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Abstract

Background: Availability of affordable and accessible whole genome sequencing for biomedical applications poses
a number of statistical challenges and opportunities, particularly related to the analysis of rare variants and sparseness
of the data. Although efforts have been devoted to address these challenges, the performance of statistical methods
for rare variants analysis still needs further consideration.

Result: We introduce a new approach that applies restricted principal component analysis with convex penalization
and then selects the best predictors of a phenotype by a concave penalized regression model, while estimating the
impact of each genomic region on the phenotype. Using simulated data, we show that the proposed method
maintains good power for association testing while keeping the false discovery rate low under a verity of genetic
architectures. Illustrative data analyses reveal encouraging result of this method in comparison with other commonly
applied methods for rare variants analysis.

Conclusion: By taking into account linkage disequilibrium and sparseness of the data, the proposed method
improves power and controls the false discovery rate compared to other commonly applied methods for rare variant
analyses.
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Background
Despite success in detecting associations of common vari-
ants with complex traits (www.genome.gov/gwastudies/),
it has proven difficult to elucidate a comprehensive pic-
ture of the genetic architecture of risk factor and disease
traits without considering the effects of both rare and
common variants via whole exome or genome sequencing.
Decreasing costs and increasing quality havemade discov-
ery and genotyping of rare variants, which refer to variants
with minor allele frequency (MAF) less than 0.05, more
accessible across a large proportion of the genome and in
large sample sizes. As a result of rapid expansion of human
populations, there are very large numbers of rare variants
segregating and these rare variants are relatively recent in
origin [1, 2]. Detecting genotype-phenotype associations
and identifying novel loci having rare variant-phenotype
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associations are challenging since single-variant based
statistical methods are inappropriate in this context due to
the very large number of alleles and their low frequency.
Furthermore, no or minimal effects of the majority of rare
variants on a particular phenotype leads to a low signal-to-
noise ratio and consequently underfitting with multiple-
variant models. Hence, there is considerable interest in
statistical methods that combine information across mul-
tiple variants, and thus reduce the cost of the large degrees
of freedom in multivariate tests or adjustment for exten-
sive multiple testing [3–9]. However simply combining
information by pooling or collapsing does not take into
account the direction of the variants’ effects on a phe-
notype and alternative methods have been proposed that
address this limitation (see, e.g. [10–17]). Furthermore,
inclusion of large numbers of correlated variants may lead
to overestimation.
Transitioning from common variant analyses to rare

variant analyses creates three challenges related to sparse
data [18]. First, within an individual personal genome, the
number of sites that differ from the reference genome
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is small relative to the total number of bases. Second,
sequence data, unlike array-based genotype data, contain
a large number of rare variants. In fact, about half of
the variant alleles in a study sample are seen only one
or two times [19]. And third, only a small subset of the
variable sites is expected to influence a given trait of inter-
est, and the rest is expected to be neutral. This study
presents a statistical and computational method tailored
for sparse data and how it can be applied to whole genome
sequence data to promote novel gene and rare variant
discovery. We introduce a new method called Convex-
Concave Rare variant Selection (CCRS), which includes
both convex and concave penalization. We leverage the
fact that rare variants data have low intrinsic dimension-
ality and are sparse. Hence, we project the variants into a
full rank space with new coordinates in order to enhance
information in new predictors comparing with original
variants. We obtain these new coordinates using princi-
pal component analysis that includes a convex penalty to
incorporate sparsity assumption. The CCRS improves the
performance of sparse principal component (SPC) based
method [20] in the context of rare variants analysis by
selecting the components based on their degree of asso-
ciation with a complex trait which is appropriate for rare
variant analysis. To this end, we use a concave penalized
regression model to select the most promising variants
while estimating their effect simultaneously.

Method
The CCRS method is applicable for all variants, but in
this presentation, we focus on the analysis of rare variants
because they pose special opportunities (i.e. large effects
sizes) and challenges (i.e. sparsity). Assume we have
detected and genotyped m rare variants X = (x1, . . . , xm)

in a sample of n individuals having a quantitative trait
y = (y1, . . . , yn) measured on each individual. In a typ-
ical whole exome or genome sequencing scenario, m is
several orders ofmagnitude larger than n. To combat over-
determination, the typical analysis considers a subset of
the variables at a time defined by physical proximity (e.g. a
window) instead of functional characteristic (e.g. an anno-
tated gene or enhancer element) because the vast major-
ity of the rare variants are in noncoding regions in the
genome. Interpretation of the results requires adjusting
for multiple comparisons using accepted experiment-wise
error or false discovery rate methods. Assume for the kth
subset of X denoted by Xk = {xjk}pj=1 where p < n, we
have

y = α + Xkβk + Tθ + ε, ε ∼ N(0,�) (1)

where ε = (ε1, . . . εn) is an error vector, � is an n × n
diagonal matrix; α is the overall mean; T is an n × q
covariate matrix, which includes non-genetic predictors
such as age, sex and race; βk and θ are p-vector of genetic

effects and q-vector of non-genetic effects, respectively.
Although model (1) does not face the n � p prob-
lem, the data lie in a lower-dimensional subspace due to
dependency among rare variants [21, 22] (i.e. linkage dise-
quilibrium, LD) and coefficients are sparse because a large
proportion of variants have small or no effects on the phe-
notype(s) of interest. Here, we introduce a new approach
for rare variants analysis to address these two issues; LD
and sparsity.

The CCRS approach
In rare variant analyses, the design matrix is more likely to
be singular because of the LD structure in the population
[21, 22]. In addition due to low allele frequencies, there
is little information about the association of each individ-
ual variant with a phenotype. Hence, applying a penalized
regression model might not lead to identifying the true
set of variants or genomic regions with nonzero effects.
To bypass this difficulty, we project the genotype data into
full rank space in order to reparameterize the regression
model. Principal component analysis (PCA) is an appro-
priate tool for addressing collinearity and utilizes the low
rank structure of the covariance matrix. One drawback
of PCA is its lack of straight forward interpretability.
However, in rare variant analyses each single variant is
uninformative and there is a need to aggregate informa-
tion in a region in order to identify association with the
trait of interest. An issue of concern when applying PCA
in the context of rare variants is that PCAmay lead to new
coordinates that include many non-influential variants
due to sparseness. Accounting for such sparsity facilities
identification of phenotype-influencing factors in each of
the coordinates and also improves interpretability of the
result because of the sparse loading matrix [23–25]. To
accomplish this, we obtain a full rank approximation to
the matrix X as

X ≈ Un×rDr×rVr×p

by imposing constraints on the columns of V and U
similar to [20],

‖ vj‖22 ≤ 1 and ‖ vj ‖1≤ c (2)

‖ uj‖22 ≤ 1 and u1 ⊥ . . . ⊥ ur (3)

where r is the rank of X, which is smaller than min(n, p);
‖ . ‖a denotes La norm; and D = {dj}rj=1 is a diago-
nal matrix of eigenvalues of the matrix X such that d1 ≥
d2 ≥ . . . ≥ dr ; vj and uj are the jth columns of V
and U respectively. The L1 norm penalization is equiva-
lent to

∑
r | vij |, where vij is ijth entry of V, provides

sparse principal components, UD. This is an optimiza-
tion problem equivalent to maximizing uTj Xvj respect to
uj and vj under constraint (2) and (3). This biconvex prob-
lem can be readily solved [26]. Therefore, we first fix uj
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and obtain vj when c is in the set of feasible solution
{c | 1 < c <

√p}. We then obtain optimum solution of
uj when ‖ uj‖22 ≤ 1 and for j > 1, uj ⊥ u1,u2, . . . ,uj−1.
The optimal value of c, which determines the level of
sparsity, can be obtained through a cross validation
approach [27, 28].
By projecting data into a lower dimensional space, we

reduce the number of predictors in the model to the
rank of the design matrix, which increases the degree
of freedom for hypothesis test and aggregates informa-
tion into fewer predictor variables which helps alleviate
one aspect of the low allele frequency challenge. These
two features improve the power of identifying promis-
ing genetic regions influencing a phenotype of interest
(see below).
In this context, it is not appropriate to select only the

first few principal components as is usual in many appli-
cations, but rather we select the PCs based on their
degree of association with the phenotype. To simultane-
ously measure the genotype-phenotype association and
carry out variable selection, we consider a linear regres-
sion model including a concave penalization with loss
function

1
2

‖ y − Zγ − Tθ ‖22 + ν ‖ γ ‖κ
1 (4)

where Z = UD indicates a matrix of computed PCs with
corresponding effect size γ , κ ∈ (0, 1) and regularization
parameter ν ∈ R

+. Without loss of generality, hereafter,
we assume the overall mean is zero.
This model is a form of Bridge regression and naturally

yields sparse estimate for γ , in the sense that some of com-
ponents of γ (κ ,ν), may be explicitly shrunk to zero [29, 30].
The choice of κ < 1 leads to nonconcave minimization
problems (see, e.g., [30–32] ) and provides a much sparser
solution than the well-known penalized regression, lasso,
with κ = 1 [33].

Result
A simulation study
To evaluate the performance of the CCRS method, we
randomly identified 1000 regions from a real whole
genome sequence data set available from phs000668 study
in dbGAP (http://www.ncbi.nlm.nih.gov). Each region
includes 50 variants (50,000 rare variants total) sequenced
for 1456 individuals. Based on our experience, we have
found that 50 variants are appropriate to capture the
LD structure. As an example, Fig. 1 represents this LD
structure for two regions of the genome.
We considered six different phenotypic effect scenar-

ios (Table 1). We first randomly split the set of regions
into two subsets to be influential regions and nonin-
fluential regions. We then randomly selected 10 % of
variants in each influential region to be causal vari-
ants with effect size +1 for Model-1 and Model-3
and with effect size ±1 for Model-2 and Model-4.
In Model-5 and Model-6, the number of causal vari-
ants in a region is increased to 20 % of the total
variants with different effect sizes randomly selected
from U(0.5, 1) and {U(−1,−0.5), U(0.5, 1)}, respectively,
where U denotes uniform distribution. Hence, we con-
sidered models with the same and also different effect
directions.
To obtain a better understanding about the effect of

LD on the result of the analysis, we selected variants
based on their correlations. In Model-1 and Model-2, the
causal variants are correlated with some neutral variants
in their regions but in Model-3, Model-4 they are uncor-
related. For Model-5 and Model-6, both correlated and
uncorrelated variants are selected (10 % of each).
In rare variants analysis, we are interested in identi-

fying regions with significant effects on the phenotype
corresponding to the following set of hypotheses for each
region

H0 : ∀j γj = 0 verses H1 : ∃j s.t.γj 
= 0.

Fig. 1 LD among variants with MAF< .05 in two different regions of the genome

http://www.ncbi.nlm.nih.gov
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Table 1 Six genotype effect scenarios considered in simulation
studies

Model-1: 10 % of variants in influential regions are causal with effect size
+1, while each one is correlated with some neutral variants in
their region.

Model-2: 10 % of variants in influential regions are causal with effect size
±1, while each one is correlated with some neutral variants in
their region.

Model-3: 10 % of variants in influential regions are causal with effect
size+1, while they are uncorrelated with other variants in their
region.

Model-4: 10 % of variants in influential regions are causal with effect
size±1, while they are uncorrelated with other variants in their
region.

Model-5: 20 % of variants in influential regions are causal with effect size
selected from U(0.5, 1), while 10 % are correlated and 10 %
are uncorrelated with other causal and neutral variants in their
region.

Model-6: 20 % of variants in influential regions are causal with effect
size selected from U(−1,−0.5) and U(0.5, 1) while 10 % are
correlated and 10 % are uncorrelated with other causal and
neutral variants in their region.

To test these hypotheses, we calculated the likelihood
ratio of the selected model based on CCRS to the Null
model, which does not include genotype variants in the
model.
We evaluated the performance of the CCRS method

compared to four other commonly applied methods:
Collapsing [8] denoted here as Col, CAST [3], SKAT-O
[17] and sparse principal regression (SPC) [20]. The col-
lapsing method generates a binary variable for each region
to represent whether the minor allele is observed. It then
tests the association between the traits level and the new
binary variable I{∑j xj>0} through y = α + I{∑j xj>0}β +
Tθ + ε regression model. The CAST method sums over
all variants in the region and leads to y = α +

(∑
j xj

)
β +

Tθ + ε. SKAT-O is a score based test, (y − μ̂)TPρ(y − μ̂)

when βk in (1) follows an arbitrary distribution with mean
0 and variance τ and pairwise correlation ρ between dif-
ferent βjks. Here, μ̂ is the predicted mean of y under H0,
Pρ = XkRρXT

k is an n × n kernel matrix, Rρ = (1 − ρ)I +
ρ11T where I is an p × p compound symmetric matrix,
and 1T = (1, . . . , 1)T .
To examine the impact of significance level on the false

and true discovery rates, we considered both α = 0.01
and 0.05 and calculated false discovery rate (FDR) and true
positive discovery rate (TPR) defined as

FDR = E[F/R | R > 0]P[R > 0] ,
TPR = E[T/(M − R) | (M − R) > 0]P[ (M − R) > 0] ,

where F is the number of false positives; T is the num-
ber of true discoveries; R is the total number of significant
regions; andM is the total number of regions.

To select the best model based on the CCRS method,
we set ν = 0.01 and κ = 0.5 after calculating BIC
of the model over for different values of ν in {0.001,
0.005, 0.01, 0.02, 0.05}. Here, BIC of the model is defined
as

BIC(ν) = log{‖ y−Zγ̂ (ν) −Tθ̂(ν)‖22/n} + log(n)d(ν)/n

where d(ν) is the number of effective parameters, γ̂ and θ̂

minimize (2.4) with a given ν [34]. A larger penalty param-
eter ν might be applied for problems with larger number
of variants in each region.
The results of the simulation study for Model-1 and

Model-2 are shown in Fig. 2. The Col method does not
have sufficient power to detect the associated regions.
The CAST method shows better performance at the level
α = 0.05, when the direction of effects are the same. At
the level α = 0.05, the CCRS method shows better per-
formance than SKAT-O when the direction of effects are
different. At the level α = 0.01, the CCRS and SKAT-O
show nearly the same performance. It is clear from the
figure that the CCRS method improves performance over
the SPC method.
Figure 3 shows the result of simulation analysis for

Model-3 andModel-4. The CASTmethod forModel-3 and
the Col method for bothModel-3 andModel-4 show poor
performance. In both models, the CCRS shows notice-
ably better performance in both α levels. The influential
regions in Model-1 through Model-4 have the same effect
sizes on the phenotype. Hence, comparing Figs. 2 and 3
provides insight into understanding the influence of LD
between causal variants and neutral variants on the power
and accuracy of selection. The FDR of the Col and CAST
methods shows the largest differences between these two
figures. The FDR of CCRS is robust to the correlation
among causal and neutral variants in comparison to the
other methods.
Figure 4 shows the result of analysis of Model-5 and

Model-6 which include both correlated and uncorrelated
effective variants. SKAT-O shows smaller FDR at the level
α = 0.05 in the left panel and slightly smaller TPR than
CCRS, although at level α = 0.01 CCRS shows better
performance in terms of FDR and TPR. When the direc-
tions of effects are different (Model-6), right panel, CCRS
outperforms the other methods.
The result of this simulation study shows that the CCRS

performs better and more robust than other methods
under a variety of genetic architectures, and it is much
more prominent when the causal variants are not cor-
related with neutral variants in the region. Neglecting
the presence of LD leads to overestimation of the overall
effect of the regions. Although this overestimation might
increase the power of detecting a region with some small
effects that are correlated with some neutral variants,
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Fig. 2 FDR vs. TPR ofModel-1 in left panel, andModel-2 in right panel, for α = 0.01(•) and α = 0.05(�), compare the CCRS performance with
commonly applied methods, SPC, Col, CAST, SKAT-O

it increases the risk of missing more promising regions
in procedure of multiple comparison of hypotheses
testing.

Real data analysis
We analyzed sequencing data from the Atherosclero-
sis Risk in Communities (ARIC) study [35]. The data
are described more fully in [19]. Briefly, 496 African-
American individuals were whole genome sequenced at
an average depth of 6.3-fold using an Illumine HiSeq 2000
and, after alignment, approximately 31 million high qual-
ity variants were called using SNPTools. We present here
the result of an association analysis of rare and low fre-
quency variants (MAF ≤ 0.05) with log transformed

Apolipoprotein A1 levels (ApoA1). ApoA1 is a component
of high density lipoprotein (HDL), which is associated
with reduced risk of coronary heart disease [36, 37]. The
protein promotes lipid efflux, including cholesterol, from
tissues to the liver for excretion [38].
The genotype data includes 949,986 rare variants that

are mostly in noncoding regions in the genome [19].
Therefore, we used a sliding window approach to define
physical proximity (window). There are approximately 38
thousand consecutive windows each including 50 rare
variants and stepping 25 variants until the next win-
dow. Therefore, by design, the windows overlap and the
results of consecutive windows are not independent. To
detect associated regions potentially influencing plasma

Fig. 3 FDR vs. TPR ofModel-3 in left panel, andModel-4 in right panel, for α = 0.01(•) and α = 0.05(�), compare the CCRS performance with
commonly applied methods, SPC, Col, CAST, SKAT-O
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Fig. 4 FDR vs. TPR ofModel-5 in left panel, andModel-6 in right panel, for α = 0.01(•) and α = 0.05(�), compare the CCRS performance with
commonly applied methods, SPC, Col, CAST, SKAT-O

ApoA1 levels, we used SPC, SKAT, SKAT-O, CAST and
Col methods in addition to the CCRS method introduced
here.
To define the threshold for statistical significance taking

into account multiple hypothesis testing, we ran 100,000
permutation test over 100 windows. Based on this thresh-
old, 10−6, we detected one significantly associated region
by the CCRS method. Figure 5 shows the p-values of 80
windows around this region. All of the approaches except
CAST and Collapsing test have a peak in this region. The
figure shows that the CCRSmaintains power for detecting
phenotype-influencing region while keeping the p-value
of the null or neutral regions small. This is an important
property of CCRS that controls the false discovery rate.
The region contains the gene, FAM78B, which is

expressed at high levels in myocytes, fibroblasts,

endothelial cells. Little is known about the function of
FAM78B. However, within the promoter for FAM78B,
three binding sites for the transcription factor PPARG
and two binding sites for the transcription factor HNF1A
have been identified (http://www.sabiosciences.com and
[39]). Pi et al. [40] have shown a significant effect of
PPARG on HDL and ApoA1; the major protein com-
ponent of HDL [41]. PPARs are also expressed in the
cardiovascular system such as endothelial cells, vascu-
lar smooth muscle cells and monocytes/macrophages
(see for e.g. [42]).

Discussion
We have introduced a new approach, CCRS, for the
analysis of whole genome sequence data in order to iden-
tify regions of the genome (e.g. genes or other functional

Fig. 5 p-values of 80 windows around the selected window. The red points represent the calculated p-value by CCRS for the windows and each
curves is smooth curve over calculated p-values by one approach; yellow: CAST test, red: CCRS, green: SKAT, blue: SKAT-O, black: Col, orange: SPC

http://www.sabiosciences.com
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motifs) influencing a phenotype of interest. The CCRS
improves the power of identifying a set of variants associ-
ated with a phenotype by taking into account the sparse-
ness and LD structure in the data. The CCRS applies
a concave penalized regression method after projecting
the sequence variants in a full rank space that is more
informative via sparse principal component analysis. By
applying sparse PCA, the CCRS aims to enhance the infor-
mation in the predictors instead of reducing dimension as
typical application of sparse PCA, which might increase
risk of missing important variants in rare variants analysis.
While the first step of analysis (sparse PCA) is an unsuper-
vised method, it does not increase the FDR of the method
in the second step of the analysis.
Although the CCRS method can be applied to both

common and rare variants, the focus of this analysis was
on rare variants because of the role of these variants on
phenotype variation. The CCRS method also can be eas-
ily expanded to logistic regression and applied for case
control studies. However, we investigated the CCRS per-
formance for quantitative traits while the overwhelming
majority of the literature focusing on case/control stud-
ies and there is a daunting need to develop methods for
quantitative traits.
Using simulated data, we show that the FDR of the

CCRS method is smaller than other commonly applied
genomic region-based test methods while it has higher
power of identification in most of the situations. Further-
more, the FDR of CCRS is smaller and robust to the LD
structure in the region in comparison to the other meth-
ods. While the statistical test for rare variants are typically
region-based test, there is risk of overestimation of over-
all effect of regions by neglecting the LD between causal
and neutral variants in the region. Consequently, the risk
of missing promising regions might increase throughmul-
tiple hypotheses testing.
Penalized regression and other shrinkage methods

that have been introduced for sparse data applications
can correctly select nonzero coefficients under specific
conditions [43, 44]. Applying these approaches to large-
scale genome sequence applications that include corre-
lated variants due to LD might not lead to a true set of
selected variants with nonzero coefficients. Addressing
this challenge is difficult in rare variant analyses because
each individual variant by itself includes little informa-
tion. To resolve this problem, the CCRS reparameterizes
the model via PCA restricted with L1 norm constraints
to provide a full rank design matrix. Imposing L1 penal-
ization in PCA generates a sparse loading matrix that
renders the analysis interpretable. The CCRS method
efficiently incorporates information from low frequency
variants by generating new predictors that are much more
informative. The CCRS uses a concave penalized regres-
sion model to simultaneously select the most important

PCs regarding their association with the phenotype of
interest, but also to estimate their effect sizes. The zero
effect sizes can be uniquely identified due to the use
of full rank approximation of the design matrix. The
advantage of the concave penalty term is that the rate
of shrinkage gets smaller as the effect size increases.
In other words, the CCRS not only has the property
of parsimony, it also avoids shrinkage over large effect
sizes. Thus, the CCRS maintains power for detecting
phenotype-influencing regions while keeping the p-value
of the neutral regions small.
As an example real data application, we used the CCRS

method and genome sequence data to analyze plasma
ApoA1 levels, and one region met the experiment-wise
criterion for statistical significance. The region contains
the gene, FAM78B, which is expressed at high levels
in myocytes, fibroblasts, endothelial cells (http://www.
proteinatlas.org/ENSG00000188859-FAM78B/tissue). In
a real application, annotation of the non-coding regions
should be integrated into the analysis, and replication in
an independent sample would be the next step to consider
it as a novel discovery.

Conclusions
Large-scale whole genome sequencing and high-powered
computing are becoming more readily available and
affordable. There is an emerging shift from sequenc-
ing and computing technologies toward study design,
data processing algorithms, and statistical and informatics
methods for extracting usable information from the very
large amount of genome sequence data that are imminent.
The CCRS method presented here for the first time is a
practical, powerful and efficient method for taking into
account the nature of whole genome sequence variation
to identify regions of the genome influencing common
complex risk factor phenotypes and diseases.
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