are identified, and there are still some differences
due to structural variations that are not validated as as-
sembly errors, and they may need further analysis. In
order to distinguish these correct assemblies corre-
sponding to structural variations with high confidence,
we perform the correct assembly analysis to determine
them.
For the correctly assembled scaffold regions, they usu-

ally have the same patterns as the normal regions, while
for assembly errors their patterns differ significantly with
the normal regions, which can be used to determine the
correct assemblies from the differences that are not been
identified as assembly errors in previous section. For the
difference between the scaffold and reference that is not
identified as assembly error, if its breakpoint region has
even coverage, no disagreements, and very few discord-
ant read pairs (e.g., discordant ratio <0.1), it should be a
correct assembly whose difference is caused by struc-
tural variations; otherwise, misFinder output it as a
warning that may need further analysis.
After the analysis, some novel sequences could be

identified, e.g., novel sequences of 9 kbp and 4.6 kbp in
S.pombe strain jb1168 were identified, and they should
be correct assemblies rather than assembly errors
(Additional file 1: Figures S6-S7).

Results
Detection of assembly errors on simulated data
Genome assembly usually contains some common errors
such as misjoins of distinct genomic regions, erroneous
insertions and deletions. To test misFinder’s ability to
detect such errors, we used GemSIM [23] to generate
50× simulated Illumina short reads data on Escherichia
coli K12 MG1655 (refSeq: NC_000913.2, genome size
4.64 Mbp), with mean insert size 368 bp and standard
deviation 61 bp. Next, these paired-end reads data were
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assembled using MaSuRCA (v2.2.1) [24], and 71 scaf-
folds were generated. Finally, the misFinder was per-
formed to identify assembly errors in the scaffolds using
the genome reference and paired-end short reads data.
Note that the differences between the assembly and ref-
erence could be directly treated as errors without con-
sidering structural variations for simulated reads data.
According to our experiments, MaSuRCA produced

more assembly errors (especially the fatal misjoins)
than other assemblers on E.coli and S.pombe genomes.
MaSuRCA generated more mis-assembled contigs
than other assemblers, and the detailed information
can be seen in our previous work [12], therefore,
MaSuRCA was chosen to be the assembler for the ex-
periments of E.coli and S.pombe genomes to give bet-
ter presentations for the performance of misFinder on
identifying the assembly errors and structural
variations.
We tested misFinder by first aligning the assembly to

the reference using BLASTN (v2.2.25+) [20] with option
‘-best_hit_overhang 0.1’ to reduce the redundant short
align segments. The remaining redundant short

segments were further removed to obtain non-
redundant align segments, therefore most of the scaf-
folds each had only one large align segment with only a
few mismatched bases, e.g., insertions/deletions and mis-
matches. Then, the paired-end reads were aligned to the
assembly to assist in extracting the suspicious mis-
assembly breakpoint regions before analyzing their align-
ment information. Finally, 27 assembly errors including
3 misjoins, 20 insertion errors and 4 deletion errors were
identified according to multiple features of their paired-
end reads information (Fig. 5).
We checked all these identified assembly errors manu-

ally, and found all of them were true assembly errors
and correctly identified by misFinder without introdu-
cing mis-identification errors, which may indicate mis-
Finder’s high accuracy of identification of assembly
errors.

Distinguish assembly errors and correct assemblies
corresponding to structural variations on simulated data
Since the target genome and the reference genome usu-
ally are not the same, they may contain some structural

Fig. 5 Visualization of misFinder output for identifying assembly errors on E.coli simulated data. The running results of misFinder are shown using
Circos [30]. The ideogram (green) shows the circularized selected scaffolds containing errors and structural variations. The scatter plot shows the
identified assembly errors (red circles for misjoins, orange circles for indel errors) and correct assemblies (blue circles for correct indels, green
circles for false misjoins) corresponding to structural variations by misFinder. There are 27 assembly errors and 8 correct assemblies corresponding
to artificial SVs. The disagreement plot marks the disagreement for each base in scaffolds. The zero coverage plot marks each nucleotide with
zero coverage. The multi-align ratio plot shows the ratio of multiple aligned reads for each region of 500 bp, ranging from 0 to 1. The discordant
ratio plot shows the discordant ratio of discordant read pairs for each 500-bp region in scaffolds, ranging from 0 to 1. The last plot shows the
read coverage in scaffolds
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variations (SVs), and for the difference between the as-
sembly and reference, it may be caused by assembly er-
rors or it is a correct assembly corresponding to SVs,
therefore it needs to determine whether the difference is
caused by assembly error or it is a correct assembly
corresponding to SVs when performing the assembly
error call.
To test the ability of misFinder to call assembly errors

and correct assemblies corresponding to SVs, we intro-
duced six different modifications into the E.coli genome
reference to analog the SVs, these modifications in-
cluded one duplicated sequence (segment size 1 kbp),
one large relocation (segment size 57 kbp), two inser-
tions (70 bp and 30 bp) and two deletions (70 bp and
30 bp) (Additional file 1: Figure S8). The similarity be-
tween the artificially modified reference and the original
reference is 99.97 %. We treated this mutated reference
as new high quality reference, and treated the assembly
as the target genome in which some differences may be
due to SVs rather than assembly errors. Then, the scaf-
folds and paired-end reads data in previous section were
directly used again to test the performance of misFinder
on identification of the assembly errors and the correct
assemblies with SVs that were correctly assembled. As
the duplicated sequence introduced one difference and
the large relocation produced three differences at their
joined positions, there were eight differences between
the target genome and the reference. As a result, mis-
Finder successfully identified all the 27 assembly errors
that were already detected in previous section without
introducing miscalled errors, and moreover, it deter-
mined all the eight differences caused by SVs as correct
assemblies (Fig. 5).
From the above two experiments on simulated short

reads data, it shows that misFinder has good ability for
identifying the assembly errors and correct assemblies
corresponding to SVs with high accuracy by using the
reference and paired-end reads data.

Performance on E.coli single-cell data
We tested the performance of misFinder on E.coli K12
strain MG1655 single cell data. The single-cell sequen-
cing data (E. coli, first single cell MDA, lane 1) [25] were
downloaded from http://bix.ucsd.edu/projects/singlecell/
nbt_data.html, with mean insert size 282 bp and stand-
ard deviation 65 bp, sequencing depth ~600×. The
MaSuRCA assembly and the artificially modified refer-
ence in previous section were used again to test the
performance of misFinder on identifying assembly er-
rors and structural variations on highly uneven sequen-
cing data.
The experiments for single-cell reads data were carried

out on an Intel(R) Xeon(R) Core-16 CPU 2.67-GHz ser-
ver supplied with 24 GB memory. The single-cell

sequencing data option “-sc 1” was specified then per-
forming the experiments using 16 threads, the running
time was 8 min and the memory consumption was
2.4 GB, and all the 27 assembly errors and 8 structural
variations were successfully identified without introdu-
cing other miscalls (result was not shown), which may
indicate that misFinder has good performance not only
on uniform distribution coverage data but also on highly
uneven sequencing data (e.g., single-cell sequencing).

Detection of assembly errors on real data
To test the performance of misFinder on real sequence
data, we applied it to Schizosaccharomyces pobme strain
jb1168 real short paired-end reads data by using the
same assembler MaSuRCA [24]. The paired-end reads
data (SRA: ERX174934) of S.pombe were downloaded
from NCBI, with mean insert size 380 bp and standard
deviation 82 bp. Since the reference of strain jb1168 is
not available, we used the high quality reference of its
close strain 972 h- (genome size 12.59 Mbp) which con-
sists of three chromosomes and one mitochondrion
(refSeqs: NC_003424.3, NC_003423.3, NC_003421.2 and
NC_001326.1). For the assembly of the S.pombe strain
jb1168, there were some assembly errors introduced
during the assembly step, and moreover, the target gen-
ome and the reference genome were not exactly the
same, there were some structural variations between
them. Therefore, misFinder was used to find the assem-
bly errors and correct assemblies corresponding to
structural variations.
First, de novo assembly was carried out using

MaSuRCA, and produced 465 scaffolds. Then, misFinder
was applied to identify the assembly errors and distin-
guish the correct assemblies corresponding to SVs in the
scaffolds by using the S.pombe strain 972h- reference
and paired-end reads data. misFinder identified 116 as-
sembly errors and 22 correct assemblies corresponding
to structural variations with only three false positives
and one false negative. For the 116 assembly errors,
there were 22 misjoins, 49 erroneous insertions and 45
erroneous deletions; and for the 22 correct assemblies,
there were 13 insertions, 6 deletions and 3 false misjoins,
ranging from several base pairs to several kilos of
nucleotides.
These assembly errors and correct assemblies corre-

sponding to SVs were all manually checked by aligning
their paired-end reads to see the coverage, disagree-
ments and discordant read pairs and etc., using
BLASTN [20] alignments and IGV [26]. For the 116
identified errors, there were only 3 false positives; and
for the 22 correct assemblies, there was only one
miscalls.
Figure 6 showed 10 scaffolds with the most typical

errors and correct assemblies corresponding to

Zhu et al. BMC Bioinformatics  (2015) 16:386 Page 9 of 16

http://bix.ucsd.edu/projects/singlecell/nbt_data.html
http://bix.ucsd.edu/projects/singlecell/nbt_data.html


variations were selected and analyzed by manually
comparing the scaffolds with the reference sequence
using ACT [27], and by visualizing their aligned
paired-end reads using IGV [26]. In the figure, the er-
roneous regions had some disagreements, low cover-
age, many discordant read pairs, and other abnormal
features, whereas the correct assembly regions had
well supported paired-end reads, even coverage and
no disagreements.
From the above three experiments, it shows that mis-

Finder has good performance on identification of as-
sembly errors with only few false positives, and it also
pinpoints the correct assemblies corresponding to
structural variations with high accuracy, which indi-
cates the great power of misFinder to detect the assem-
bly errors using genome reference and multiple
features extracted from paired-end reads data, thus
could help to increase the accuracy of assembly results
for downstream analysis.

Corrected assembly statistics
To highlight the performance of misFinder on mis-
assembly identification, we evaluated it on both the ac-
curacy of mis-assembly identification and the continuity
of the corrected assembly using the assemblies of E.coli
and S.pombe on simulated and real Illumina paired-end
reads data. The E.coli and S.pombe assembly data were
used again to perform the experiments, and the artifi-
cially modified reference was used as the high quality
E.coli genome reference, and there were some differ-
ences between these two target genomes and their gen-
ome references.
In order to test the performance of misFinder on large

genome, human chromosome 14 (refSeq: NT_026437.12,
reference size 88.29 Mbp) simulated data were used to
perform the experiments. The simulated data were gener-
ated using GemSIM [23], with length 100 bp, mean insert
size 369 bp and standard deviation 45 bp. We chose
CABOG [28] to perform the assembly because CABOG

Fig. 6 Visualization of misFinder output for identifying assembly errors on selected 10 scaffolds of most errors for S.pombe real data. The running
results of misFinder are shown using Circos [30]. The ideogram (green) shows the circularized selected scaffolds. The scatter plot shows the marked
assembly errors (red circles for misjoins, orange circles for indel errors) and correct assemblies (blue circles for correct indels, green circles for false
misjoins) corresponding to structural variations identified by misFinder. The disagreement plot marks the disagreement for each base in scaffolds. The
zero coverage plot marks each nucleotide with zero coverage. The multi-align ratio plot shows the ratio of multiple aligned reads for each region of
500 bp, ranging from 0 to 1. The discordant ratio plot shows the discordant ratio of discordant read pairs for each 500-bp region in scaffolds, ranging
from 0 to 1. The last plot shows the read coverage in scaffolds. a, b show zoomed regions in the figure. a An identified assembly error of
55 bp deletion error in scaffolds was visualized using ACT (I) and IGV (II). b A detected correct assembly corresponding to structural variation
of 3 kbp copy number variation in scaffolds was visualized using ACT (I) and IGV (II)

Zhu et al. BMC Bioinformatics  (2015) 16:386 Page 10 of 16



produced more errors than other tools according to our
previous work [11, 12].
We compare the N50 size of the assemblies before

and after the correction (indicated as N50_cor). Since
QUAST [16] just computed mis-assembly statistics ra-
ther than correcting errors, we chose the metrics NA50
as the corrected N50. And we computed the following
mis-assembly statistics, including true positives (TP, the
assembly errors correctly determined), false positives
(FP, correct assembly were incorrectly considered as as-
sembly errors), false negatives (FN, assembly errors
could not be determined), precision (Precision = TP/
(TP + FP)) and true positive rate (TPR, TPR = TP/(TP +
FN)). Precision is the fraction of identified assembly er-
rors that are true, while true positive rate TPR (also
known as recall or sensitivity) is the fraction of true as-
sembly errors that are identified.
We also further compared misFinder with the

reference-based approach QUAST (v2.3) [16] and the de
novo approach REAPR (v1.0.17) [19] on the same data-
sets, and recorded their running time and memory con-
suming. The experiments for the E.coli simulated reads
data and S.pombe real reads data were carried out on a
64-bit Linux machine with an Intel(R) Core-2 CPU 2.53-
GHz supplied with 3 GB memory, and the results were
shown in Tables 1 and 2, respectively. The experiments
for the human chromosome 14 simulated reads data
were carried out on a 64-bit Linux server with 64
Intel(R) Xeon(R) CPUs of 2.00-GHz supplied with 1 TB
memory, and the results were shown in Table 3.

Performance on assembly of E.coli simulated reads data
For the results in Table 1 on E.coli, misFinder identified
27 true positives in scaffolds, with 1 false negative and
no false positives, the highest precision (100 %) and true
positive rate (96.4 %). In the scaffolds, there were three
large misjoins of distinct genome regions, misFinder cor-
rectly identified all of them and broke the scaffolds at
their breakpoints. QUAST identified 36 mis-assemblies,
however, there were 9 false positives and 1 false negative,
and most of the false positives were corresponding to
structural variations, so its precision was only 75 %. mis-
Finder found 8 correct assemblies corresponding to
structural variations using the artificially mutated

genome reference, whereas QUAST also found these 8
correct assemblies, but it treated them as assembly er-
rors. REAPR identified 13 errors without false positives,
however, 15 assemblies errors were missing called, so
the true positive rate TPR was only 46.4 %.
The corrected N50 size of misFinder and REAPR did

not dropped (172.8 kbp), whereas the corrected N50 size
of QUAST dropped from 172.8 kbp to 151.2 kbp, be-
cause it incorrectly broke the scaffolds at their break-
point regions of differences due to structural variations.
QUAST had the least time consumption (1 min),
REAPR is the most time consuming (17 min), misFinder
is moderate on time consumption (2 min), which is be-
cause that misFinder and REAPR performed the time
consuming paired-end reads alignment while QUAST
did not. QUAST and REAPR had the least memory
usage (0.4 GB), and misFinder cost more memory
(0.8 GB).

Performance on assembly of S.pombe real reads data
For the S.pombe assembly in Table 2, misFinder identi-
fied 116 errors including 113 true positives and 3 false
positives (precision 97.4 %), with only 9 false negatives,
and it also identified 22 correct assemblies correspond-
ing to structural variations. In scaffolds, misFinder de-
tected 22 misjoins and broke the scaffolds at their
breakpoints. For QUAST, it identified 195 errors includ-
ing 80 true positive errors and 115 false positives (preci-
sion 41 %), and with 42 false negatives. REAPR
identified 950 errors including 59 true positives and 891
false positives (precision 6.2 %), and with 63 false nega-
tives. misFinder detected more true positives than
QUAST and REAPR, while QUAST and REAPR gener-
ated more false positives than misFinder.
misFinder had the highest precision (97.4 %), while

these values of QUAST and REAPR were only 41 % and
6.2 %, respectively. QUAST and REAPR treated gaps be-
tween contigs in scaffolds as errors directly, while these
gaps were caused by lack of read coverage and they were
normal and common in scaffolds, so misFinder just re-
port these gaps rather than treat them as errors. More-
over, QUAST treated all the differences as assembly
errors directly without considering structural variations,
thus introduced some false positives, e.g., there were 5

Table 1 Performance on assembly of E.coli simulated reads data

#scf N50 (kbp) #scf_cor N50_cor (kbp) #Misass (TP,FP,FN)a Precision TPR #Corr.b Time (min) Memory (GB)

misFinder 71 172.8 74 172.8 27 / 0 / 1 1.0 0.964 8 2 0.8

QUAST 71 172.8 -c 151.2 27 / 9 / 1 0.75 0.964 - 1 0.4

REAPR 71 172.8 74 172.8 13 / 0 / 15 1.0 0.464 - 17 0.4
aNumber of Assembly errors were called by misFinder, QUAST and REAPR, including TP (true positives) and FP (false positives), while FN (false negatives) is the
number of assembly errors that were not called
bNumber of correct assemblies corresponding to structural variations called by misFinder
cQUAST did not output the number of broken scaffolds
The bold data reflected the best values for each column
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false positives caused by structural variations in the 115
false positives identified by QUAST, but misFinder could
distinguish these correct assemblies corresponding to
structural variations.
misFinder had the highest true positive rate (92.6 %),

while these values of QUAST and REAPR were 65.6 %
and 48.4 %, respectively. misFinder and QUAST
employed the reference to anchor differences which may
be assembly errors and generated accurate results, while
QUAST had some missing calls in the scaffolds and intro-
duced some false negatives. REAPR used the inconsistence
information of read coverage which was not reliable on
some error regions, thus resulted in some false negatives.
From the results, it can be seen that misFinder could

give accurate assembly error calls, it is because that mis-
Finder adopted a mixed approach to combine the high
quality reference and paired-end reads information, and
applied the genome reference information to locate the
differences between the assembly and the reference, and
then aligned the paired-end reads information to validate
these differences according to multiple characteristics,
such as disagreements, coverage, discordant reads and
multiple aligned reads information.
misFinder and QUAST had slight decrease on N50

size which dropped from 64.7 kbp to 61.6 kbp, while for
REAPR, the N50 size dropped dramatically from 64.7
kbp to 40.1 kbp, that was because REAPR broke scaf-
folds at assembly errors over gaps, and many gaps were
caused by lack of read coverage which were normal and
common in scaffolds, thus introduced false broken,
whereas misFinder just broke scaffolds at regions of mis-
joins instead. QUAST was the fastest (2 min) and
REAPR was the most time consuming (128 min), while

misFinder was moderate on running time (11 min) and
memory consumption (1.0 GB).
From the above experiments, misFinder had better

performance than QUAST and REAPR on both simu-
lated and real paired-end reads data. It generated more
accurate assembly error calls because it combined the
reference-based approach and de novo approach to fully
utilize the information of high quality reference and
paired-end reads in an unbiased way. It identified true
positive mis-assemblies with few false positives and
false negatives; it also distinguished the correct assem-
blies corresponding to structural variations from mis-
assembled sequences.

Performance on assembly of human chromosome 14
simulated reads data
Human chromosome 14 simulated short reads data were
used to test the performance of misFinder on large ge-
nomes. Six modifications were introduced to the human
chromosome 14 (refSeq: NT_026437.12, reference size
88.29 Mbp), including one large relocation (segment size
70 kbp), one duplicated sequence (segment size 1.4 kbp),
two insertions (70 bp and 30 bp) and two deletions (70 bp
and 30 bp) (Additional file 1: Figure S9). We treated this
mutated reference as new high quality reference, and
treated the CABOG assembly as the target genome in
which some differences may be due to SVs rather than as-
sembly errors. As the duplicated sequence introduced one
difference and the large relocation produced three differ-
ences at their joined positions, there were eight differences
between the target genome and the reference. Moreover,
we compared misFinder with QUAST and REAPR, and
the results were shown in Table 3.

Table 2 Performance on assembly of S.pombe real reads data

#scf N50 (kbp) #scf_cor N50_cor (kbp) #Misass (TP,FP,FN)a Precision TPR #Corr.b Time (min) Memory (GB)

misFinder 465 64.7 481 61.6 113 / 3 / 9 0.974 0.926 22 11 1.0

QUAST 465 64.7 -c 61.6 80 / 115 / 42 0.410 0.656 - 2 0.8

REAPR 465 64.7 668 40.1 59 / 891 / 63 0.062 0.484 - 128 0.8
aNumber of Assembly errors were called by misFinder, QUAST and REAPR, including TP (true positives) and FP (false positives), while FN (false negatives) is the
number of assembly errors that were not called
bNumber of correct assemblies corresponding to structural variations called by misFinder
cQUAST did not output the number of broken scaffolds
The bold data reflected the best values for each column

Table 3 Performance on assembly of human chromosome 14 simulated reads data

#scf N50 (kbp) #scf_cor N50_cor (kbp) #Misass (TP,FP,FN)a Precision TPR #Corr.b Time (min) Memory (GB)

misFinder 2114 82.8 2552 69.9 787 / 0 / 95 1.0 0.892 12 21 30c

QUAST 2114 82.8 -d 69.4 602 / 282 / 265 0.681 0.694 - 107 4

REAPR 2114 82.8 2322 75.3 469 / 140 / 428 0.770 0.523 - 171 5.8
aNumber of Assembly errors were called by misFinder, QUAST and REAPR, including TP (true positives) and FP (false positives), while FN (false negatives) is the
number of assembly errors that were not called
bNumber of correct assemblies corresponding to structural variations called by misFinder
cMemory usage of misFinder: Blastn 30 GB, error identification 4.5 GB
dQUAST did not output the number of broken scaffolds
The bold data reflected the best values for each column
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From the table, misFinder identified 787 true positives
in scaffolds, with only 95 false negatives and no false
positives, the highest precision (100 %) and true positive
rate (89.2 %). QUAST identified 602 true positive mis-
assemblies, however, there were 282 false positives and
265 false negatives, in which 6 false positives were corre-
sponding to structural variations, so its precision and
true positive rate were only 68.1 % and 69.4 %, respect-
ively. misFinder found 12 correct assemblies in which 8
were corresponding to structural variations, whereas
QUAST found only 6 of these 8 correct assemblies, but
it treated them as assembly errors. REAPR identified 469
true positives with 140 false positives and 428 false nega-
tives, so its precision and true positive rate were only
77 % and 52.3 %, respectively.
We checked the 4 false structural variations, and all

these miscalls were caused by highly repetitive short tan-
dem repeats with lengths larger than the read length
(e.g., 100 bp), and one typical example was the deletion
error of length 10 base pairs, which was caused by the
highly repetitive short tandem repeat in the form of
“CTTTCTTT…CTTTCCTTTCCTTT…CCTTT” with
CTTT and CCTTT repeated many times, and reads in
the genome region were well-aligned and without abnor-
mal patterns because of the short size of the deleted se-
quence, so this case was difficult to be distinguished
between the assembly error and structural variation.
Therefore, misFinder identified these 8 structural varia-
tions correctly and miscalled other 4 assembly errors as
structural variations.
misFinder and QUAST had decrease on N50 size

which dropped from 82.8 kbp to 69 kbp, while for
REAPR, the N50 size dropped slightly from 82.8 kbp to
75.3 kbp, that was because REAPR had much more false
negatives than misFinder and QUAST, resulting in many
assembly errors undetected.
misFinder had the least time consuming (21 min) and

the highest memory consumption (30 GB), because it
used 64 threads to perform the BLASTN alignment, and
each thread required about 0.5 GB memory, thus it had
the fastest speed and highest memory usage. If the
thread number is half reduced to 32, the memory con-
sumption will half reduced accordingly, and the running
time may be doubled to about 40 min. Besides the
BLASTN memory consumption, other parts of misFinder
were low (4.5 GB). QUAST and REAPR took much more
time (107 min and 171 min) and less memory usage (4 GB
and 5.8 GB).

Performance on close reference genomes with different
similarities
In order to illustrate the impact of similarities on the
performance between close genomes, four E.coli refer-
ence genomes with similarities ranging from 70.41 % to

99.56 % compared to E.coli K12 MG1655 (refSeq:
NC_000913.2, genome size 4.64 Mbp), including E.coli
O157:H7 str. Sakai (refSeq: NC_002695.1, genome size
5.5 Mbp, similarity 70.41 %), E.coli HS (refSeq:
NC_009800.1, genome size 4.64 Mbp, similarity
83.56 %), and two close genome E.coli K12 DH10B
(refSeq: NC_010473.1, genome size 4.69 Mbp, similarity
94.0 %) and E.coli K12 W3110 (refSeq: NC_007779.1,
genome size 4.65 Mbp, similarity 99.56 %). The 50×
E.coli K12 MG1655 simulated data and MaSuRCA as-
sembly were used again to test their performances using
above different reference genomes. As the main purpose
of our work is to identify assembly errors to improve the
assembly quality, we analyzed the identified errors and
calculated the precision (Precision = TP/(TP + FP)) for
the number of true errors among the identified errors
for different reference genomes, and the results were
shown in Table 4.
From the table, it can be seen that the precision in-

creased with the increase of the genome similarity. The
E.coli strain Sakai had the lowest similarity (70.41 %)
compared to the strain K12 MG1655 while the strain
K12 W3110 had the highest similarity (99.56 %), and
misFinder had the highest precision (100 %) on the
strain K12 W3110 and the lowest precision (73.91 %) on
the strain Sakai. misFinder identified more assembly er-
rors on the strain Sakai than on other strains, however,
some of the identified errors were false errors, they were
miscalled because these scaffold regions were not well
aligned to the reference, and some paired-end reads
were also incorrectly aligned to these regions and caused
some abnormal patterns (e.g., disagreements and abnor-
mal coverage depth), even though these regions were
correctly assembled and could be perfectly aligned to
the E.coli K12 MG1655 reference.
For the reference genome of lower similarity, there will

be more scaffold regions that could not be well aligned
to the reference, and some regions may contain incor-
rectly aligned paired-end reads with some abnormal pat-
terns even though these scaffold regions are correctly
assembled, thus these regions may be error prone to be
miscalled, whereas they may be ignored when using a
higher similarity reference genome as they might be well
aligned to the higher similarity reference. Therefore,
higher similarity reference genome may lead to better
results, and we recommend the similarity of the close
reference as much higher as possible.

Performance on identifying structural variations
One of the main features of misFinder is finding SVs be-
tween a close reference and an assembly, we tested mis-
Finder on E.coli K12 MG1655 and S.pombe jb1168
genomes and compared its performance with Lumpy
(v0.2.11) [29], a well-known SV finding tool, and the
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results were shown in Table 5. The E.coli MG1655 simu-
lated reads data and the artificially modified reference,
and the S.pombe jb1168 real reads data (SRA:
ERX174934) and the close reference of S.pombe 972 h-
were used again to perform the experiments.
We computed the following statistics, including true

positives (TP, the SVs correctly determined), false posi-
tives (FP, false SVs were incorrectly considered as SVs),
false negatives (FN, SVs could not be determined), preci-
sion (Precision = TP/(TP + FP)) and true positive rate
(TPR, TPR = TP/(TP + FN)). Precision is the fraction of
identified SVs that are true, while true positive rate TPR
(also known as recall or sensitivity) is the fraction of true
SVs that are identified. As the assembly of the mitochon-
drion of S.pombe (refSeq: NC_001326.1) were fragmen-
ted too much (scaffolds were typically 300–500 bp in
length), it was difficult to determine whether the identi-
fied SVs were true or false, so the mitochondrion of
S.pombe was excluded from the analysis.
According to the results, misFinder identified more

structural variations with fewer false positives and
fewer false negatives, and obtained better precision and
higher true positive rate TPR on both of the two ge-
nomes than Lumpy on identifying structural variations.
For the E.coli genome, there were 8 structural variations
according to the artificially modifications (Additional file 1:
Figure S8), misFinder identified all of them without intro-
ducing false positives and false negatives, whereas Lumpy
discovered only 5 SVs with one false positive and 4 false
negatives. For the S.pombe genome, misFinder identified 22
SVs with one false positive and one false negative, whereas
Lumpy discovered only 6 SVs with 3 false positives and 19
false negatives, resulting the presision and TPR were only
0.5 and 0.14, respectively.
Moreover, there were some novel sequences in

S.pombe jb1168 compared to S.pombe 972 h-, misFinder
identified these novel sequences as structural variations
while Lumpy could not find these novel sequences be-
cause Lumpy does not contain the assembly process. For

example, there were 5 novel sequences in S.pombe
jb1168 with lengths ranging from 1 kbp to 9 kbp com-
pared to S.pombe 972 h-, but Lumpy could not find
these novel sequences.

Discussion
We have developed an open-source mis-assembly identi-
fication method, misFinder, which identifies the assem-
bly errors by combining the reference and paired-end
reads information. The main purpose of our work is to
improve the assembly quality by identifying the mis-
assemblies excluding the differences caused by structural
variations between the target genome and the reference
genome.
There are many repeats (or duplicated sequences) in

genome, and they are difficult to be resolved in assem-
bly. Therefore, assembly is usually broken in these repeat
regions, and as a result, the repetitive sequences appear
at the scaffold ends in most cases, only a few repeats
occur in the inner parts of scaffolds. This is consistent
with our experiments.
For the repeats, they should be considered together

with the scaffolds they belonged to, even though they
have multiple aligned locations in the reference. So, if
the repeats are well aligned to the reference together
with their scaffolds, the other locations of the repeats
will not be considered in our method. Therefore, most
of the duplicated sequences have no much impact to the
mis-assembly identifications.
For the structural variation identification, paired-end

reads are aligned to the reference (not the scaffolds, and
in fact, assembly is usually not performed in most cases),
and some abnormal patterns of paired-end reads are ap-
plied to call structural variations. However, in our
method, scaffolds are first aligned to the reference to de-
termine their differences, and these differences may be
caused either by mis-assemblies or by structural varia-
tions. And then, paired-end reads are aligned to the scaf-
folds (not the reference) to distinguish mis-assemblies

Table 4 Performance on close reference genomes with different similarities for the assembly of E.coli simulated reads data

Strain Similarity compared to E.coli K12 MG1655 #Identified errors #True errors Precision

E.coli O157:H7 str. Sakai 0.7041 46 34 0.7391

E.coli HS 0.8356 38 32 0.8421

E.coli K12 DH10B 0.94 30 29 0.9667

E.coli K12 W3110 0.9956 30 30 1.0

Table 5 Performance on identifying structural variations for E.coli and S.pombe genomes

misFinder Lumpy

Organism Close reference genome TP,FP,FN Precision TPR TP,FP,FN Precision TPR

E.coli MG1655 E.coli MG1655 artificially mutated reference 8/0/0 1.0 1.0 4/1/4 0.8 0.5

S.pombe jb1168 S.pombe 972 h- 21/1/1 0.9545 0.9545 3/3/19 0.5 0.1364
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using those abnormal patterns of paired-end reads. And
according to our experiments, the differences that are
due to structural variations usually have no abnormal
patterns, thus can be excluded. Note that we only con-
sider the scaffold regions that have differences with the
reference rather than other well aligned scaffold regions.
However, some assembly errors caused by highly re-

petitive short tandem repeats are difficult to be correctly
resolved, some of them may be miscalled as structural
variations because the lengths of inserted/deleted se-
quences are typically short (10–20 bp) and their break-
point regions usually have well-aligned paired-end reads
and no abnormal patterns. Some of these short tandem
repeats are difficult to be resolved by misFinder and may
cause some mis-identifications, and the lengths of these
highly repetitive short tandem repeats are usually longer
than the read length, and we think that increase the read
length may help to identify these assembly errors more
accurately.
Moreover, some scaffold regions have some mis-

matches and abnormal coverage depth even though
these regions are perfectly aligned to the reference. The
reason is that these regions are similar with some other
genomic regions which are not successfully recon-
structed during assembly (we call these regions as miss-
ing regions), and paired-end reads derived from these
missing regions are incorrectly aligned to the similar re-
gions with some mismatches, and as a result, abnormal
patterns are shown in some well aligned scaffold regions
(Additional file 1: Figure S10). But, these regions are well
aligned to the reference (they have no differences), so
they are correctly constructed, and we do not consider
these well aligned regions to prevent miscalls in our
method.

Conclusions
Even though there is a high-quality genome reference,
for genome sequencing (even the same species), there
are usually some differences between the target genome
and the reference genome as the two genomes are not
exactly the same. For the assembly of a target genome, it
may contain many differences may be caused by assem-
bly errors or structural variations. When calling the as-
sembly errors, if we do not consider the differences
between the target genome and the reference genome,
the results may contain some biases.
In this article, we present misFinder, a tool that aims

to identify the assembly errors with high accuracy in an
unbiased way and correct these errors at their misjoined
positions to improve the assembly accuracy before
downstream analysis. It uses the reference (or close re-
lated reference) to find the differences between the scaf-
folds and the reference, and uses multiple features
extracted from the paired-end reads to validate these

differences to determine whether they are assembly er-
rors or correct assemblies corresponding to structural
variations. Experiments showed that misFinder could
identify the assembly errors with fewer miscalls, and the
correction almost has no much impacts on the continu-
ity of the assembly both for simulated E.coli reads data
and real S.pombe dataset. Human chromosome 14 ex-
periments showed that misFinder could identify the as-
sembly errors and correct them to improve the assembly
quality for large genomes.

Availability of supporting data
misFinder was implemented in C language on Linux
x86_64 machine. The source code can be freely down-
loaded from https://github.com/hitbio/misFinder.

Additional file

Additional file 1: Pattern screenshots for assembly errors. The file
gives screenshots of different patterns for assembly errors, including
misjoins, insertions and deletions for the assembly on E.coli simulated
paired-end short reads data. The file also gives the screenshots of identified
novel sequences for the S.pombe strain jb1168 genome comparing to
the reference of S.pombe strain 972 h-. The file still gives some detailed
information for the artificially modified references for E.coli and human
chromosome 14. (DOC 2626 kb)
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