
Lo et al. BMC Bioinformatics (2015) 16:395
DOI 10.1186/s12859-015-0823-6

RESEARCH ARTICLE Open Access

High-order dynamic Bayesian Network
learning with hidden common causes for
causal gene regulatory network
Leung-Yau Lo1*, Man-Leung Wong2, Kin-Hong Lee1 and Kwong-Sak Leung1

Abstract

Background: Inferring gene regulatory network (GRN) has been an important topic in Bioinformatics. Many
computational methods infer the GRN from high-throughput expression data. Due to the presence of time delays in
the regulatory relationships, High-Order Dynamic Bayesian Network (HO-DBN) is a good model of GRN. However,
previous GRN inference methods assume causal sufficiency, i.e. no unobserved common cause. This assumption is
convenient but unrealistic, because it is possible that relevant factors have not even been conceived of and therefore
un-measured. Therefore an inference method that also handles hidden common cause(s) is highly desirable. Also,
previous methods for discovering hidden common causes either do not handle multi-step time delays or restrict that
the parents of hidden common causes are not observed genes.

Results: We have developed a discrete HO-DBN learning algorithm that can infer also hidden common cause(s)
from discrete time series expression data, with some assumptions on the conditional distribution, but is less restrictive
than previous methods. We assume that each hidden variable has only observed variables as children and parents,
with at least two children and possibly no parents. We also make the simplifying assumption that children of hidden
variable(s) are not linked to each other. Moreover, our proposed algorithm can also utilize multiple short time series
(not necessarily of the same length), as long time series are difficult to obtain.

Conclusions: We have performed extensive experiments using synthetic data on GRNs of size up to 100, with up to
10 hidden nodes. Experiment results show that our proposed algorithm can recover the causal GRNs adequately
given the incomplete data. Using the limited real expression data and small subnetworks of the YEASTRACT network,
we have also demonstrated the potential of our algorithm on real data, though more time series expression data is
needed.

Keywords: Gene regulatory network, High-order dynamic Bayesian Network, Hidden common cause, Causality
inference

Background
Inferring gene regulatory network (GRN) has been an
important topic in Bioinformatics, owing to the impor-
tant role it plays in the functioning of the cell. In the cell,
genes are transcribed and subsequently translated into
proteins, some of which are transcription factors (TFs)
which trigger or inhibit the transcription of other gene(s).
The transcription and translation, however, take time and

*Correspondence: lylo@cse.cuhk.edu.hk
1Department of Computer Science and Engineering, The Chinese University
of Hong Kong, Shatin, Hong Kong
Full list of author information is available at the end of the article

may have delays due to other reasons [1–4]. These delays
have been known to affect the network stability, or cause
oscillations [5–8]. Therefore, the GRN could be modeled
as a directed network where each directed link is labeled
with the delay, representing the regulation of a gene to a
target gene.
Rather than experimentally determining the regulatory

targets of each Transcription Factor (TF) in an expensive
and time-consuming way, many computational methods
attempt to infer the GRN from high-throughput microar-
ray or RNA-seq gene expression data, which can measure
the expression of thousands of genes at the same time, and

© 2015 Lo et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0823-6-x&domain=pdf
mailto: lylo@cse.cuhk.edu.hk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lo et al. BMC Bioinformatics (2015) 16:395 Page 2 of 28

allow time series expression data to be obtained when this
is done for a number of time points.
However, to our knowledge, the previous GRN infer-

ence methods all implicitly make the assumption of causal
sufficiency, i.e. there are no unobserved common cause,
which is convenient but unrealistic. For example, miR-
NAs were previously not thought to take important roles
in gene regulation. It is in principle impossible to be cer-
tain that all relevant factors or common causes have been
measured, because factors that are not even conceived of
cannot be measured. Therefore an inference method that
also handles hidden common cause(s) is highly desirable.

Gene network inference
Many GRN inference algorithms and models have been
proposed, with different levels of details by labeling the
edges with different information, see [9, 10] for surveys of
GRN modelling and [11] for a survey on GRN inference
algorithms for microarray expression data.
Some methods infer only an undirected network, for

example Relevance network [12], ARACNE [13] and
C3NET [14], all of which use mutual information as
a measure of association between genes. Some infer a
directed network, but without labeling the edges with
time delays, e.g. [15]. Static Bayesian Network (BN) is
sometimes used to model GRN, e.g. in [16]. But the down-
side of static BN is that no cycles are allowed, and no time
delays are taken into account.
Some algorithms consider delay of only one time step,

e.g. [17] which uses association rule mining; [18] which
uses the classical Boolean network; [19] which uses Gaus-
sian process for Bayesian inference of an Ordinary Dif-
ferential Equation (ODE) model discretized in time; and
DELDBN [20], which combines ODE model with local
Bayesian analysis. In contrast to static BN, dynamic
Bayesian Network (DBN) models the joint distribution of
some random variables at different time points, and allows
time delays. First-Order DBN allows time delays of only
one time step, e.g. [21] and GlobalMIT [22].
On the other hand, High-Order DBN (HO-DBN) allows

delays of multiple time steps. Many HO-DBN models are
discrete and ignore intra-slice edges (i.e. no instantaneous
effects), and are learnt by optimizing a score on candidate
structure. Since BN learning is NP-hard [23], some DBN
learning algorithms use heuristic or stochastic optimiza-
tion such as simulated annealing, as in Banjo [24] (updated
version allows multi-step delays); genetic algorithm, as in
[25]; and greedy heuristic search in MMHO-DBN [26] (in
case the number of parents is large, and exhaustive search
is used otherwise). After [27] had shown it is possible to
globally optimize Minimum Description Length (MDL)
score [28] and Bayesian-Dirichlet equivalent (BDe) score
[29] in polynomial time for certain BN and DBN model,
the technique has been adapted to globally optimize the

MIT score [30] in GlobalMIT for FO-DBN and Glob-
alMIT+ [31] for HO-DBN. GlobalMIT* is a heuristic
and faster version of GlobalMIT+. Although for small or
medium sized networks, GlobalMIT+ and GlobalMIT*
could globally optimize the score in reasonable time, when
the number of genes and time points increase, the practi-
cal time needed could still be long, as the order of the poly-
nomial depends on the number of time points. Therefore,
a good heuristic HO-DBN learning method that strikes a
good balance between effectiveness and efficiency is still a
useful complement.
On the continuous side, there are not many algorithms

that handle multi-step delays, examples are TD-ARACNE
[32], which is an extension of ARACNE; DD-lasso [33],
which uses lasso [34]; and CLINDE [35], which extends
the PC algorithm [36] with time delays.

Hidden common cause
The above methods ignore the issue of hidden common
cause(s) by (implicitly) assuming causal sufficiency, i.e.
all common causes have been observed. Inferring hid-
den common cause(s) is an important topic in causality
inference, because ignoring themmay result in misleading
causal relationships, as illustrated in Fig. 1, where some
nodes are wrongly thought to be causally linked.
An early work is [37], which formulates the problem as

determining the constraints on the variance-covariance
matrix of observed data, and then searching for a causal
structure to explain the constraints. Some works assume
the presence of hidden common cause of observed vari-
ables, but only indicate that some may have hidden
common cause, and focus on the relationships between
observed variables instead. The Causal Inference (CI) and
Fast Causal Inference (FCI) algorithms [36] are extensions
of the PC algorithm to handle the causally insufficient
case; similarly the IC* algorithm [38] is an extension of the
IC algorithm. Both CI, FCI and IC* give only a partially
ordered graph, where some edges may remain undirected,
and some are labeled to mean the two genes may have

Fig. 1 Illustration of possible misleading causal relationships if hidden
common cause is ignored. The numbers are the delays. The grey
circle is the hidden common cause. Since the children and parents of
the hidden common cause are associated, they may be mistakenly
thought to be directly linked

Lo et al. BMC Bioinformatics (2015) 16:395 Page 3 of 28

hidden common cause. Eichler [39] is a Granger-causality
based method that learns a mixed graph from time series
data, where directed edges represent direct causal rela-
tionship, and dashed edges represent relationship due
to hidden common cause. Pellet and Elisseeff [40] is an
extension of the FCI algorithm and does not use time
series data. Stochastic differential equation model (dis-
cretized in time) is used in [41], where hidden variables
are assumed only to more accurately estimate the rela-
tionship between observed variables, using a convex opti-
mization based method. In [42], a Satisfiability problem is
formulated from the d-separation and d-connection infor-
mation as provided by conditional tests, which is then
incrementally solved to attempt to recover the depen-
dency structure between observed variables, and some
may be indicated to have latent variables, and some
edges may be marked as “unknown” if the given informa-
tion is insufficient for determining whether it is present
or not.
While the above do not have any hidden common cause

in the output, someworks label predicted hidden common
cause(s), but any hidden common cause can only have
other hidden variables, but not observed variables as par-
ents. Silva [43, 44] are examples in this direction, where
observed variables depend linearly on its parents (either
hidden or observed), and hidden variables can depend
nonlinearly on its parents (only hidden variables). In [45],
a linear Bayesian Network is learnt, but it is assumed that
there are no edges among observed variables, and that the
hidden variables are linearly independent.
Some works are less restrictive and allow the hidden

variables to have observed variables as parents. Boyen
et al. [46] uses a FO-DBN model, and is based on the
observation that ignoring hidden variable in DBN usu-
ally results in violation of Markov property. The algorithm
therefore tries to find non-markovian correlations (those
acrossmore than one time step) and try to explain them by
introducing hidden variable. This work, however, evalu-
ates the likelihood on the testing set rather than how close
the resulting dependency structure is to the assumed true
causal structure.
In [47], a discrete BN with hidden variables without

time delays is learnt, where hidden variables are assumed
to have observed variables as parents and children. It is
closer to the work in this paper in that it has less restric-
tion on the parents of the hidden common cause(s) than
previously mentioned methods, but it does not handle
time delays. It is motivated with the observation that the
inferred dependency of the observed variables (the par-
ents and children of the hidden variable) will usually be
overly complicated, withmany connections, when the hid-
den variable is not taken into account (see Fig. 1). There-
fore, they guess the position of the hidden variable(s) and
its local structure by finding semi-clique(s). A semi-clique

is a subset of nodes where each node in the subset is
connected to more than half of the nodes in the sub-
set. After that adjustments are made by explicitly linking
the variables of the semi-clique with the introduced hid-
den variable and this local structure is then fine-tuned by
Structural-EM (SEM) [48]. This work also focuses on the
likelihood in the evaluation instead of the inferred struc-
ture. The use of semi-clique as structural signature also
places some restrictions on the subnetwork surrounding
the hidden variable(s), e.g. a hidden variable must have
parent(s), which are observed variable(s), and the total
number of parents and children of a hidden variable must
be at least three, because the smallest semi-clique has size
three. Elidan and Friedman [49] complements [47] and
focuses on learning the dimensionality (the number of
states) of hidden variables.
In short, HO-DBN learning methods that can handle

multi-step time delays such as GlobalMIT* do not han-
dle hidden common cause(s), and hidden common cause
learning algorithms do not handle multi-step time delays,
and those without time delays are restricted to acyclic
networks. In other words, to our knowledge, no previous
methods handle multi-step time delay and learn hidden
common cause(s) at the same time.

Objective
In this paper, we want to develop a HO-DBN learning
algorithm that can infer also hidden common cause(s)
from discrete time series expression data, with some
assumptions on the conditional distribution, but is less
restrictive than the above mentioned methods. Here, we
focus on the discrete case, because combinatorial regula-
tion could be easily modeled by HO-DBN.
We assume that there is a d-th order (the maximum

delay is d) stationary HO-DBN that is of interest, where a
small but unknown number of common cause(s) are not
observed. Each hidden variable has only observed vari-
ables as children and parents, with at least two children
and possibly no parents. We also make the simplifying
assumption that the children of unobserved variable(s)
are not linked to each other, because it is difficult to
differentiate whether the high association between two
children are solely due to the hidden common cause, or
due to both the hidden common cause and direct link
between the two children. As the prior network is difficult
to learn, and the transition network is of the main inter-
est, our objective is to infer the transition network of the
HO-DBN from the discrete time series of the observed
variables. Moreover, it is desirable that the algorithm be
capable of utilizing multiple short time series (not nec-
essarily of the same length), as long time series are diffi-
cult to obtain. To our knowledge, previous works either
make much more restrictive assumptions or ignore time
delays.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 4 of 28

Methods
The motivating idea of our proposed method is that when
a common cause is hidden, the parents of its children will
not be determined correctly, and will probably be wrongly
predicted to be the parent(s) of the hidden cause, or other
children of the hidden cause, as illustrated in Fig. 1. In
order to remedy this, the “anomaly” has to be recognized
first. The overall strategy is to first learn an initial GRN
while ignoring possible hidden common cause, then to
detect the presence of hidden common cause(s), and esti-
mate any detected hidden common cause. This overall
strategy is similar to that of [47]. But while [47] uses semi-
clique as structural signature, and [46] uses correlation
across more than one time step as clue of “anomaly”, in
this paper, we propose to make assumption on the condi-
tional distribution for this purpose. The idea is that when
the parents of a gene are wrongly determined, the con-
ditional distribution will be different from expected. We
could predict the genes with hidden common cause using
this clue. After that, by the fact that genes with common
parent should have high association, the suspected genes
could be clustered, and one hidden common cause could
be estimated for each cluster with size at least two. Unlike
[47], we estimate hidden common cause(s) with simple
EM, instead of Structural-EM.
The overall flow of the proposed method is given in

Fig. 2. The steps are 1) infer an initial GRN of the
observed genes, 2) determine the genes with hidden com-
mon cause(s) by the estimated conditional distributions,
3) estimate the hidden common cause(s), 4) re-learn the
GRN after estimation of hidden common cause(s). The

program code can be obtained at https://github.com/
peter19852001/hcc_dclinde. We first describe the data
and model assumed in this paper, then describe each step
in more details, where we first describe the case with one
time series, and later we describe the case of multiple time
series in a separate subsection.

Model and data
The GRN model used in this paper is High-Order
Dynamic Bayesian Network (HO-DBN) on n+nh random
variables Xt = {X1,t , . . . ,Xn+nh,t} at different time points
t = 1, . . . ,T . Each Xi,t represents the expression of gene i
at time t, where n of them are observed, and nh are hidden.
We assume that the DBN satisfies the d-th order Markov
property:

P(Xt|Xt−1,Xt−2, . . . ,X1) = P(Xt|Xt−1, . . . ,Xt−d)for any t.

The order d > 1 is the maximum delay. We also
assume that the DBN is stationary, i.e. the dependency
P(Xt|Xt−1, . . . ,Xt−d) is independent of t. Therefore, the
joint distribution can be factorized as:

P(X1, . . . ,XT)=P(X1, . . . ,Xd)
T∏

t=d+1
P(Xt|Xt−1, . . . ,Xt−d)

(1)

The P(X1, . . . ,Xd) is the prior network, which needs
many independent samples to estimate, so the focus is
usually on the transition network P(Xt|Xt−1, . . . ,Xt−d).
Assuming stationary DBN, the transition network could

Fig. 2 Overall Flow of the Proposed Algorithm. The steps are: 1) infer an initial GRN, 2) identify the genes with hidden common cause, 3) estimate
the hidden common cause(s), which involves clustering and EM, 4) re-learn the GRN after estimation of the hidden common cause(s)

https://github.com/peter19852001/hcc_dclinde
https://github.com/peter19852001/hcc_dclinde

Lo et al. BMC Bioinformatics (2015) 16:395 Page 5 of 28

be represented as a multi-graph of n + nh nodes
(representing the n + nh genes), where an edge i → j is
labeled with a delay τij ≥ 0, meaning that Xj,t depends on
Xi,t−τij . Note that there may be multiple edges from node
i to node j, but with different delays.
We make the following assumptions on the structure of

the transition network:

• there are n observed genes and nh hidden variable(s).
• nh is unknown, but 0 ≤ nh < n and nh is small.
• We also assume that the subgraph for which τij = 0

(the instantaneous effects or intra-slice edges) is
empty. This is commonly assumed, e.g. in [25],
MMHO-DBN [26] and GlobalMIT+ [31]. This
assumption is quite reasonable in GRN modeling, as
the regulatory relationships invariably have delays.
I.e. we assume that τij > 0.

• each hidden variable has at least two observed genes
as children.

• if a gene has a hidden parent, it has no other parents.
• children with the same hidden parent are not linked

with each other.
• for each conditional distribution with ns states, one of

the states has probability pbias, and the other states
each has probability of 1−pbias

ns−1 . That is, the
dependency of a gene on its parent(s) is mostly a
function, with some “noise” added. A higher value of
pbias means a lower “noise” level.

The given data consists of K discrete time series
{x(k)

i (t) : 1 ≤ i ≤ n, 1 ≤ t ≤ Tk} with equidistant time
points for 1 ≤ k ≤ K . The K time series should be dis-
cretized in the same way, so that the states (e.g. 0, 1 and
2 for low, average and high expression) are consistent in
different time series.

Initial GRN
For the purpose of identifying genes with hidden com-
mon cause(s), the first step is to obtain an initial GRN.
In principle, any HO-DBN learning algorithm could be
used. In our preliminary test (unpublished), we have
adapted CLINDE [35] to discrete data to give D-CLINDE,
which is a constraint-based method extending the PC
algorithm [36] (in a similar way to CLINDE). We have
shown that for large number of genes and time points, D-
CLINDE can be orders of magnitude faster than MMHO-
DBN and GlobalMIT* (and consequently GlobalMIT+),
while achieving slightly better learning performance than
MMHO-DBN, and achieving 70–80% of the learning
performance of GlobalMIT*. Therefore, D-CLINDE is a
good complement to GlobalMIT* (and GlobalMIT+) for
large networks and time points, when even GlobalMIT*
would be too slow. Also, both D-CLINDE, GlobalMIT*
and GlobalMIT+ can handle multiple time series, while

MMHO-DBN cannot. Therefore, in our current program,
we allow the use of GlobalMIT*, GlobalMIT+ or D-
CLINDE for inferring the initial GRN.We briefly describe
D-CLINDE, GlobalMIT+ and GlobalMIT* in the follow-
ing.

D-CLINDE
D-CLINDE is a constraint-based method, where condi-
tional independence tests on the data constrain the pos-
sible causal structure. It consists of two stages. In stage
1, independence tests (G2 test) are conducted on all gene
pairs i → j for all possible delays up to a maximum
delay. If the null hypothesis of the independence test is
rejected (the score of the test is − log10(p-value), and the
null hypothesis is rejected if the score is larger than a score
threshold), the link with the associated delay is kept for
stage 2. The default value for score threshold is 2, corre-
sponding to a p-value threshold of 0.01. Note that there
may be multiple delays for i → j after stage 1. Stage 2
attempts to eliminate indirect effects based on the fact
that if x and y are conditionally independent given a set
of variable(s) Z (not containing either x or y), then there
should not be a link between x and y. So in stage 2, we iter-
atively condition on h = 1 neighbor for each link to see if
a link could be pruned, then condition on h = 2 neighbors
for any remaining links, and so on up to h = N0 for a given
parameter N0, with a default value of 2. When perform-
ing a conditional test, the neighbors to be conditioned on
are shifted using the delays estimated in stage 1, and if the
null hypothesis is not rejected (based on score and score
threshold, and is similar to stage 1), the link is pruned.

GlobalMIT+ and GlobalMIT*
GlobalMIT+ [31] is a method that globally maximizes the
MIT score [30], which measures the mutual information
between a gene and its parents (with delay), together with
a penalty on the number of parents. The basic idea is that
for each gene, we enumerate the parents (with the delays),
starting from zero parents, then one parent, then two and
so on, but with pruning to avoid having to enumerate all
possible subsets.
The characteristics of the score (to be minimized) that

allows effective optimization (in polynomial time) and
pruning are:

• No need to check acyclicity: this allows the score to
be calculated separately for each variable. Since
GlobalMIT+ ignores instantaneous effects, so the
network is always acyclic.

• Additivity: the score of a candidate network can be
decomposed into the sum of the score of each gene.
This greatly simplifies the search, and allows easy
parallelization.

• Splitting: the score for each gene could be
decomposed into a sum of complexity and accuracy

Lo et al. BMC Bioinformatics (2015) 16:395 Page 6 of 28

parts as s(Pa) = u(Pa) + v(Pa), where both u(.) ≥ 0
and v(.) ≥ 0, and that the complexity part is
“non-decreasing”: u(Pa1) ≤ u(Pa2) for Pa1 ⊆ Pa2.

• Uniformity: the complexity is only a function of the
number of parents, i.e. u(Pa1) = u(Pa2) whenever
|Pa1| = |Pa2|.

In minimizing the score, if the complexity alone exceeds
the best score so far, it is safe to prune the search, as adding
more parents could only worsen the score. The key to the
proof of polynomial time is a logarithmic bound p∗ on
the number of parents to consider (e.g. by finding a p∗
for which u(Pa) ≥ u(∅) if |Pa| = p∗), so that there are
O((nd)p

∗
) sets of parents with delays to consider, and each

could be done in O(p∗T) time, making the whole global
search polynomial.
In the case of GlobalMIT+, with a simple trick the max-

imization is turned into minimization, and by assuming
that all variables have the same number of states k (for
uniformity), all of the above conditions are satisfied, so the
MIT score could be optimized in polynomial time with
p∗ ≈ logk(Ne) where Ne is

∑K
i=1 (Ti − d). However, the

order of the polynomial depends on the number of time
points, and for large networks and large number of time
points, the practical running time could still be long.
Recognizing this shortcoming, GlobalMIT* is a heuris-

tic and faster version of GlobalMIT+ with the additional
assumption that for each pair of genes i → j, there is only
one delay, and that delay has the best MIT score. So Glob-
alMIT* first finds the best delay individually for each pair
i → j, and need not try the delays in subsequent optimiza-
tion. This substantially reduces the search space, speeding
up the search greatly. However, in our preliminary test, the
practical running time could still be long for large number
of genes and time points.

Identification of genes with hidden common cause
Having obtained the initial GRN of the observed genes, we
can estimate the conditional distribution of each gene by
maximum likelihood, and then estimate the p̂bias of each
gene, to compare with the expected bias. In this paper, we
use a simple method to estimate the bias. For each gene g,
for each configuration Qi of its parent(s) Pag , we calculate
the maximum probability of the conditional distribution
as maxj P(g = j|Pag = Qi), and we use the median of the
maximum probability over the parent configurations Qi’s
as the estimate p̂bias of the bias for gene g.
For each gene, we compare the estimated bias p̂bias with

the expected bias pbias, if |p̂bias − pbias| > ρ we predict
the gene to have hidden common cause, where ρ is the
tolerance with a default value of 0.05. The idea is that if a
gene has no hidden common cause, we expect its parents
(and delays) to be correctly determined (given sufficient
data), so the estimated bias should be close to expected.

On the other hand, if a gene has hidden common cause,
its true parents could not be determined correctly, and we
expect the estimated bias to be different from expected.
Those genes determined to have hidden parents are called
candidates.
If the number of observed genes n is small, we assume

that the expected bias is known and given. On the other
hand, when n is larger, by the assumption that there are
only a small number of hidden variables, we could attempt
to estimate the expected bias from the estimated biases
of the the observed genes. We simply use the median of
the estimated biases as the expected bias for this study,
if it is not given. We discuss a possible alternative strat-
egy for estimating the expected bias as future works in the
conclusions.

Estimation of hidden common cause(s)
Clustering the candidates
We simply output the initial GRN as the final GRN if there
are no candidates. Otherwise, based on the fact that genes
with common parent are associated, we cluster the candi-
dates to determine which genes have a common parent,
and also to estimate their relative delays for estimating the
hidden common cause(s).
Although there are many different clustering algo-

rithms, we found that even a simple greedy clustering
algorithm works adequately from our preliminary tests.
The idea is that we consider each candidate in turn, and
find the cluster center that is closest to it, and if it is
close enough, it is added to that cluster; otherwise, the
candidate forms a new cluster. The steps are:

1. Let the k candidates be {g1, g2, . . . , gk}
2. Set nc ← 1, c1 ← g1, τ1 ← 0, C1 ← {g1}
3. For i = 2, . . . , k

(a) Let di = argmax1≤j≤ncd(cj, gi), and set τi be
the associated time shift of gi relative to cdi

(b) If d(cdi , gi) ≥ S0, update Cdi ← Cdi ∪ {gi}
(c) Otherwise, set nc ← nc + 1, then set

Cnc ← {gi}, cnc ← gi, τi ← 0

4. Output the nc clusters {Cj : 1 ≤ j ≤ nc}, and the time
shifts {τi : 1 ≤ i ≤ k}

ci is the center of cluster i, Ci is cluster i. τi is the time
shift of candidate gi relative to its cluster center. d(x, y)
measures the similarity of two time series x and y, here
we use the maximum − log10(p-value) of G2 tests of the
shifted time series (shift y relative to x, from −d to d,
where d is the maximum delay). S0 is the threshold for
a series to be included in a cluster, with a default value
of 2.3 (from our preliminary tests, this value seems to
work well, although a value of 1.3 also seems to work
adequately).

Lo et al. BMC Bioinformatics (2015) 16:395 Page 7 of 28

Estimating the hidden common cause by expectation
maximization
After the clustering, we would estimate a hidden common
cause (estimating its time series) for each cluster with two
or more members. If no cluster has size at least two, we
simply output the initial GRN as the final GRN. For each
cluster with size at least two, we perform up to two rounds
of EM. The first round estimates a hidden common cause
(as parent) of the genes in the cluster without considering
potential parents of the hidden common cause. The sec-
ond round uses the estimated time series of the hidden
common cause to find potential parents from all observed
genes (not limited to the cluster under consideration) by
picking those with high associations with the estimated
hidden common cause, and re-estimate the hidden com-
mon cause treating the found (if any) potential parents as
parents of the hidden common cause. But note that any
identified potential parents of a hidden common cause
may not be the true parents of the hidden common cause,
as they are found by only considering pairwise associa-
tions but not possible indirect effects. So we still rely on
the relearning of the GRN after estimating hidden com-
mon cause(s) tomore accurately identify the parents of the
hidden common cause(s), if any. However, we expect the
identified potential parents to contain useful information
for the estimation of the hidden common cause.
We use simple Expectation Maximization (EM) [50] to

optimize the log-likelihood, where the states of the hidden
common cause at the time points are the latent variables.
Let the hidden common cause to be estimated be h. The
number of states of h is either given as a parameter, or
the maximum of the number of states of the children
if not given. We perform two rounds of EM, each with
a default of 100 iterations, and with restarts. Below we
briefly describe the EM steps.
Suppose for cluster C = {g1, g2, . . . , g|C|} with |C| > 1

that we want to estimate a hidden common cause hwith ns
states, whichmay have potential parents identified (for the

second round). We first note that the different series may
not be aligned because of different time shifts, as illus-
trated in Fig. 3. Suppose the time points of interest are
ts ≤ t ≤ te, we denote the state of h at time t as ht , which
are the latent variables in the EM. Let the configuration of
the potential parents of h be denoted by Q, and the value
of Q at time t be denoted by Qt , and let xi,t be the value of
gi at time t (if available). Our goal is to estimate the most
probable ht for ts ≤ t ≤ te given D = {Qt} ∪ {xi,t}. The
parameter of the likelihood is θ = {P(h|Q)} ∪ {P(gi|h)},
where P(h|Q) becomes P(h) if h has no potential parents.
We first randomly initialize the parameter

θ(0) = {P(0)(h|Q)} ∪ {P(0)(gi|h)}, then repeat
the E-step and the M-step for a default of 100
iterations:

• E-step: at iteration k, for each time t, and for
0 ≤ j < ns, calculate

A(k)
j,t = P(ht = j, {gi = xi,t}|θ(k),D)

= P(k)(h = j|Qt)
∏
i
P(k)(gi = xi,t|h = j)

B(k)
j,t = P(ht = j|θ(k),D) = A(k)

j,t∑
α A

(k)
α,t

where i is over the values for which xi,t has value. The
log-likelihood is L(θ(k)) = ∑

t log
(∑

j A
(k)
j,t

)
. We also

estimate the most probable ht at iteration k as
h(k)
t = argmaxj B(k)

j,t for each t. If the most probable
states are not changed in 3 iterations, we re-initialize
θ randomly for the next iterations instead of
performing the M-step.

• M-step: we update the parameter for the next
iteration as follows.

Fig. 3 Illustration of un-aligned series for estimating hidden common cause

Lo et al. BMC Bioinformatics (2015) 16:395 Page 8 of 28

P(k+1)(h = j|Q = q) =
∑

t:Qt=q B
(k)
j,t∑

α

∑
t:Qt=q B

(k)
α,t

P(k+1)(gi = x|h = j) =
∑

t:xi,t=x B
(k)
j,t∑

α

∑
t:xi,t=α B

(k)
j,t

θ(k+1) = {P(k+1)(h|Q)} ∪ {P(k+1)(gi|h)}

After the iterations, we output the h(k)
t for which L(θ(k))

is maximum as the estimate of the most probable ht for
this round of EM.
After the first round, we use the estimated most proba-

ble ht to find potential parents of h, by performingG2 tests
with all observed genes with different time shifts, using a
score of − log10(p−value). A gene (with a particular time
shift) could be a potential parent of h if the score is at
least 2, and we take only 3 potential parents with the high-
est scores if there are more than 3. If any potential parent
is found, we perform the second round of EM with the
parents properly shifted to re-estimate the most probable
ht .
Lastly, we take h′

t = hα where α = t +
max{max1≤k≤|Ci| τi,k , d} + 1 for 1 ≤ t ≤ T − 1 and h′

T = 0
as the estimate of the hidden common cause of cluster Ci,
i.e. take the suffix of ht and shift it so that h′

t precedes all
the genes in C in time.

Re-learn the GRN after estimation of hidden common
cause(s)
If there are no estimated hidden common cause(s), we
simply output the initial GRN as the final GRN. Other-
wise we re-learn the GRN using the the original observed
expression together with the estimated hidden time series
of the common cause(s) to give the final GRN, but we dis-
allow any links between the candidates in the same cluster.
Similar to inferring the initial GRN, either GlobalMIT*,
GlobalMIT+ or D-CLINDE could be used (can be chosen
independently from the choice of initial GRN).

Handling multiple time series data
The above describe the steps of the proposed algorithm
when one time series data is provided, we now describe
the case where multiple time series data are provided,

where the series are not necessarily of the same length.
The main idea is that when shifting the time series by a
delay (e.g. for G2 test), all the time series are shifted, and
the overlapping parts are concatenated for the calculation.
This is illustrated in Fig. 4.
Since D-CLINDE, GlobalMIT* and GlobalMIT+ can

handle multiple time series, inferring the initial GRN and
re-learning the GRN after estimation of hidden common
cause(s) pose no difficulty.
For estimating the hidden common cause(s) using EM,

for each time series, we shift according to estimated
delay, and instead of only taking the overlapping parts,
we “expand” each time series, and concatenate them, as
illustrated in Fig. 3.

Results and discussion
In this section, we assess the effectiveness of the pro-
posed algorithm. Since both long time series expression
of large GRN and the knowledge of true GRN are lacking,
we mainly use synthetic data for evaluation. Moreover, to
our knowledge, there are no previous work that infers hid-
den common cause(s) for HO-DBN, so we only compare
our algorithm on incomplete data, with D-CLINDE and
GlobalMIT* on incomplete and complete data.
We have generated three types of synthetic data for eval-

uation: case I) small GRN with one hidden variable and
the bias is known; case II: small GRNwithout hidden vari-
able and the bias is known; case III: large GRN (50 and 100
observed genes) with more than one hidden node and the
bias is unknown. For each case, we generate two types of
data: one long time series where we take prefixes of differ-
ent lengths; and multiple short time series where we use
different number of time series for different total number
of time points. For cases I and II, since the networks are
small, we use GlobalMIT* and D-CLINDE for inferring
initial GRN and re-learning the final GRN; but for case III,
since the networks are large and the number of time points
required for decent performance is also large, we use only
D-CLINDE to avoid long running time. In all three cases,
our proposed algorithm is not given the number of hid-
den variables. The parameters for generating the synthetic
data are summarized in Table 1, and we describe the three
cases in the following sections.

Fig. 4 Illustration of shifting the multiple time series

Lo et al. BMC Bioinformatics (2015) 16:395 Page 9 of 28

Table 1 Parameter settings of synthetic data generation

Parameter Case I, II Case III

Parents (p) 0, 1, 2, 3 —

Children (c) 2, 3, 4, 5 —

Observed genes (n) p + c 50, 100

Hidden nodes (nh) 1 for case I, 5 for n = 50,

II 0 for case 10 for n = 100

pbias 0.65, 0.75, 0.85 0.65, 0.75, 0.85

Number of states 3 3

Maximum delay (d) 4 4

EM Iterations 100 1000

Replicates 20 40

Time points (T) 100, 200, 100, 200, 400, 800, 1000,

400, 800 1200, 1400, 1600

Number of short time series (K) 4, 8, 16, 32 4, 8, 16, 32, 40, 48, 56, 64

pbias known? Yes No

We also attempt to evaluate on real data, but as men-
tioned, due to the lack of long time series expression real
data, it is infeasible to test our algorithm on large GRN, so
we could only demonstrate our algorithm on small GRNs,
but the expression data is still insufficient, so this cannot
be regarded as a thorough evaluation. For this purpose, we
use expression data from [51], whichmeasures the expres-
sion of over 6,000 genes of Saccharomyces cerevisiae using
DNA microarrays, with three different methods of syn-
chronization for studying yeast cell cycle. Together with
previous data from [52] (also included in [51]), there are
4 time series with information shown in Table 2. And
we use YEASTRACT [53] for the GRN. YEASTRACT is
a curated database of over 200,000 transcription regula-
tory associations in Saccharomyces cerevisiae. Since the
GRN is far too large for the available expression data,
we extract a small number of small subnetworks for the
demonstration instead.
In the following, we first describe the performance

metrics, and then the generation of synthetic expres-
sion data once the GRN is given, and then describe
the generation of the synthetic GRN for the different

Table 2 Information of the real data time series

Series Raw time points (Min) Interpolated time points (Min)

alpha every 7 mins from 0 to 119 every 10 mins from 0 to 120

cdc15 10, 30, 50, 70, 80, 90, 100, every 10 mins from 10 to 290
110, 120, 130, 140, 150, 160,
170, 180, 190, 200, 210, 220,
230, 240, 250, 270, 290

cdc28 every 10 mins from 0 to 160 same time points

elu every 30 mins from 0 to 390 every 10 mins from 0 to 390

cases, and the results on the three types of synthetic
data. After that, we describe the preprocessing of the
YEASTRACT subnetworks and the expression data, and
then present the results of our algorithm on the real
data.

Performance metrics
We assess the performance of the inference algorithm on
Links (which is considered correct if and only if both the
gene pair and the direction are correct) andDelays (which
is considered correct if and only if both the link and the
time delay τij are correct). For each aspect, we mainly look
at F-score as an overall measure of performance, given
by F-score= 2∗Recall∗Precision

Recall+Precision , where Recall= TP
TP+FN , Pre-

cision= TP
TP+FP , and TP is the number of true positives,

FP is the number of false positives, FN is the number
of false negatives. From our experience, usually the Links
and Delays are inferred correctly at the same time, rather
than getting one correct but missing the other. This is
quite reasonable, as having a wrong delay may result in
totally different associations, so the link is unlikely to be
correct. Therefore, we focus on Delays, as it implies the
Links.
We still need to address the issue of comparing a pre-

dicted GRN with hidden variables against the true GRN
with hidden variables, because while the hidden vari-
ables in the true GRN are labeled, the indices of the
predicted hidden variable(s) may not be the same as
that in the true GRN. We therefore need to map the
predicted hidden variables to the true GRN before cal-
culating the performance using the above metrics. In
addition, note that for the links to/from a hidden vari-
able, the delays cannot be completely determined. This
is illustrated in Fig. 5, where the delays of links out of
a hidden variable can be increased/decreased, and be
compensated by the same decrease/increase in links into
the hidden variable. Therefore, we may need to try dif-
ferent delay shifts in mapping a predicted hidden vari-
able to true hidden variable, for useful calculation of the
performance.
We try to align each predicted hidden variable to each

of the true hidden nodes, and choose the one with the
most matched links (to/from observed genes only) and
delays (after shifting). And in case of ties, we arbitrar-
ily choose the true hidden variable with the lowest index.
After themapping of predicted hidden variable(s), the per-
formance of the predicted GRN is calculated as described
above.

Generation of synthetic expression data
Given a HO-DBN (the transition network), we generate
expression data by using uniform independent distribu-
tion for the prior network to generate d (the maximum

Lo et al. BMC Bioinformatics (2015) 16:395 Page 10 of 28

Fig. 5 Illustration of shifting the delays for hidden variable

delay) time points (not included in the final expres-
sion data), then generate a time series of the required
length using the conditional distributions in the transi-
tion network. For generating multiple short time series,
the length of each series is uniformly chosen from 20
to 35.

Case I: synthetic small GRN with one hidden node
We first test our proposed algorithm on small GRN where
there is only one hidden node, and the bias pbias is
assumed known.

Network generation
The GRN in this case is illustrated in Fig. 6, where there is
one hidden variable, which has p ≥ 0 parents and c ≥ 2
children. But the algorithm is not given the number of hid-
den variables. For each link, the delay is uniformly chosen
from {1, . . . , d}, where d = 4. Each variable has 3 states
(including the hidden variables), and the inference algo-
rithm uses the maximum number of states of the children
as the estimate of the number of states of any hidden com-
mon cause, so the predicted hidden variables also have 3
states. For each configuration of the parent(s), one state is

Fig. 6 Illustration of the small synthetic network for case I. The hidden
variable has p ≥ 0 parents and c ≥ 2 children

randomly chosen as the dominant state in the conditional
distribution and receives a probability of pbias, and the
remaining states share the probability of 1 − pbias equally.
The different values of the parameters we have tested

are shown in the column Case I, II of Table 1. For each
setting of p, c and pbias, we generate 20 replicates, for a
total of 960 GRNs. For the one long time series case, for
each replicate, we generate expression data with 800 time
points, and then take prefix to get T time points, and out-
put only the expression of the observed genes. And for
the multiple short time series case, for each replicate, we
generate 32 time series, we test using K time series at a
time.

Results
Table 3 shows the median Delays F-score of our proposed
algorithm on case I with D-CLINDE and GlobalMIT* (for
initial GRN and re-learning of the final GRN) using one
long time series of different lengths, and Table 4 shows
the results for using different number of short time series,
where the medians are taken over the 20 replicates in each
setting.
First of all, we see that even for these relatively small

networks, the number of time points required for decent
performance is quite large. This may be due to that the
algorithm does not assume that the number of hidden
common cause is known. Besides, since the dependency in
HO-DBN can be combinatorial (different configurations
of the parents have different conditional distributions for
a node), which may also be the reason that a large sample
is needed.
For large T or K , our proposed algorithm can per-

form adequately (with either D-CLINDE or GlobalMIT*),
except for c = 2, where the performance is more erratic
(e.g. p = 2, c = 2 and pbias = 0.85) and may be poor
even when T = 800. One possible reason is that when
c = 2, there is less information for estimating the hidden
common cause.
Also, the performance of p = 3 is worse than the

corresponding result in p = 2. One possible reason
is that with more parents, it is more difficult to iden-
tify all the potential parents of a hidden common cause
after the first round of EM, because only pairwise asso-
ciation is used in the identification. Moreover, even if
the potential parents have been correctly identified, the
estimation of the hidden common cause in the second
round is difficult, because there are more configurations
for the parents, and consequently more conditional dis-
tributions for the hidden common cause, and therefore
there are less samples in each cell of the contingency
table.
Comparing using D-CLINDE and GlobalMIT* for our

proposed algorithm, the difference in the performance
is small when T or K is large, but usually D-CLINDE

Lo et al. BMC Bioinformatics (2015) 16:395 Page 11 of 28

Table 3 Median delays F-scores of case I using long time series with D-CLINDE and GlobalMIT*

pbias = 0.65 pbias = 0.75 pbias = 0.85

p c T D-CLINDE GlobalMIT* D-CLINDE GlobalMIT* D-CLINDE GlobalMIT*

0 2 100 0.000 0.500 0.500 0.200 0.000 0.000

200 1.000 0.900 0.450 0.667 0.000 0.000

400 0.900 1.000 0.000 0.000 0.000 0.000

800 1.000 1.000 1.000 0.900 0.000 0.000

3 100 0.400 0.400 0.400 0.400 0.367 0.400

200 0.800 0.800 0.733 0.800 0.417 0.733

400 0.800 0.800 0.800 0.800 0.667 0.667

800 0.829 0.800 0.800 0.800 0.800 0.733

4 100 0.310 0.500 0.571 0.667 0.619 0.667

200 0.586 0.667 0.708 0.667 0.750 0.804

400 0.667 0.708 0.750 0.857 0.675 0.708

800 0.889 0.857 0.857 0.857 0.708 0.829

5 100 0.444 0.500 0.667 0.708 0.667 0.667

200 0.633 0.633 0.606 0.667 0.667 0.750

400 0.800 0.739 0.764 0.800 0.697 0.667

800 0.800 0.889 0.817 0.889 0.785 0.739

1 2 100 0.367 0.400 0.400 0.400 0.333 0.400

200 0.000 0.000 0.667 0.733 0.333 0.400

400 0.500 0.800 0.733 0.800 0.143 0.000

800 0.733 0.800 0.733 0.800 0.619 0.733

3 100 0.417 0.571 0.571 0.619 0.571 0.619

200 0.500 0.571 0.750 0.857 0.708 0.536

400 0.804 0.857 0.873 0.873 0.750 0.857

800 0.857 0.857 0.889 0.889 0.508 0.606

4 100 0.286 0.472 0.472 0.571 0.889 0.889

200 0.600 0.667 0.667 0.708 0.861 1.000

400 0.855 0.944 0.667 0.708 0.844 0.889

800 0.909 0.909 0.800 0.817 0.800 0.889

5 100 0.400 0.400 0.606 0.721 0.633 0.721

200 0.633 0.600 0.769 0.800 0.692 0.785

400 0.769 0.833 0.909 0.909 0.615 0.748

800 0.801 0.801 0.916 0.962 0.697 0.909

2 2 100 0.268 0.310 0.333 0.571 0.000 0.000

200 0.367 0.367 0.661 0.857 0.268 0.310

400 0.536 0.667 0.857 0.889 0.571 0.393

800 0.619 0.667 0.889 0.889 0.111 0.125

3 100 0.286 0.286 0.495 0.586 0.472 0.667

200 0.500 0.500 0.667 0.750 0.558 0.606

400 0.422 0.500 0.708 0.775 0.718 0.750

800 0.727 0.775 0.800 0.889 0.800 0.889

4 100 0.348 0.500 0.500 0.667 0.472 0.667

Lo et al. BMC Bioinformatics (2015) 16:395 Page 12 of 28

Table 3 Median delays F-scores of case I using long time series with D-CLINDE and GlobalMIT* (Continued)

200 0.450 0.600 0.608 0.697 0.764 0.800

400 0.586 0.800 0.769 0.871 0.708 0.855

800 0.764 0.817 0.801 0.909 0.727 0.909

5 100 0.413 0.462 0.615 0.690 0.665 0.769

200 0.500 0.620 0.808 0.862 0.690 0.845

400 0.742 0.833 0.857 0.878 0.857 0.923

800 0.838 0.962 0.866 0.923 0.812 0.857

3 2 100 0.236 0.268 0.250 0.500 0.268 0.393

200 0.222 0.250 0.500 0.571 0.286 0.619

400 0.268 0.286 0.697 0.750 0.600 0.708

800 0.444 0.500 0.800 0.861 0.600 0.739

3 100 0.222 0.222 0.400 0.472 0.364 0.573

200 0.307 0.422 0.472 0.573 0.697 0.800

400 0.364 0.500 0.697 0.727 0.727 0.909

800 0.600 0.727 0.727 0.800 0.801 0.909

4 100 0.333 0.348 0.348 0.422 0.500 0.697

200 0.382 0.473 0.552 0.667 0.813 0.833

400 0.445 0.472 0.760 0.895 0.857 0.899

800 0.667 0.785 0.829 0.890 0.829 0.866

5 100 0.388 0.358 0.429 0.481 0.714 0.769

200 0.414 0.615 0.625 0.714 0.812 0.857

400 0.694 0.656 0.706 0.769 0.875 0.933

800 0.708 0.866 0.789 0.857 0.904 0.933

is slightly worse, which is quite reasonable because D-
CLINDE is a simple heuristic.
In short, the results show that our proposed algorithm

can adequately recover hidden common cause in small
GRN, with large enough number of time points.

Case II: synthetic small GRN without hidden node
We also test on small GRN without any hidden variables,
where the algorithm is not given the number of hidden
variables, but the bias pbias is known. The parameters are
the same as in case I, which are shown in the column Case
I, II of Table 1.

Network generation
For each GRN (p, c, pbias and replicate) in case I, we
use GlobalMIT* alone on the (incomplete) data of 800
time points to infer an GRN, which is definitely wrong
as all true links are to/from the hidden variable. If the
inferred GRN is non-empty, it is used; otherwise, a small
GRN of a node in the middle with p parents, and c −
1 children is generated as in case I, but all genes are
labeled as observed. Having obtained the 960 GRNs with-
out hidden nodes, the time series are generated as in
case I.

Results
Table 5 shows the median Delays F-score of our pro-
posed algorithm on case II with D-CLINDE and Glob-
alMIT* (for initial GRN and re-learning of the final
GRN) using one long time series, and Table 6 shows
the corresponding results using multiple short time
series.
The performance of our algorithm using either D-

CLINDE or GlobalMIT* is good whenT ≥ 400 orK ≥ 16,
and sometimes it is good even with T ≥ 200 or K ≥ 8.
Also, in many settings, the F-score of using GlobalMIT*
can reach 1, while D-CLINDE can sometimes reach 1.
Similar to case I, using D-CLINDE is slightly worse than
using GlobalMIT*.
The results show that with adequate number of time

points, our proposed algorithm can infer the GRN cor-
rectly when there are no hidden common cause, and does
not introduce hidden common cause needlessly.

Case III: synthetic large GRN with more than one hidden
node
Besides the above two cases for small GRN, we also test
the more realistic case of larger GRN with more than one
hidden node (but the number is unknown), and that the

Lo et al. BMC Bioinformatics (2015) 16:395 Page 13 of 28

Table 4 Median delays F-scores of case I using multiple short time series with D-CLINDE and GlobalMIT*

pbias = 0.65 pbias = 0.75 pbias = 0.85

p c K D-CLINDE GlobalMIT* D-CLINDE GlobalMIT* D-CLINDE GlobalMIT*

0 2 4 0.000 0.000 0.000 0.250 0.000 0.000

8 0.000 0.000 0.833 0.833 0.000 0.000

16 0.250 0.833 1.000 1.000 0.250 0.250

32 1.000 1.000 0.900 1.000 0.650 0.650

3 4 0.450 0.400 0.667 0.733 0.800 0.800

8 0.733 0.800 0.667 0.733 0.667 0.800

16 0.667 0.800 0.800 0.800 0.667 0.667

32 0.829 0.800 0.829 0.800 0.667 0.800

4 4 0.536 0.619 0.619 0.762 0.762 0.857

8 0.667 0.750 0.750 0.857 0.750 0.750

16 0.750 0.857 0.750 0.804 0.708 0.857

32 0.857 0.929 0.857 0.857 0.750 0.804

5 4 0.558 0.586 0.495 0.586 0.667 0.750

8 0.550 0.619 0.697 0.800 0.667 0.750

16 0.800 0.764 0.889 0.899 0.633 0.739

32 0.889 0.889 0.889 0.889 0.697 0.750

1 2 4 0.400 0.400 0.486 0.533 0.619 0.800

8 0.452 0.533 0.667 0.800 0.619 0.733

16 0.667 0.800 0.667 0.733 0.733 0.800

32 0.775 0.800 0.667 0.733 0.667 0.800

3 4 0.310 0.367 0.571 0.571 0.536 0.667

8 0.571 0.667 0.804 0.857 0.750 0.857

16 0.857 0.857 0.873 0.873 0.804 0.857

32 0.857 0.857 0.829 0.873 0.829 0.873

4 4 0.472 0.500 0.500 0.571 0.800 0.889

8 0.500 0.536 0.667 0.775 0.899 1.000

16 0.697 0.800 0.739 0.775 0.861 1.000

32 0.817 0.899 0.800 0.800 0.899 0.955

5 4 0.545 0.727 0.667 0.823 0.550 0.573

8 0.641 0.667 0.718 0.909 0.780 0.855

16 0.861 0.909 0.845 0.909 0.833 0.909

32 0.899 0.909 0.857 0.916 0.769 0.883

2 2 4 0.286 0.333 0.500 0.571 0.310 0.367

8 0.400 0.400 0.633 0.750 0.125 0.200

16 0.571 0.667 0.750 0.873 0.250 0.333

32 0.586 0.667 0.829 0.944 0.571 0.667

3 4 0.286 0.393 0.495 0.571 0.472 0.536

8 0.389 0.417 0.697 0.889 0.573 0.750

16 0.500 0.571 0.800 0.800 0.800 0.889

32 0.708 0.750 0.775 0.775 0.764 0.861

4 4 0.382 0.444 0.545 0.633 0.600 0.523

8 0.500 0.764 0.727 0.817 0.580 0.697

16 0.748 0.785 0.833 0.909 0.801 0.871

Lo et al. BMC Bioinformatics (2015) 16:395 Page 14 of 28

Table 4 Median delays F-scores of case I using multiple short time series with D-CLINDE and GlobalMIT* (Continued)

32 0.833 0.813 0.909 0.962 0.833 0.909

5 4 0.333 0.431 0.571 0.718 0.678 0.688

8 0.545 0.608 0.775 0.845 0.769 0.812

16 0.667 0.748 0.800 0.923 0.828 0.801

32 0.933 0.923 0.857 0.923 0.857 0.923

3 2 4 0.222 0.250 0.400 0.389 0.250 0.365

8 0.000 0.000 0.422 0.468 0.472 0.675

16 0.310 0.268 0.633 0.750 0.667 0.819

32 0.472 0.500 0.727 0.800 0.667 0.750

3 4 0.222 0.343 0.400 0.500 0.600 0.600

8 0.422 0.500 0.472 0.600 0.606 0.697

16 0.500 0.550 0.641 0.764 0.748 0.855

32 0.573 0.667 0.769 0.817 0.785 0.909

4 4 0.308 0.414 0.445 0.464 0.714 0.727

8 0.429 0.511 0.690 0.727 0.813 0.801

16 0.523 0.586 0.760 0.923 0.785 0.890

32 0.690 0.739 0.800 0.923 0.857 0.899

5 4 0.354 0.388 0.517 0.667 0.667 0.667

8 0.517 0.615 0.607 0.746 0.789 0.857

16 0.533 0.769 0.787 0.857 0.881 0.933

32 0.778 0.857 0.775 0.866 0.833 0.933

bias pbias is unknown. For a network with n observed
genes, we would generate nh = � n

10
 hidden variables.

Network generation
For n observed genes and nh hidden nodes, a maximum of
M0 parents for observed genes, a maximum of d as delay,
we generate a GRN with the structure shown in Fig. 7,
where there are four types of nodes: hidden, parents of hid-
den, children of hidden, and other. The hidden nodes have
a randomnumber of distinct parents and children. Parents
of hidden take (either 1 or 2 of) other as parents; other take
(either 1 or 2 of) any observed genes as parents. After gen-
erating the links, the delays and conditional distributions
are generated as in cases I and II.
The parameters that we have tested are listed in column

Case III of Table 1. For each setting of n and pbias, 40 repli-
cates are randomly generated, for a total of 240 GRNs. For
the expression data, we generate up to 1600 time points
for the long time series case, and up to 64 time series
for the multiple short time series case, to assess the time
points needed for decent performance for networks of size
50 and 100.

Results
Tables 7 and 8 show the median Delays F-score on case
III using one long time series and multiple short time
series respectively, where complete is D-CLINDE alone on

the complete data, which is the unrealistic case that the
expression of all the n + nh nodes are given; hidden is our
proposed algorithm using D-CLINDE on the incomplete
data, which is the more realistic case that the expression
of the nh hidden nodes are not given; and ignoreHidden is
D-CLINDE alone on the incomplete data, which does not
infer hidden common causes. The medians are taken over
the 40 replicates in each setting. We also show the ratio
of hidden over complete as percentage. We have also per-
formed one-sided Wilcoxon signed rank tests on whether
the median F-score of hidden is better than ignoreHidden,
and show the p-values which are smaller than 0.1.
First of all, note that complete can achieve good perfor-

mance when T or K is large, even though D-CLINDE is
only a heuristic. When T ≥ 800 or K ≥ 32, the per-
formance of complete is better than hidden which in turn
is better than ignoreHidden, which is as expected. Also,
hidden can achieve more than 80% of the performance
of complete. But since having complete data is quite unre-
alistic in a real world setting, the main comparison of
interest is between hidden and ignoreHidden, i.e. between
handling or not handling hidden common cause. We see
that hidden is significantly (with low p-value) better than
ignoreHidden once T ≥ 800 and K ≥ 32.
These results show that our proposed algorithm can

recover hidden common causes, for larger GRN, and

Lo et al. BMC Bioinformatics (2015) 16:395 Page 15 of 28

Table 5 Median delays F-scores of case II using long time series with D-CLINDE and GlobalMIT*

pbias = 0.65 pbias = 0.75 pbias = 0.85

p c T D-CLINDE GlobalMIT* D-CLINDE GlobalMIT* D-CLINDE GlobalMIT*

0 2 100 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000

3 100 0.583 0.400 0.900 0.667 0.857 0.667

200 0.800 1.000 0.800 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000 1.000 1.000

4 100 0.500 0.450 0.571 0.571 0.641 0.667

200 0.733 0.889 0.708 0.889 0.718 0.906

400 0.873 1.000 0.873 1.000 0.916 1.000

800 0.944 1.000 0.889 1.000 0.857 1.000

5 100 0.450 0.367 0.333 0.508 0.523 0.404

200 0.667 0.833 0.750 0.857 0.697 0.800

400 0.844 1.000 0.883 1.000 0.857 0.962

800 0.889 1.000 0.916 1.000 0.857 1.000

1 2 100 0.667 0.583 0.697 0.900 0.762 0.833

200 0.929 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 0.733 1.000

800 1.000 1.000 1.000 1.000 0.733 1.000

3 100 0.417 0.472 0.571 0.686 0.733 0.775

200 0.667 0.962 0.800 0.844 0.944 1.000

400 0.873 1.000 0.944 1.000 1.000 1.000

800 0.889 1.000 1.000 1.000 1.000 1.000

4 100 0.310 0.279 0.500 0.432 0.733 0.762

200 0.619 0.873 0.667 0.889 0.845 1.000

400 0.800 1.000 0.899 1.000 0.899 1.000

800 0.971 1.000 0.899 1.000 0.923 1.000

5 100 0.333 0.321 0.369 0.414 0.400 0.422

200 0.437 0.552 0.588 0.800 0.619 0.750

400 0.743 0.923 0.875 1.000 0.753 0.944

800 0.916 0.978 0.923 1.000 0.947 1.000

2 2 100 0.500 0.500 0.472 0.619 0.667 0.733

200 0.667 0.929 0.800 1.000 0.733 1.000

400 0.955 1.000 0.800 1.000 0.785 1.000

800 0.889 1.000 0.889 1.000 0.829 1.000

3 100 0.422 0.450 0.500 0.486 0.586 0.667

200 0.667 0.829 0.800 0.889 0.667 0.857

400 0.800 1.000 0.829 1.000 0.916 1.000

800 0.775 1.000 0.899 1.000 0.955 1.000

4 100 0.254 0.222 0.445 0.586 0.453 0.573

200 0.641 0.667 0.760 0.909 0.710 0.933

Lo et al. BMC Bioinformatics (2015) 16:395 Page 16 of 28

Table 5 Median delays F-scores of case II using long time series with D-CLINDE and GlobalMIT* (Continued)

400 0.866 1.000 0.889 1.000 0.882 1.000

800 0.899 1.000 0.916 1.000 0.889 1.000

5 100 0.250 0.225 0.462 0.446 0.528 0.473

200 0.400 0.500 0.633 0.857 0.703 0.769

400 0.653 0.705 0.899 1.000 0.857 0.950

800 0.806 0.980 0.952 0.980 0.928 1.000

3 2 100 0.250 0.111 0.500 0.500 0.558 0.857

200 0.536 0.829 0.571 0.890 0.861 0.944

400 0.667 0.883 0.800 1.000 0.829 1.000

800 0.804 1.000 0.873 1.000 0.800 1.000

3 100 0.400 0.367 0.500 0.404 0.817 0.690

200 0.690 0.857 0.667 0.906 0.697 0.829

400 0.800 1.000 0.775 1.000 0.857 0.944

800 0.866 1.000 0.906 1.000 0.899 0.928

4 100 0.310 0.250 0.464 0.602 0.444 0.591

200 0.325 0.411 0.667 0.890 0.676 0.873

400 0.641 0.866 0.866 1.000 0.884 0.978

800 0.750 0.937 0.916 1.000 0.894 0.952

5 100 0.238 0.293 0.367 0.408 0.502 0.529

200 0.445 0.517 0.549 0.821 0.552 0.732

400 0.646 0.823 0.814 0.958 0.781 0.923

800 0.824 0.947 0.916 0.985 0.882 0.974

where the number of hidden common causes and the bias
in the conditional distributions are unknown.

Random candidate order in clustering
By default, when clustering the candidates, they are con-
sidered sequentially from smaller index to larger index. As
currently the clustering is a simple greedy algorithm, this
raises the question of whether the order affects the result-
ing networks inferred. For this, we have added the option
of using random order, and for the GRNs in case III, for
each setting of n, pbias, T for one long time series and K
for multiple short time series. We arbitrarily choose repli-
cate 1 out of the 40 replicates, and repeat the inference
using 100 random clustering order. Tables 9 and 10 show
the mean and standard deviation of the Links and Delays
F-score using one long time series and multiple short time
series, respectively. From the results, we see that the F-
scores of using different clustering order are very similar,
and the standard deviations are all less than 0.06. This sug-
gests that the clustering order does not have great effects
on the quality of the resulting networks.

Different number of iterations in EM
The time series of hidden common causes are estimated
using ExpectationMaximization (EM)with random initial

parameters and restarts, but EM may be sensitive to the
initialization. In this subsection we repeat the experiment
in case III using different number of EM iterations, namely
100, 200, 500, 1000, 2000 and 5000, to assess the effect of
different number of EM iterations.
Tables 11 and 12 show the median Delays F-score of

our proposed algorithm using D-CLINDE on case III with
incomplete data using one long time series and multi-
ple short time series respectively, where the number of
EM iterations is varied. From the results, we can see
that the median F-scores are very similar when using
different number of EM iterations, suggesting that EM
has effectively converged. In addition, as mentioned in
the previous subsections, our algorithm on incomplete
data (hidden) has decent performance, which suggests
that EM has converged to a reasonably good (local)
solution.

Small YEASTRACT subnetworks with real data
Preprocessing of subnetworks
YEASTRACT [53] (http://www.yeastract.com/formfind
regulators.php) is accessed to get the regulating TFs of a
list of 149 TFs using the “DNA binding and expression
evidence” option. 392 links involving only 129 TFs are
obtained and we use the “ORF List ⇔ Gene List” utility

http://www.yeastract.com/formfindregulators.php
http://www.yeastract.com/formfindregulators.php

Lo et al. BMC Bioinformatics (2015) 16:395 Page 17 of 28

Table 6 Median delays F-scores of case II using multiple short time series with D-CLINDE and GlobalMIT*

pbias = 0.65 pbias = 0.75 pbias = 0.85

p c K D-CLINDE GlobalMIT* D-CLINDE GlobalMIT* D-CLINDE GlobalMIT*

0 2 4 1.000 1.000 1.000 1.000 1.000 1.000

8 1.000 1.000 1.000 1.000 1.000 1.000

16 1.000 1.000 1.000 1.000 1.000 1.000

32 1.000 1.000 1.000 1.000 1.000 1.000

3 4 0.583 0.500 0.500 0.667 0.929 0.667

8 1.000 1.000 0.900 1.000 1.000 1.000

16 0.800 1.000 1.000 1.000 1.000 1.000

32 0.900 1.000 1.000 1.000 1.000 1.000

4 4 0.367 0.400 0.800 0.775 0.667 0.667

8 0.800 0.889 0.889 1.000 0.800 0.929

16 0.944 1.000 0.889 1.000 0.873 1.000

32 1.000 1.000 0.889 1.000 0.857 1.000

5 4 0.400 0.375 0.545 0.600 0.633 0.633

8 0.750 0.873 0.750 0.889 0.785 0.909

16 0.838 0.899 0.826 0.906 0.857 0.916

32 0.889 1.000 0.916 1.000 0.866 0.967

1 2 4 0.667 0.667 0.800 1.000 0.800 1.000

8 1.000 1.000 0.833 1.000 1.000 1.000

16 0.929 1.000 1.000 1.000 1.000 1.000

32 1.000 1.000 1.000 1.000 1.000 1.000

3 4 0.400 0.333 0.857 0.844 0.829 0.873

8 0.633 1.000 1.000 1.000 0.899 1.000

16 0.889 1.000 1.000 1.000 1.000 1.000

32 0.857 1.000 1.000 1.000 0.916 1.000

4 4 0.367 0.292 0.500 0.750 0.619 0.829

8 0.800 0.800 0.775 0.775 0.769 0.967

16 0.829 1.000 0.929 1.000 0.857 1.000

32 0.941 1.000 0.923 1.000 0.916 1.000

5 4 0.425 0.414 0.445 0.378 0.558 0.627

8 0.533 0.817 0.625 0.801 0.690 0.861

16 0.703 0.940 0.812 0.933 0.817 1.000

32 0.932 0.944 0.899 1.000 0.941 1.000

2 2 4 0.619 0.667 0.583 0.500 0.667 1.000

8 1.000 1.000 0.708 0.929 0.733 1.000

16 0.929 1.000 0.829 1.000 0.829 1.000

32 1.000 1.000 1.000 1.000 0.829 1.000

3 4 0.444 0.286 0.536 0.733 0.667 0.733

8 0.708 0.764 0.800 0.873 0.873 1.000

16 0.857 0.929 0.845 1.000 1.000 1.000

32 0.857 0.967 0.873 1.000 1.000 1.000

4 4 0.297 0.472 0.437 0.646 0.517 0.708

8 0.523 0.667 0.733 1.000 0.800 0.921

16 0.800 0.916 0.906 1.000 0.829 1.000

32 0.906 0.967 0.971 1.000 0.873 1.000

Lo et al. BMC Bioinformatics (2015) 16:395 Page 18 of 28

Table 6 Median delays F-scores of case II using multiple short time series with D-CLINDE and GlobalMIT* (Continued)

5 4 0.286 0.333 0.469 0.541 0.485 0.536

8 0.455 0.600 0.683 0.760 0.686 0.778

16 0.686 0.880 0.894 0.952 0.840 0.935

32 0.777 0.935 0.952 1.000 0.928 1.000

3 2 4 0.417 0.333 0.523 0.633 0.583 0.708

8 0.536 0.804 0.667 1.000 0.873 1.000

16 0.750 0.906 0.882 1.000 0.873 1.000

32 0.750 1.000 0.764 1.000 0.775 1.000

3 4 0.364 0.310 0.472 0.785 0.500 0.697

8 0.633 0.929 0.750 0.928 0.727 0.857

16 0.739 1.000 0.857 1.000 0.844 0.971

32 0.817 1.000 0.840 1.000 0.857 1.000

4 4 0.174 0.191 0.450 0.667 0.528 0.528

8 0.414 0.750 0.739 0.906 0.701 0.912

16 0.558 0.857 0.909 1.000 0.781 0.950

32 0.840 0.916 0.954 1.000 0.909 0.976

5 4 0.216 0.195 0.401 0.400 0.505 0.574

8 0.490 0.578 0.649 0.689 0.732 0.819

16 0.667 0.885 0.791 0.916 0.821 0.947

32 0.819 0.943 0.892 0.969 0.875 0.974

of YEASTRACT to convert the gene names into ORF id’s,
and all 129 id’s appear in the yeast cell cycle [51] data.
For the limited data the GRN is still too large, so we

have chosen 22 subnetworks with sizes and constituent
TFs shown in Table 13. A TF (which has children in
the subnetwork) is chosen to be the hidden variable in
each subnetwork. Since the delays in the links are not

Fig. 7 Illustration of the large synthetic network for case III. Each
hidden variable has up to 3 parents, and up to 5 distinct children. The
parents of hidden variables can only have other genes as parents,
while the other genes can have any observed gene as parents

known, we focus on the performance on Links for the
demonstration.

Preprocessing of expression data
The yeast cell cycle [51] data (http://genome-www.
stanford.edu/cellcycle/) contains 4 time series: alpha,
cdc15, cdc28 and elu, with different lengths and time
points, as shown in the second column of Table 2. We
perform spline interpolation (using the spline() func-
tion in R) to the time points shown in the third column of
Table 2 to make the time points equidistant. Some TFs in
some series are entirely missing, and we fill in with zero.
We rely on the spline interpolation to fill in the value for
other missing values.
Since we are learning discrete HO-DBN, we perform

quantile discretization to discretize the expression data
into 3 states, and have prepared two sets for each sub-
network and each time series: complete which contains
expression of all TFs of the subnetwork; and incomplete
which omits the expression of the chosen hidden vari-
able. Therefore, there are 8 expression datasets for each
subnetwork.

Results
Since the subnetworks are not large, time is not a major
concern, we use our proposed algorithm with D-CLINDE
and GlobalMIT+.We test using one of alpha, cdc15, cdc28
and elu, and also using all 4 series. The number of EM

http://genome-www.stanford.edu/cellcycle/
http://genome-www.stanford.edu/cellcycle/

Lo et al. BMC Bioinformatics (2015) 16:395 Page 19 of 28

Table 7 Median delays F-scores of case III using long time series with D-CLINDE

n nh pbias T Complete (C) Hidden (H) IgnoreHidden H/C p-value

50 5 0.65 100 0.526 0.259 0.339 49.2% —

200 0.723 0.435 0.510 60.2% —

400 0.841 0.590 0.611 70.1% —

800 0.898 0.757 0.647 84.3% 6.37E-12

1000 0.906 0.777 0.660 85.8% 9.09E-13

1200 0.911 0.806 0.662 88.5% 9.09E-13

1400 0.916 0.822 0.660 89.7% 9.09E-13

1600 0.923 0.839 0.660 90.9% 9.09E-13

0.75 100 0.669 0.356 0.455 53.1% —

200 0.812 0.488 0.579 60.1% —

400 0.864 0.676 0.631 78.3% 2.20E-05

800 0.905 0.782 0.643 86.5% 9.09E-13

1000 0.911 0.818 0.636 89.9% 9.09E-13

1200 0.910 0.828 0.629 91.0% 1.85E-08

1400 0.913 0.831 0.635 91.1% 9.09E-13

1600 0.917 0.828 0.634 90.3% 9.09E-13

0.85 100 0.725 0.422 0.520 58.2% —

200 0.823 0.554 0.597 67.4% —

400 0.884 0.702 0.634 79.5% 1.74E-08

800 0.911 0.803 0.641 88.1% 9.09E-13

1000 0.915 0.796 0.638 87.0% 9.09E-13

1200 0.915 0.825 0.629 90.2% 9.09E-13

1400 0.917 0.813 0.629 88.7% 9.09E-13

1600 0.912 0.818 0.625 89.7% 9.09E-13

100 10 0.65 100 0.494 0.290 0.310 58.6% —

200 0.708 0.387 0.494 54.6% —

400 0.824 0.571 0.600 69.3% —

800 0.883 0.715 0.639 81.0% 2.73E-12

1000 0.896 0.758 0.642 84.5% 9.09E-13

1200 0.900 0.790 0.649 87.8% 9.09E-13

1400 0.911 0.796 0.652 87.4% 9.09E-13

1600 0.913 0.801 0.646 87.8% 9.09E-13

0.75 100 0.647 0.362 0.442 56.0% —

200 0.795 0.515 0.577 64.8% —

400 0.864 0.692 0.630 80.1% 8.22E-10

800 0.900 0.784 0.633 87.1% 9.09E-13

1000 0.909 0.794 0.634 87.4% 9.09E-13

1200 0.916 0.805 0.638 87.9% 9.09E-13

1400 0.917 0.817 0.635 89.2% 9.09E-13

1600 0.921 0.827 0.632 89.9% 9.09E-13

0.85 100 0.705 0.419 0.505 59.4% —

200 0.813 0.542 0.582 66.7% —

400 0.883 0.690 0.624 78.1% 1.82E-12

800 0.912 0.766 0.627 84.1% 9.09E-13

1000 0.917 0.784 0.622 85.5% 9.09E-13

1200 0.919 0.778 0.622 84.7% 9.09E-13

1400 0.920 0.798 0.618 86.7% 9.09E-13

1600 0.926 0.790 0.616 85.3% 9.09E-13

Complete is D-CLINDE on the complete data. hidden is our proposed algorithm with D-CLINDE on the incomplete data. ignoreHidden is D-CLINDE on the incomplete data.
p-value is for one-sided Wilcoxon signed rank test on whether the median F-score of hidden is better than ignoreHidden, and entries larger than 0.1 are omitted. H/C is the
ratio of hidden over complete as percentage.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 20 of 28

Table 8 Median Delays F-scores of Case III using Multiple Short Time Series with D-CLINDE

n nh pbias K Complete (C) Hidden (H) IgnoreHidden H/C p-value

50 5 0.65 4 0.570 0.282 0.378 49.5% —

8 0.745 0.426 0.533 57.2% —

16 0.838 0.605 0.609 72.1% —

32 0.898 0.784 0.657 87.3% 9.09E-13

40 0.905 0.813 0.657 89.8% 9.09E-13

48 0.905 0.828 0.659 91.4% 9.09E-13

56 0.916 0.831 0.655 90.7% 9.09E-13

64 0.918 0.828 0.657 90.2% 9.09E-13

0.75 4 0.692 0.363 0.486 52.4% —

8 0.806 0.519 0.599 64.4% —

16 0.871 0.708 0.638 81.2% 1.82E-12

32 0.912 0.786 0.640 86.2% 9.09E-13

40 0.917 0.826 0.641 90.1% 9.09E-13

48 0.919 0.834 0.636 90.8% 9.09E-13

56 0.920 0.853 0.636 92.7% 9.09E-13

64 0.918 0.847 0.626 92.3% 9.09E-13

0.85 4 0.740 0.429 0.535 57.9% —

8 0.829 0.595 0.611 71.8% —

16 0.887 0.728 0.638 82.0% 8.00E-11

32 0.915 0.816 0.637 89.2% 1.82E-12

40 0.924 0.834 0.634 90.2% 9.09E-13

48 0.924 0.821 0.634 88.9% 9.09E-13

56 0.925 0.839 0.629 90.7% 9.09E-13

64 0.922 0.850 0.631 92.3% 9.09E-13

100 10 0.65 4 0.528 0.282 0.335 53.5% —

8 0.725 0.417 0.509 57.6% —

16 0.822 0.577 0.594 70.2% —

32 0.887 0.736 0.644 83.0% 9.09E-13

40 0.894 0.759 0.648 84.9% 9.09E-13

48 0.907 0.777 0.652 85.7% 9.09E-13

56 0.911 0.800 0.654 87.7% 9.09E-13

64 0.915 0.813 0.653 88.9% 9.09E-13

0.75 4 0.676 0.372 0.461 55.0% —

8 0.807 0.525 0.578 65.0% —

16 0.873 0.680 0.630 77.9% 6.93E-10

32 0.910 0.784 0.648 86.2% 9.09E-13

40 0.915 0.813 0.642 88.9% 9.09E-13

48 0.917 0.828 0.643 90.3% 9.09E-13

56 0.922 0.822 0.642 89.2% 9.09E-13

64 0.923 0.836 0.635 90.6% 9.09E-13

0.85 4 0.731 0.428 0.517 58.5% —

8 0.829 0.564 0.591 68.0% —

16 0.884 0.714 0.627 80.8% 9.09E-13

32 0.911 0.772 0.628 84.7% 9.09E-13

40 0.919 0.787 0.622 85.6% 9.09E-13

48 0.921 0.793 0.622 86.1% 9.09E-13

56 0.922 0.786 0.622 85.3% 9.09E-13

64 0.927 0.792 0.620 85.4% 9.09E-13

Complete is D-CLINDE on the complete data. hidden is our proposed algorithm with D-CLINDE on the incomplete data. ignoreHidden is D-CLINDE on the incomplete data.
p-value is for one-sided Wilcoxon signed rank test on whether the median F-score of hidden is better than ignoreHidden, and entries larger than 0.1 are omitted. H/C is the
ratio of hidden over complete as percentage.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 21 of 28

Table 9 Mean and standard deviation of links and delays F-scores of case III using long time series with the proposed algorithm with
D-CLINDE

n nh pbias T LF mean LF s.d. DF mean DF s.d.

50 5 0.65 100 0.279 0.034 0.279 0.033

200 0.447 0.031 0.439 0.033

400 0.597 0.026 0.595 0.025

800 0.749 0.025 0.742 0.025

1000 0.739 0.018 0.739 0.018

1200 0.746 0.021 0.744 0.022

1400 0.750 0.019 0.749 0.018

1600 0.744 0.018 0.744 0.018

0.75 100 0.344 0.035 0.343 0.035

200 0.493 0.040 0.483 0.039

400 0.734 0.047 0.732 0.047

800 0.889 0.030 0.877 0.030

1000 0.898 0.023 0.893 0.024

1200 0.919 0.023 0.919 0.023

1400 0.914 0.015 0.914 0.015

1600 0.901 0.021 0.896 0.021

0.85 100 0.462 0.046 0.461 0.046

200 0.470 0.046 0.469 0.046

400 0.755 0.053 0.755 0.053

800 0.807 0.035 0.807 0.035

1000 0.875 0.043 0.875 0.043

1200 0.865 0.050 0.865 0.050

1400 0.891 0.036 0.891 0.036

1600 0.890 0.038 0.890 0.038

100 10 0.65 100 0.316 0.027 0.312 0.027

200 0.400 0.025 0.398 0.025

400 0.575 0.022 0.573 0.022

800 0.751 0.023 0.749 0.023

1000 0.729 0.018 0.727 0.018

1200 0.827 0.022 0.826 0.022

1400 0.839 0.014 0.839 0.014

1600 0.825 0.019 0.820 0.019

0.75 100 0.444 0.026 0.441 0.026

200 0.569 0.027 0.567 0.028

400 0.758 0.021 0.757 0.021

800 0.759 0.023 0.756 0.023

1000 0.769 0.027 0.768 0.027

1200 0.791 0.035 0.791 0.035

1400 0.829 0.029 0.829 0.029

1600 0.819 0.029 0.817 0.029

0.85 100 0.444 0.025 0.443 0.025

200 0.503 0.031 0.502 0.030

400 0.675 0.028 0.675 0.029

800 0.787 0.019 0.787 0.019

1000 0.774 0.022 0.773 0.023

1200 0.774 0.027 0.774 0.028

1400 0.784 0.024 0.784 0.024

1600 0.789 0.022 0.788 0.022

The results are on the incomplete data, using replicate 1 for each setting of n, pbias and T , with 100 random orders in clustering the candidates. LF is the Links F-score, and DF
is the Delays F-score.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 22 of 28

Table 10 Mean and standard deviation of links and delays F-scores of case III using multiple short time series with the proposed
algorithm with D-CLINDE

n nh pbias K LF mean LF s.d. DF mean DF s.d.

50 5 0.65 4 0.373 0.033 0.368 0.031

8 0.426 0.032 0.421 0.031

16 0.630 0.028 0.628 0.027

32 0.740 0.019 0.734 0.018

40 0.771 0.023 0.763 0.023

48 0.763 0.027 0.760 0.026

56 0.785 0.023 0.782 0.023

64 0.802 0.027 0.789 0.028

0.75 4 0.382 0.036 0.374 0.035

8 0.689 0.029 0.683 0.029

16 0.752 0.031 0.749 0.031

32 0.869 0.032 0.869 0.033

40 0.923 0.033 0.923 0.033

48 0.898 0.032 0.898 0.032

56 0.919 0.022 0.919 0.022

64 0.887 0.023 0.887 0.023

0.85 4 0.352 0.048 0.351 0.048

8 0.499 0.051 0.498 0.050

16 0.673 0.056 0.672 0.057

32 0.808 0.049 0.807 0.048

40 0.850 0.042 0.849 0.042

48 0.832 0.041 0.831 0.040

56 0.870 0.035 0.867 0.035

64 0.890 0.025 0.890 0.025

100 10 0.65 4 0.312 0.029 0.309 0.029

8 0.448 0.025 0.444 0.025

16 0.604 0.027 0.599 0.028

32 0.747 0.029 0.738 0.029

40 0.789 0.025 0.784 0.025

48 0.811 0.022 0.806 0.021

56 0.801 0.026 0.795 0.026

64 0.844 0.024 0.840 0.025

0.75 4 0.365 0.022 0.362 0.022

8 0.552 0.025 0.551 0.025

16 0.678 0.023 0.673 0.023

32 0.813 0.030 0.808 0.029

40 0.848 0.022 0.848 0.022

48 0.848 0.023 0.848 0.023

56 0.862 0.019 0.861 0.019

64 0.849 0.021 0.849 0.021

0.85 4 0.462 0.031 0.460 0.031

8 0.584 0.025 0.584 0.025

16 0.708 0.029 0.708 0.029

32 0.769 0.023 0.769 0.023

40 0.833 0.031 0.829 0.031

48 0.805 0.036 0.801 0.036

56 0.817 0.030 0.813 0.030

64 0.818 0.031 0.814 0.031

The results are on the incomplete data, using replicate 1 for each setting of n, pbias and K , with 100 random orders in clustering the candidates. LF is the Links F-score, and DF
is the Delays F-score.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 23 of 28

Table 11 Median delays F-scores of case III using long time series with the proposed algorithm with D-CLINDE

n nh pbias T em100 em200 em500 em1000 em2000 em5000

50 5 0.65 100 0.259 0.252 0.262 0.259 0.269 0.265

200 0.430 0.420 0.431 0.435 0.426 0.431

400 0.583 0.579 0.590 0.590 0.585 0.585

800 0.753 0.758 0.752 0.757 0.759 0.750

1000 0.774 0.787 0.781 0.777 0.772 0.780

1200 0.801 0.791 0.799 0.806 0.811 0.805

1400 0.815 0.824 0.823 0.822 0.825 0.822

1600 0.831 0.843 0.837 0.839 0.833 0.835

0.75 100 0.361 0.362 0.360 0.356 0.354 0.356

200 0.477 0.484 0.485 0.488 0.486 0.494

400 0.681 0.683 0.673 0.676 0.681 0.681

800 0.789 0.803 0.787 0.782 0.795 0.785

1000 0.809 0.818 0.820 0.818 0.818 0.821

1200 0.821 0.816 0.830 0.828 0.820 0.831

1400 0.827 0.835 0.830 0.831 0.834 0.832

1600 0.824 0.830 0.835 0.828 0.829 0.828

0.85 100 0.412 0.422 0.424 0.422 0.419 0.417

200 0.569 0.565 0.555 0.554 0.555 0.573

400 0.704 0.706 0.712 0.702 0.709 0.702

800 0.806 0.805 0.803 0.803 0.801 0.807

1000 0.794 0.795 0.798 0.796 0.789 0.795

1200 0.818 0.820 0.819 0.825 0.822 0.820

1400 0.824 0.822 0.822 0.813 0.819 0.822

1600 0.821 0.827 0.813 0.818 0.826 0.821

100 10 0.65 1 00 0.291 0.277 0.282 0.290 0.283 0.285

2 00 0.398 0.395 0.400 0.387 0.390 0.396

4 00 0.566 0.575 0.576 0.571 0.571 0.574

8 00 0.722 0.715 0.716 0.715 0.724 0.728

1000 0.751 0.763 0.763 0.758 0.764 0.757

1200 0.783 0.787 0.787 0.790 0.782 0.784

1400 0.797 0.798 0.799 0.796 0.803 0.800

1600 0.792 0.802 0.792 0.801 0.797 0.794

0.75 100 0.360 0.370 0.358 0.362 0.363 0.356

200 0.506 0.504 0.516 0.515 0.508 0.514

400 0.688 0.690 0.689 0.692 0.689 0.700

800 0.780 0.777 0.783 0.784 0.783 0.775

1000 0.802 0.792 0.799 0.794 0.805 0.806

1200 0.811 0.815 0.812 0.805 0.814 0.813

1400 0.818 0.824 0.814 0.817 0.820 0.816

1600 0.832 0.825 0.832 0.827 0.829 0.828

0.85 100 0.412 0.426 0.424 0.419 0.415 0.408

200 0.544 0.540 0.545 0.542 0.540 0.538

400 0.695 0.689 0.690 0.690 0.691 0.692

800 0.771 0.768 0.772 0.766 0.772 0.767

1000 0.780 0.779 0.787 0.784 0.784 0.781

1200 0.776 0.769 0.776 0.778 0.776 0.785

1400 0.793 0.798 0.795 0.798 0.793 0.800

1600 0.791 0.789 0.795 0.790 0.793 0.796

The results are on the incomplete data, with different number of iterations for the EM. em100 is using 100 EM iterations, em200 is using 200 EM iterations and so on.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 24 of 28

Table 12 Median delays F-scores of case III using multiple short time series with the proposed algorithm with D-CLINDE

n nh pbias K em100 em200 em500 em1000 em2000 em5000

50 5 0.65 4 0.308 0.290 0.288 0.282 0.295 0.291

8 0.433 0.442 0.432 0.426 0.421 0.433

16 0.603 0.614 0.609 0.605 0.608 0.604

32 0.784 0.780 0.785 0.784 0.792 0.779

40 0.809 0.819 0.818 0.813 0.818 0.814

48 0.828 0.830 0.831 0.828 0.829 0.836

56 0.833 0.838 0.829 0.831 0.831 0.834

64 0.840 0.833 0.834 0.828 0.837 0.837

0.75 4 0.362 0.374 0.363 0.363 0.365 0.372

8 0.523 0.520 0.513 0.519 0.519 0.523

16 0.706 0.703 0.708 0.708 0.699 0.704

32 0.790 0.785 0.796 0.786 0.793 0.790

40 0.821 0.833 0.827 0.826 0.828 0.824

48 0.838 0.834 0.835 0.834 0.827 0.836

56 0.852 0.855 0.851 0.853 0.852 0.850

64 0.851 0.852 0.855 0.847 0.851 0.856

0.85 4 0.444 0.431 0.425 0.429 0.424 0.423

8 0.591 0.578 0.582 0.595 0.599 0.599

16 0.722 0.726 0.728 0.728 0.735 0.734

32 0.801 0.810 0.806 0.816 0.812 0.810

40 0.825 0.830 0.827 0.834 0.821 0.832

48 0.829 0.825 0.827 0.821 0.826 0.828

56 0.836 0.837 0.833 0.839 0.838 0.841

64 0.848 0.844 0.844 0.850 0.842 0.846

100 10 0.65 4 0.281 0.284 0.277 0.282 0.285 0.280

8 0.424 0.426 0.420 0.417 0.424 0.426

16 0.567 0.574 0.571 0.577 0.575 0.578

32 0.731 0.732 0.730 0.736 0.739 0.736

40 0.755 0.762 0.767 0.759 0.757 0.763

48 0.770 0.776 0.773 0.777 0.779 0.770

56 0.797 0.797 0.805 0.800 0.801 0.794

64 0.812 0.815 0.813 0.813 0.814 0.809

0.75 4 0.371 0.374 0.374 0.372 0.375 0.368

8 0.523 0.525 0.519 0.525 0.528 0.525

16 0.682 0.685 0.680 0.680 0.684 0.681

32 0.795 0.795 0.792 0.784 0.784 0.788

40 0.815 0.816 0.815 0.813 0.820 0.820

48 0.829 0.823 0.830 0.828 0.829 0.826

56 0.823 0.819 0.826 0.822 0.821 0.831

64 0.838 0.837 0.838 0.836 0.836 0.838

0.85 4 0.431 0.430 0.431 0.428 0.432 0.435

8 0.566 0.566 0.568 0.564 0.557 0.565

16 0.701 0.709 0.706 0.714 0.705 0.708

32 0.778 0.782 0.776 0.772 0.781 0.789

40 0.780 0.789 0.788 0.787 0.787 0.787

48 0.790 0.794 0.797 0.793 0.796 0.794

56 0.777 0.785 0.786 0.786 0.788 0.789

64 0.789 0.795 0.790 0.792 0.788 0.792

The results are on the incomplete data, with different number of iterations for the EM. em100 is using 100 EM iterations, em200 is using 200 EM iterations and so on.

Lo et al. BMC Bioinformatics (2015) 16:395 Page 25 of 28

Table 13 YEASTRACT Subnetworks

sn n nL Hidden TF Other TFs

sn1 4 5 MBP1 ASH1, HCM1, SWI4

sn2 5 11 GLN3 DAL80, GAT1, GCN4, UGA3

sn3 6 5 ADR1 IME1, MSN4, PIP2, STE12, USV1

sn4 6 5 ASH1 ACE2, MBP1, SWI5, TOS8, YHP1

sn5 6 6 YAP6 CBF1, CIN5, MOT3, PDR1, TUP1

sn6 6 10 MSN2 ADR1, FHL1, NRG1, SOK2, USV1

sn7 6 12 DAL80 GAT1, GLN3, STE12, SUM1, TEC1

sn8 7 6 ACE2 ASH1, FKH2, GAT1, HMS2, INO4, SFL1

sn9 7 7 MET4 ABF1, HAP4, MET28, MET32, SFP1, TYE7

sn10 7 7 MSN4 ADR1, HAL9, RAP1, ROX1, RPN4, SOK2

sn11 7 7 UME6 GAT1, GSM1, LEU3, MSN2, OAF1, SIP4

sn12 7 8 STE12 MIG2, MSN2, PDR1, PDR3, SOK2, YAP1

sn13 7 9 CIN5 FLO8, IXR1, NRG1, XBP1, YAP1, YAP6

sn14 7 11 MCM1 MET32, STE12, SWI4, SWI5, TYE7, YAP3

sn15 7 11 RAP1 FKH1, FKH2, MCM1, SFP1, STE12, SWI5

sn16 7 14 FLO8 CIN5, HCM1, HMS1, STE12, TEC1, TOS8

sn17 9 12 PDR1 HAP4, MET28, PDR3, RPN4, SFL1, SWI4, YAP5, YAP6

sn18 9 16 RPN4 HSF1, MSN2, MSN4, PDR1, PDR3, PUT3, REB1, YAP1

sn19 10 17 STE12 CBF1, HAP4, MET4, MSN2, PDR1, RAP1, ROX1, SOK2, YAP1

sn20 11 13 ABF1 DAL81, ECM22, HAP1, HMS2, MET4, MGA1, REB1, RTG3, STP1, SUM1

sn21 12 23 STE12 ASH1, FLO8, OAF1, RAP1, RFX1, SFP1, SKO1, SOK2, TEC1, TOS8, XBP1

sn22 13 38 ROX1 FHL1, HAP1, HAP4, HMS1, IXR1, MSN2, MSN4, SKN7, SKO1, STE12, XBP1, YAP1

sn is the subnetwork. n is the number of TFs in the subnetwork, nL is the number of links in the subnetwork. The hidden TF is the one with expression hidden in incomplete
setting of the experiments.

iterations is 1000. The maximum delay is 4. The bias
pbias is unknown. For D-CLINDE, we have tried the score
thresholds 1, 1.3, 2, 2.3 and 3. For GlobalMIT+, we have
tried the α values 0.9, 0.95, 0.99, 0.995 and 0.999.
Table 14 shows the best Links F-score over series used

and parameters tested, where complete is D-CLINDE or
GlobalMIT+ alone on the complete data, hidden is our
proposed algorithm on incomplete data, and ignoreHid-
den is D-CLINDE orGlobalMIT+ alone on the incomplete
data.
When using D-CLINDE, hidden is better than ignore-

Hidden in 19 out of 22 subnetworks, has ties in 2 sub-
networks, and is worse in 1. When using GlobalMIT+,
hidden is better than ignoreHidden in 21 out of 22 sub-
networks, and worse in 1. This shows that our proposed
algorithm helps to infer more accurate GRN from lim-
ited data, because it considers the possibility of hidden
common cause.
Also note that hidden is sometimes even better than

complete, which is counter-intuitive. This suggests that the
given data is insufficient to enable robust GRN inference
even given the complete data. Another possible reason is
that our algorithmmakes the assumption that the children

of a predicted hidden common cause are not linked to
each other, which may help the GRN inference in the lim-
ited data case. If more time points are available, we would
expect the situation to be more like the synthetic data
case, where complete has slightly better performance than
hidden.
As mentioned before, since the real data is very limited,

we cannot draw strong conclusion for the YEASTRACT
subnetworks, but the results suggest that our proposed
algorithm has potential in helping to recover hidden com-
mon causes in real GRN, but likely more data is needed.

Conclusions
In this paper, we have developed an algorithm to infer
from expression data the transition network of a discrete
HO-DBN which may have a small but unknown number
of hidden common causes, with some assumptions on the
conditional distributions in the HO-DBN. We have tested
our algorithm on 3 types of synthetic data: small GRN
with one hidden node, small GRN with no hidden node,
and large GRN with a small but unknown number of hid-
den nodes. Experiment results show that our proposed
algorithm can recover the causal GRN adequately given

Lo et al. BMC Bioinformatics (2015) 16:395 Page 26 of 28

Table 14 Best links F-scores of YEASTRACT subnetworks using our proposed algorithm with D-CLINDE and GlobalMIT+

D-CLINDE GlobalMIT+

sn n nL Complete Hidden IgnoreHidden Complete Hidden IgnoreHidden

sn1 4 5 0.600 0.571 0.571 0.286 0.500 0.267

sn2 5 11 0.533 0.429 0.429 0.453 0.659 0.421

sn3 6 5 0.333 0.571 0.000 0.400 0.364 0.000

sn4 6 5 0.364 0.308 0.000 0.267 0.400 0.000

sn5 6 6 0.400 0.500 0.000 0.250 0.364 0.000

sn6 6 10 0.414 0.387 0.400 0.343 0.480 0.286

sn7 6 12 0.429 0.476 0.430 0.353 0.316 0.267

sn8 7 6 0.571 0.667 0.000 0.444 0.381 0.000

sn9 7 7 0.267 0.588 0.000 0.545 0.444 0.222

sn10 7 7 0.364 0.286 0.000 0.462 0.400 0.000

sn11 7 7 0.250 0.364 0.000 0.286 0.286 0.000

sn12 7 8 0.462 0.667 0.500 0.286 0.308 0.333

sn13 7 9 0.381 0.677 0.133 0.364 0.636 0.000

sn14 7 11 0.250 0.594 0.267 0.250 0.500 0.250

sn15 7 11 0.361 0.411 0.361 0.250 0.316 0.200

sn16 7 14 0.320 0.333 0.222 0.258 0.308 0.207

sn17 9 12 0.222 0.444 0.125 0.325 0.522 0.154

sn18 9 16 0.293 0.404 0.190 0.299 0.333 0.167

sn19 10 17 0.174 0.286 0.182 0.195 0.289 0.195

sn20 11 13 0.214 0.778 0.148 0.200 0.568 0.105

sn21 12 23 0.216 0.250 0.108 0.205 0.321 0.212

sn22 13 38 0.226 0.210 0.195 0.180 0.252 0.183

Complete is D-CLINDE or GlobalMIT+ on the complete data. hidden is our proposed algorithm on the incomplete data (without the hidden node). ignoreHidden is D-CLINDE
or GlobalMIT+ on the incomplete data.

the incomplete data. Using the limited real expression
data and small YEASTRACT subnetworks, we have also
demonstrated the potential of our algorithm to recover
hidden common causes in real data, but more time series
expression data is needed.

Future works
For future work, we intend to develop more sophisti-
cated clustering of candidate genes with hidden common
cause(s), instead of using the simple greedy heuristic. In
addition, we intend to investigate different methods of
specifying the similarity threshold S0. Currently the sim-
ilarity of two time series is measured by the maximum
− log10(p−value) ofG2 tests of the two shifted time series.
Therefore, the threshold S0 is already related to p-value,
and this helps to set an appropriate value for S0. In order
to more formally set the threshold S0, one way would be
to obtain the distribution of the similarity score when two
time series are unrelated, and then a threshold could be
set such that the probability of incorrectly putting two
unrelated time series into the same cluster is controlled.

However, obtaining the theoretical distribution may not
be straightforward. Alternatively, the empirical distribu-
tion of the similarity score could be used. For example,
first randomly choose two time series, then randomly
permute the time points of one series, and calculate the
similarity score. This could be repeated a large number
of times to give an empirical distribution of the simi-
larity score, and an appropriate threshold could be set
accordingly.
Also, we intend to study how to relax the assumptions

on the conditional distributions. Another issue worth pur-
suing is to better decide the number of states of hidden
common causes, for example, the techniques in [49] could
be incorporated.
Also, estimating the bias in the conditional distribu-

tions is an important part of the proposed algorithm, as
we rely on this to predict the genes with hidden common
causes. In this study, we use the maximum probability as
the estimate of the bias for each conditional distribution
(conditional on one configuration of the parent(s)), and
use the median of the estimated biases as the estimate of

Lo et al. BMC Bioinformatics (2015) 16:395 Page 27 of 28

the bias of a gene. If a gene has many configurations of
parents, some cells in the contingency table may not have
enough data points for proper estimation of the condi-
tional distribution, and consequently the estimation of the
bias may be affected. We use median as a simple strat-
egy alleviate this problem, in the hope that more than
half of the conditional distributions of a gene have proper
estimation of bias. One possible alternative strategy is to
use a Bayesian model, where there is an overall unknown
parameter pbias with a prior distribution; and given this
parameter, for each gene and each configuration of the
gene’s parent(s), the condition distribution has a (possi-
bly different) dominate state which has probability pbias,
and other states share the remaining 1−pbias equally; and
these conditional distributions produce the observed time
series expression data. Under this model, we may attempt
to estimate the posterior distribution of the parameter
pbias, given the observed time series expression. This may
better solve the issue of insufficient data points in some
cells of the contingency table for the estimation of the
bias. We intend to study this in more depth as future
work.
In this study, we learn an initial GRN, estimate the hid-

den common cause(s), and re-learn the GRN to give the
final GRN if any hidden common cause is learnt (steps
1 to 4 in Fig. 2). It would be interesting to see if iterat-
ing the steps 2 to 4 would allow more hidden nodes to be
estimated. If the hidden common causes of the observed
genes are estimated sufficiently well after the first itera-
tion, the hidden common cause(s) (if any) of these hidden
common causes might be estimated in the next itera-
tion. However, this may be difficult, because we do not
expect the true hidden time series of common causes to
be recovered from the estimation. More realistically, the
estimated time series may have discrepancy with the true
time series, though may still allow the causal relationships
of the hidden variable with other observed variables to
be recovered adequately. Consequently, further estimating
the hidden common causes of estimated hidden com-
mon causes would be more difficult. This is an interesting
direction to investigate as future work.

Availability of supporting data
The data set(s) supporting the results of this article is(are)
included within the article (and its additional file(s)).

Abbreviations
GRN: gene regulatory network; TF: transcription factor; BN: bayesian Network;
ODE: ordinary differential equation; DBN: dynamic Bayesian Network; HO-DBN:
high-order DBN; MDL: minimum description length; BDe: Bayesian-Dirichlet
equivalent; CI: causal inference; FCI: fast causal inference; EM: expectation
maximization; SEM: structural-EM.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LYL conceived of the initial algorithm for recovering hidden common cause
for HO-DBN, and implemented the algorithm. LYL wrote the first draft of this
paper. MLW, KHL and KSL suggested important refinements to the basic idea,
and helped revise the paper. All authors read and approved the final
manuscript.

Acknowledgements
We thank the anonymous reviewers for their thoughtful comments. This
research is partially supported by GRF Grant (Project References 414413) and
GRF grant (LU310111) from the Research Grant Council of the Hong Kong
Special Administrative Region.

Author details
1Department of Computer Science and Engineering, The Chinese University of
Hong Kong, Shatin, Hong Kong. 2Department of Computing and Decision
Sciences, Lingnan University, Tuen Mun, Hong Kong.

Received: 23 May 2015 Accepted: 11 November 2015

References
1. Mcadams HH, Shapiro L. Circuit simulation of genetic networks. Science.

1995;269(5224):650–6.
2. Swinburne IA, Silver PA. Intron delays and transcriptional timing during

development. Dev Cell. 2008;14(3):324–30.
doi:10.1016/j.devcel.2008.02.002.

3. Pavlov MY, Ehrenberg M. Rate of translation of natural mRNAs in an
optimized in vitro system. Arch Biochem Biophys. 1996;328(1):9–16.

4. Mier-y-Terán-Romero L, Silber M, Hatzimanikatis V. The origins of
time-delay in template biopolymerization processes. PLoS Comput Biol.
2010;6(4):1000726. doi:10.1371/journal.pcbi.1000726.

5. Chen L, Aihara K. Stability of genetic regulatory networks with time delay.
Circ Syst I: Fundamental Theory Appl IEEE Trans. 2002;49(5):602–8.
doi:10.1109/TCSI.2002.1001949.

6. Lewis J. Curr Biol. 2003;13(16):1398–408.
7. Mather W, Bennett MR, Hasty J, Tsimring LS. Delay-induced

degrade-and-fire oscillations in small genetic circuits. Phys Rev Lett.
2009;102(6):068105.

8. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable
synthetic mammalian oscillator. Nature. 2009;457(7227):309–12.
doi:10.1038/nature07616.

9. Karlebach G, Shamir R. Modelling and analysis of gene regulatory
networks. Nat Rev Mol Cell Biol. 2008;9(10):770–80. doi:10.1038/nrm2503.

10. Schlitt T, Brazma A. Current approaches to gene regulatory network
modelling. BMC Bioinformatics. 2007;8(Suppl 6):9.
doi:10.1186/1471-2105-8-S6-S9.

11. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to
infer gene networks from expression profiles. Mol Syst Biol. 2007;3:.
doi:10.1038/msb4100120.

12. Butte AJ, Kohane IS. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. In: Pac Symp
Biocomput. 2000;5:418–29.

13. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R,
Califano A. ARACNE: An Algorithm for the Reconstruction of Gene
Regulatory Networks in a Mammalian Cellular Context. BMC
Bioinformatics. 2006;7(Suppl 1):7. doi:10.1186/1471-2105-7-S1-S7.

14. Altay G, Emmert-Streib F. Inferring the conservative causal core of gene
regulatory networks. BMC Syst Biol. 2010;4(1):132.
doi:10.1186/1752-0509-4-132.

15. Ram R, Chetty M, Dix TI. Causal Modeling of Gene Regulatory Network.
In: Computational Intelligence and Bioinformatics and Computational
Biology, 2006. CIBCB ’06. 2006 IEEE Symposium On. IEEE; 2006. p. 1–8.
doi:10.1109/CIBCB.2006.330982, http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=4133164&filter=AND
%28p_Publication_Number:4133138%29.

16. Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to
analyze expression data. J Comput Biol.;7(3-4):601–20.

17. Kuo HC, Tsai PC, Huang J-P. Finding Time-Delayed Gene Regulation
Patterns from Microarray Data. In: Hybrid Intelligent Systems, 2009. HIS

http://dx.doi.org/10.1016/j.devcel.2008.02.002
http://dx.doi.org/10.1371/journal.pcbi.1000726
http://dx.doi.org/10.1109/TCSI.2002.1001949
http://dx.doi.org/10.1038/nature07616
http://dx.doi.org/10.1038/nrm2503
http://dx.doi.org/10.1186/1471-2105-8-S6-S9
http://dx.doi.org/10.1038/msb4100120
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1186/1752-0509-4-132
http://dx.doi.org/10.1109/CIBCB.2006.330982
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4133164&filter=AND%28p_Publication_Number:4133138%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4133164&filter=AND%28p_Publication_Number:4133138%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4133164&filter=AND%28p_Publication_Number:4133138%29

Lo et al. BMC Bioinformatics (2015) 16:395 Page 28 of 28

’09. Ninth International Conference On, vol. 1. IEEE; 2009. p. 117–22.
doi:10.1109/HIS.2009.31.

18. Maucher M, Kracher B, Kühl M, Kestler HA. Inferring Boolean network
structure via correlation. Bioinformatics. 2011;27(11):1529–36.
doi:10.1093/bioinformatics/btr166.

19. Äijö T, Lähdesmäki H. Learning gene regulatory networks from gene
expression measurements using non-parametric molecular kinetics.
Bioinformatics. 2009;25:2937–44. doi:10.1093/bioinformatics/btp511.

20. Li Z, Li P, Krishnan A, Liu J. Large-scale dynamic gene regulatory network
inference combining differential equation models with local dynamic
Bayesian network analysis. Bioinformatics (Oxford, England). 2011;27(19):
2686–91. doi:10.1093/bioinformatics/btr454.

21. Tienda-Luna IM, Huang Y, Yin Y, Padillo DPR, Perez MCC. Uncovering
gene regulatory networks from time-series microarray data with
variational Bayesian structural expectation maximization. EURASIP J
Bioinformatics Syst Biol. 2007;2007(71312):14. doi:10.1155/2007/71312.

22. Vinh NX, Chetty M, Coppel R, Wangikar PP. GlobalMIT: learning globally
optimal dynamic bayesian network with the mutual information test
criterion. Bioinformatics. 2011;27(19):2765–6.

23. Chickering DM. Learning Bayesian networks is NP-complete. In: Learning
from Data. New York: Springer; 1996. p. 121–30.

24. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Advances to Bayesian
network inference for generating causal networks from observational
biological data. Bioinformatics. 2004;20(18):3594–603.
doi:10.1093/bioinformatics/bth448, http://bioinformatics.oxfordjournals.
org/content/20/18/3594.full.pdf+html.

25. Xing Z, Wu D. Modeling Multiple Time Units Delayed Gene Regulatory
Network Using Dynamic Bayesian Network. In: Proceedings of the Sixth
IEEE International Conference on Data Mining - Workshops, ICDMW ’06.
Washington, DC, USA: IEEE Computer Society; 2006. p. 190–5.
doi:10.1109/ICDMW.2006.120.

26. Li Y, Ngom A. The max-min high-order dynamic Bayesian network
learning for identifying gene regulatory networks from time-series
microarray data. In: Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), 2013 IEEE Symposium On. IEEE; 2013.
p. 83–90.

27. Dojer N. Learning Bayesian networks does not have to be NP-hard. In:
Mathematical Foundations of Computer Science 2006. Berlin Heidelberg:
Springer; 2006. p. 305–14.

28. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):
461–4.

29. Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks:
The combination of knowledge and statistical data. Mach Learn.
1995;20(3):197–243.

30. De Campos LM. A scoring function for learning bayesian networks based
on mutual information and conditional independence tests. J Mach Learn
Res. 2006;7:2149–87.

31. Xuan N, Chetty M, Coppel R, Wangikar PP. Gene regulatory network
modeling via global optimization of high-order dynamic bayesian
network. BMC Bioinformatics. 2012;13(1):131.

32. Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse
engineering of gene networks from time-course data by an information
theoretic approach. BMC Bioinformatics. 2010;11(1):154.
doi:10.1186/1471-2105-11-154.

33. ElBakry O, Ahmad MO, Swamy MNS. Inference of Gene Regulatory
Networks with Variable Time Delay from Time-Series Microarray Data.
Comput Biol Bioinformat IEEE/ACM Trans. 2013;10(3):671–87.
doi:10.1109/TCBB.2013.73.

34. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc
Ser B. 1994;58:267–88.

35. Lo LY, Leung KS, Lee K-H. Inferring Time-Delayed Causal Gene Network
using Time-series Expression Data. Comput Biol Bioinformatics IEEE/ACM
Trans. 2015;12(5):1169–82. doi:10.1109/TCBB.2015.2394442.

36. Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search, 2nd
edn. Cambridge, MA, USA: The MIT Press; 2001.

37. Glymour C, Spirtes P. Latent variables, causal models and overidentifying
constraints. J Econometrics. 1988;39(1):175–98.

38. Pearl J. Causality: Models, Reasoning, and Inference: Cambridge University
Press; 2000.

39. Eichler M. Graphical modelling of multivariate time series with latent
variables. Technical report 2005.

40. Pellet JP, Elisseeff A. Finding latent causes in causal networks: an efficient
approach based on Markov blankets. In: Advances in Neural Information
Processing Systems; 2009. p. 1249–1256.

41. Jalali A, Sanghavi S. Learning the Dependence Graph of Time Series with
Latent Factors. In: Proceedings of the 29th International Conference on
Machine Learning (ICML-12); 2012. p. 473–480.

42. Hyttinen A, Hoyer PO, Eberhardt F, Järvisalo M. Discovering Cyclic Causal
Models with Latent Variables: A General SAT-Based Procedure. In:
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence, Bellevue, WA, USA, August 11-15, 2013; 2013.

43. Silva R. Automatic discovery of latent variable models. PhD thesis. 2005.
44. Silva R, Scheines R, Glymour C, Spirtes P. Learning the structure of linear

latent variable models. J Mach Learn Res. 2006;7:191–246.
45. Anandkumar A, Hsu D, Javanmard A, Kakade S. Learning linear bayesian

networks with latent variables. In: Proceedings of The 30th International
Conference on Machine Learning; 2013. p. 249–57.

46. Boyen X, Friedman N, Koller D. Discovering the hidden structure of
complex dynamic systems. In: Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.; 1999. p. 91–100.

47. Elidan G, Lotner N, Friedman N, Koller D. Discovering hidden variables: A
structure-based approach In: Leen T, Dietterich T, Tresp V, editors. NIPS,
vol. 13. MIT Press; 2001. p. 479–85.

48. Friedman N. The Bayesian structural EM algorithm. In: Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1998. p. 129–138.
http://dl.acm.org/citation.cfm?id=2074110.

49. Elidan G, Friedman N. Learning the dimensionality of hidden variables. In:
Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.;
2001. p. 144–51. http://dl.acm.org/citation.cfm?id=2074041.

50. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete
data via the EM algorithm. J R Stat Soc Series B (methodological).
1977;39(1):1–38.

51. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, et al.
Comprehensive identification of cell cycle-regulated genes of the yeast
Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell.
1998;9(12):3273–97.

52. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L,
et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol
Cell. 1998;2(1):65–73.

53. Teixeira MC, Monteiro PT, Guerreiro JF, Gonçalves JP, Mira NP, dos
Santos SC, et al. The YEASTRACT database: an upgraded information
system for the analysis of gene and genomic transcription regulation in
Saccharomyces cerevisiae. Nucleic Acids Res. 2014;42(D1):161–6.
doi:10.1093/nar/gkt1015, http://nar.oxfordjournals.org/content/42/D1/
D161.full.pdf+html.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1109/HIS.2009.31
http://dx.doi.org/10.1093/bioinformatics/btr166
http://dx.doi.org/10.1093/bioinformatics/btp511
http://dx.doi.org/10.1093/bioinformatics/btr454
http://dx.doi.org/10.1155/2007/71312
http:dx.doi.org/10.1093/bioinformatics/bth448
http://bioinformatics.oxfordjournals.org/content/20/18/3594.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/20/18/3594.full.pdf+html
http://dx.doi.org./10.1109/ICDMW.2006.120
http://dx.doi.org/10.1186/1471-2105-11-154
http://dx.doi.org/10.1109/TCBB.2013.73
http://dx.doi.org/10.1109/TCBB.2015.2394442
http://dl.acm.org/citation.cfm?id=2074110
http://dl.acm.org/citation.cfm?id=2074041
http://dx.doi.org/10.1093/nar/gkt1015
http://nar.oxfordjournals.org/content/42/D1/D161.full.pdf+html
http://nar.oxfordjournals.org/content/42/D1/D161.full.pdf+html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Gene network inference
	Hidden common cause
	Objective

	Methods
	Model and data
	Initial GRN
	D-CLINDE
	GlobalMIT+ and GlobalMIT*

	Identification of genes with hidden common cause
	Estimation of hidden common cause(s)
	Clustering the candidates
	Estimating the hidden common cause by expectation maximization

	Re-learn the GRN after estimation of hidden common cause(s)
	Handling multiple time series data

	Results and discussion
	Performance metrics
	Generation of synthetic expression data
	Case I: synthetic small GRN with one hidden node
	Network generation
	Results

	Case II: synthetic small GRN without hidden node
	Network generation
	Results

	Case III: synthetic large GRN with more than one hidden node
	Network generation
	Results

	Random candidate order in clustering
	Different number of iterations in EM
	Small YEASTRACT subnetworks with real data
	Preprocessing of subnetworks
	Preprocessing of expression data
	Results

	Conclusions
	Future works

	Availability of supporting data
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

