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Abstract

Background: The alignment of multiple protein sequences is one of the most commonly performed tasks in
bioinformatics. In spite of considerable research and efforts that have been recently deployed for improving the
performance of multiple sequence alignment (MSA) algorithms, finding a highly accurate alignment between

multiple protein sequences is still a challenging problem.

Results: We propose a novel and efficient algorithm called, MSAIndelFR, for multiple sequence alignment using the
information on the predicted locations of IndelFRs and the computed average log-loss values obtained from IndelFR
predictors, each of which is designed for a different protein fold. We demonstrate that the introduction of a new
variable gap penalty function based on the predicted locations of the IndelFRs and the computed average log-loss
values into the proposed algorithm substantially improves the protein alignment accuracy. This is illustrated by
evaluating the performance of the algorithm in aligning sequences belonging to the protein folds for which the
IndelFR predictors already exist and by using the reference alignments of the four popular benchmarks, BAIIBASE 3.0,

OXBENCH, PREFAB 4.0, and SABRE (SABmark 1.65).

Conclusions: We have proposed a novel and efficient algorithm, the MSAIndelFR algorithm, for multiple protein
sequence alignment incorporating a new variable gap penalty function. It is shown that the performance of the

proposed algorithm is superior to that of the most-widely used alignment algorithms, Clustal W2, Clustal Omega,
Kalign2, MSAProbs, MAFFT, MUSCLE, ProbCons and Probalign, in terms of both the sum—-of-pairs and total column

metrics.
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Background

Alignment of multiple protein sequences is a crucial step
in bioinformatics analyses, and is used in many appli-
cations including sequence annotation, phylogenetic tree
estimation, evolutionary analysis, secondary structure
prediction and protein database search [1, 2]. Multiple
sequence alignment (MSA) allows us to identify parts of
the protein sequences that are similar to one another with
gaps (spaces) inserted in such a way that similar parts of
these sequences can be easily identified [3]. The concept
of a gap in an alignment is important, since the gap loca-
tions indicate the locations of insertion or deletion (indel)
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mutation events in protein sequences. It should be noted
that the insertion or deletion of an entire subsequence
often occurs as a single mutational event, and such sin-
gle mutational events can create gaps of varying sizes [4].
In recent years, considerable effort has been devoted to
the development of MSA algorithms that can efficiently
detect mutations and generate highly accurate alignments.
Some of the significant algorithms are Clustal W2 [5],
Clustal Omega [6], Kalign2 [7], MSAProbs [8], MAFFT
[9, 10], MUSCLE [11], ProbCons [12] and Probalign [13].

Clustal W2, Clustal Omega, Kalign2 and MSAProbs
are progressive alignment algorithms, while MAFFT,
MUSCLE, ProbCons and Probalign generate an initial
alignment using the progressive alignment algorithm and
then iteratively refine this alignment to achieve higher
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alignment accuracy. A progressive alignment algorithm
involves three steps: (i) calculations of the pairwise dis-
tances between all pairs of sequences to determine the
similarity of each pair of sequences, (ii) construction of a
guide tree based on the distance matrix, and (iii) finally,
alignment of the sequences according to an order deter-
mined by the guide tree [4, 14].

Clustal W2 and Clustal Omega are derived from
Clustal W [15]. Clustal W2 calculates the pairwise dis-
tances between all pairs of sequences using the k—tuple
method [16], and then constructs the guide tree using
the unweighted pair group method with arithmetic mean
(UPGMA) [17]. Clustal Omega is the latest MSA algo-
rithm in the Clustal family, and the main improvements
of Clustal Omega over Clustal W2 are as follows: (i) it
can align any number of protein sequences, (ii) it allows
the use of a profile hidden Markov model, derived from
an alignment of protein sequences related to the input
sequences, and (iii) it allows the user to choose the num-
ber of iterations, in the absence of which it is a progres-
sive algorithm by default. Further, Clustal Omega is the
most accurate and scalable MSA algorithm amongst the
Clustal family. In Kalign2, the pairwise distances between
all pairs of sequences are estimated based on the the
Muth—Manber string matching algorithm [18] and the
guide tree constructed using UPGMA. MSAProbs [8] is
based on combining a pair hidden Markov model with
partition functions to calculate the posterior probabilities,
which are used in estimating the pairwise distance matrix.
In MSAProbs, the guide tree constructed using UPGMA.
It should be noted that MSAProbs is currently the most
accurate alignment algorithm. The alignment algorithms
MAFFT, MUSCLE, ProbCons and Probalign are not fully
progressive. In these algorithms, iterative refinement is
performed to improve the alignment and the guide tree
constructed using UPGMA for the next iteration.

Multiple sequence alignment algorithms use an
objective function (OF) to measure the quality of an
alignment. A simple OF should include a gap penalty
function to score the gaps and substitution matrices to
measure the similarity of amino acid pairs. The most
widely used gap penalty function is the affine gap penalty
(AGP), given by g(k) = g, + kg. for a gap of length k.
The function g(k) involves two parameters, g, and g, g,
representing a gap opening penalty at a specific position
in the protein sequence and g, representing an extension
penalty for extending the gap. This linear AGP function
has the advantage of simplicity and ease of use in MSA
algorithms. However, this penalty function is restrictive
in the sense that the two parameters remain fixed for
aligning different positions in the protein sequence.

MSAProbs, Kalign2, ProbCons and Probalign are MSA
algorithms for which an AGP function is used. In
MSAprobs, ProbCons and Probalign, fixed parameters
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are used for the AGP function, wherein a gap opening
penalty of —22 and a gap extension penalty of —1 are
used by default [8, 12, 13]. Kalign2 determines the default
gap penalties for protein alignments by training on a
BAIiBASE 3.0 benchmark [19] in order to obtain opti-
mal alignment results. In the MAFFT, MUSCLE, Clustal
W2 and Clustal Omega MSA algorithms, a gap open-
ing penalty (GPO) and a gap extension penalty (GPE)
values are initially specified; then, these algorithms auto-
matically attempt to choose appropriate gap penalties
according to some specific rules. The algorithms MAFFT
and MUSCLE use an AGP function, wherein the default
values are modified depending on the number of existing
gaps at a particular position for a given profile [10, 11].
Clustal W2 and Clustal Omega use an AGP function,
wherein a gap opening penalty (GPO) and a gap exten-
sion penalty (GPE) are initially set by the user from a
menu, and then, these algorithms automatically attempt to
choose appropriate gap penalties for each sequence align-
ment according to the features of the input sequences,
such as sequence divergence, length, and local hydropho-
bic amino acids. It should be noted that the choice of the
AGP parameters has a substantial effect on the alignment
accuracy [2, 20, 21], and the widely—used AGP works well
for closely related or similar sequences, but they are less
effective for highly diverged or dissimilar sequences. As
a consequence, there has been a growing interest in con-
ducting multiple sequence alignment with more general
and flexible gap penalty functions.

In the present work, we propose a novel and efficient
algorithm for multiple sequence alignment, referred to as
MSAIndelFR, that incorporates the information concern-
ing the predicted indel flanking regions (IndelFRs). The
key innovation in MSAIndelFR is the use of the predicted
information about IndelFRs to propose a new variable
gap penalty (VGP) function, wherein the gap opening
penalty is position—specific and the gap extension penalty
is region—specific. It should be noted that the predicted
IndelFRs are the most likely regions for the gaps to be
introduced in the protein sequence alignment, since they
are strongly related to indel mutations [22-26]. There-
fore, it is expected that more accurate alignments can be
obtained by integrating the predicted information about
IndelFRs into the gap penalty function. To the best of our
knowledge, using the predicted information about Indel-
FRs in multiple sequence alignment is novel. The perfor-
mance evaluation results on MSAIndelFR indeed confirm
that incorporating the predicted information about the
indel flanking regions improves the alignment accuracy.

Methods

Indel flanking regions (IndelFRs)

When a pair of protein sequences is aligned, a gap in any of
the two sequences is defined as an indel region. Segments
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of these two sequences immediately before and after an
indel region are called flanking regions, as shown in Fig. 1.
In [27], an indel along with its left and right flanking
regions is referred to as an indel flanking region (IndelFR).
The results in [27] strongly suggest that the IndelFRs
for a given protein sequence are confined only to the
IndelFR segments, which are the segments of the protein
sequence to which all the predicted IndelFRs collectively
belong to.

PPM IndelFR Predictor

A technique for building the IndelFR predictor for a given
protein fold, based on the prediction by partial match
(PPM) [28], was proposed in [27]. This PPM IndelFR pre-
dictor for a given protein fold contains two variable—order
Markov models, one for predicting the left flanking and
the other for predicting the right flanking regions. It is has
been shown in [27] that the best choice for the value of D,
the memory length of the PPM IndelFR predictor, is 4.

Given a test protein sequence S” = 515253 - - - s, of length
n, the PPM IndelFR predictor scans it using a running
window of length L = 10 moving it one amino acid at
a time, to determine whether the string of amino acids
within a window contains an IndelFR or not. It should be
noted that the impact of an indel on its flanking regions
reduces dramatically as we move away from the indel, and
is negligible after 10 amino acids [23].

The PPM IndelFR predictor, with D = 4, computes
the left and right average values for each position in the
protein sequence, and then uses the algorithm in [27] to
extract the predicted locations of IndelFRs in the protein
sequence. In [27], the average log—loss value for window
of length L = 10 at position i, win; = s;s;+1 - - - Sit9, in the
sequence is defined as

loglossP(win;) =

1
-7 (log Po(si) + log Py (siv1lsi)+
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where the logarithm is taken to base 2. For the purpose
of illustration, the left and right average log—loss values
for the protein sequence d1liab_ at different positions are
shown in Fig. 2.

The PPM IndelFR predictors for 11, 14 and 18 protein
folds from different protein classes: All-« proteins, All-
proteins and « and B proteins (a/b), respectively, have
been constructed in [27] and for convenience, included in
the supplementary data of this paper (Additional file 1:
Tables S1-S3). Hence, we have 43 different PPM IndelFR
predictors. It should be noted that the PPM IndelFR pre-
dictors were trained using the IndelFR database [22],
which in turn provided IndelFRs for some selected pro-
tein sequences belonging to certain selected protein folds
from the SCOP database [29]. Moreover, it should be
pointed out that the PPM IndelFR predictors in [27] do
not use directly any protein structure information (alpha,
beta or coil) and use only the information about the posi-
tions, lengths, and amino acid compositions of the indel
flanking regions listed in the IndelFR database; however,
the IndelFR database itself has used the structure-based
sequence alignment to extract the information concerning
the indel flanking regions. In [27], it has been demon-
strated that once the PPM IndelFR predictor is built for
a given protein fold, it can be used to compute the aver-
age log—loss values for any protein sequence belonging
to this protein fold. Hence, we will be able to compute
the average log—loss values, and then use the algorithm
in [27] to predict the IndelFRs for protein sequences that
are available in the selected protein folds, even though
the IndelFR database did not provide IndelFRs for these
protein sequences.

MSAIndelFR algorithm

In this section, we propose an algorithm for MSA, termed
MSAIndelFR algorithm, that makes use of the computed
average log—loss values and the predicted IndelFRs from
the PPM IndelFR predictor. The results in [27] concerning

@) ppm IndelFR predictor have shown that the computed
log Py(sitalsisi+) + -+ + average log—loss values in and around an IndelFR are
log Pp(siL-11Si+L-1-D - - - Si+L—2)) much smaller than that in other regions. In view of

Left flanking region Right flanking region
(LFR) Indel (RFR)
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l

Fig. 1 The indel and the flanking regions
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Average log—loss values using LPPM and RPPM
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Fig. 2 The left and right average log-loss values for the d1liab_ using left PPM (LPPM) and right PPM (RPPM) IndelFR predictor. The solid dots
represent the start locations of the predicted left flanking regions and the stars that of the predicted right flanking regions

this observation, we combine the left and right average
log—loss values for any given protein sequence S” =
518283 - - - S, of length n to propose a position—specific gap
opening penalty function. The proposed position—specific
gap opening penalty at a particular position i in the
sequence, GPO;, is given by

GPO; =
min(LPPM;, RPPM;), 1 <i < (n—L+1) (2)
GPO(—1+1) m—L+1)<i<m

where LPPM; and RPPM; are, respectively, the left and
right average log—loss values at position i. It is seen from
this equation that GPO;, for (n — L + 1) < i < n, is
chosen to be equal to the gap opening penalty at position
n — L + 1. The gap opening penalties at different
positions for d1liab_ are shown in Fig. 3.

In addition to using the gap opening penalty function
GPO;, we use the predicted IndelFRs to propose a region—
specific gap extension penalty function. As mentioned in
the introduction, the predicted IndelFRs are the most
likely regions for the gaps to be introduced in the protein
sequence, since they are strongly related to indel muta-
tions [22-26]. Moreover, a single indel mutation event
often affects several adjacent amino acids in a protein
sequence [4]. This is taken into consideration in the pro-

i =

posed definition of the gap extension penalty at position i
in the protein sequence, GPE; :

0, if position i € IndelFRs

GPO;, otherwise 3)

GPE; = {

In the other words, a zero value is assigned to GPE;, if
the gap introduced at position i is in an IndelFR, while it
is equal to GPO; if i is not in an IndelFR.

As explained above, the gap penalty functions are set
using the IndelFRs predicted by the PPM IndelFR predic-
tor. However, the predictor for a given protein fold is not
trained using any benchmark or any of its subsets. In fact,
it is trained using the IndelFR database [22].

New FASTA format

We modify the standard FASTA format to include infor-
mation about the position—specific gap opening penalty
and the predicted locations of IndelFRs into the stan-
dard FASTA format (Additional file 1: Section 1). Hence,
the input protein sequences to the proposed MSAIndelFR
algorithm should be written using the modified version
of FASTA format, where the position—specific gap open-
ing penalty and the predicted locations of IndelFRs are
added after the main list of amino acids of the protein
sequence.

The gap opening panelties
T T T T
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Fig. 3 The gap opening penalties for the d1liab_ extracted from the left and right average log-loss values shown in Fig. 2
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Alignment strategy

The alignment strategy is based on the standard pro-
gressive alignment method for aligning multiple pro-
tein sequences [14]. First, pairwise distances between
input sequences are calculated to form a distance matrix.
An accurate calculation of pairwise distances can be
accomplished by performing all the pairwise alignments
amongst the input sequences; however, this is not prac-
tical in view of time complexity, especially when the
number of sequences is large, since any pairwise align-
ment requires quadratic time for completion [30]. There-
fore, some of the existing MSA algorithms have used
the k—tuple method [16] to calculate the pairwise dis-
tances approximately. It has been shown in [7] that the
Muth—Manber string matching algorithm proposed in
[18] to calculate the pairwise distances is more accurate
than the k—tuple method; this algorithm finds the dis-
tance between two sequences by matching patterns that
contain at most one error. For example, consider two
sequences ABCABCABC and ABDABDABD that are 67 %
identical. The k—tuple method (with a pattern length of 3)
reports that these two sequences are not identical (i.e.,
share no exact patterns), while the Muth—Manber algo-
rithm reports that these two sequences are 67 % identical.
In view of this, we employ the Muth—Manber algorithm
in our article to calculate the pairwise distances between
the input protein sequences.

Since protein sequences are normally searched with
short length patterns [7, 11, 15, 31], we search with pat-
terns of length 3 of amino acids to calculate the pairwise
distances. Then, a guide tree is constructed from the dis-
tance matrix using the unweighted pair group method
with arithmetic mean (UPGMA) [17], which is the most
popular method for guide tree construction and used
in many MSA algorithms as the default option. Finally,
sequences or profiles are aligned according to the order
prescribed by the guide tree. Hence, at each internal
node of the guide tree, two sequences, or two profiles
or one sequence and one profile are aligned. The pro-
cess of aligning sequences/profiles continues until the
highest level of the guide tree is reached. For this pur-
pose, we use the dynamic programming (DP) approach
along with the proposed gap penalty functions, namely,
the position—specific gap opening penalty function and
the region-specific gap extension penalty function to align
sequences/profiles.

Dynamic programming with variable gap penalty function
We assume that the input protein sequences are evo-
lutionary related over their entire lengths. Therefore, a
global alignment of the input sequences will be obtained
using the DP approach. The optimal alignment in the DP
approach is the alignment which has the highest score,
where the score of an alignment is found by using a gap
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penalty function and the substitution matrix S. It should
be noted that any alignment between protein sequences is
intended to reflect the cost of mutational events needed to
transform one sequence to the another [4, 30]. In this arti-
cle, we use a VGP function, which has two subfunctions:
the position—specific gap opening penalty function GPO;
and the region—specific gap extension penalty function
GPE;.

Let A" = ajazas---a, and B”" = bibybs---b,, be
two sequences of length n and m, respectively. The DP
approach finds the optimal alignment between A and B
by computing the optimal alignments between all prefixes
of A and B. The amino acids in A and B are assigned
to one of three possible states: aligned, gap in sequence
A, or gap in sequence B during the alignment process.
These states are represented by three matrices in the DP
approach. Let A [1: i] = ajay - - - a; be a prefix of sequence
A, B[1:j]= b1by---bj be a prefix of sequence B, M(j, /)
be the optimal score for aligning A[1 : i] and B[1 : j]
given that a; is aligned to bj, 14(i,j) be the optimal score
given that g; is aligned to a gap, and I5(i, j) be the optimal
score given that b; is aligned to a gap, where 1 < i < mand
1 <j < m. The recursive equations to find the various ele-
ments in the state matrices M (i, ), 14(i,j), and Ip(i,j) are
given by

M(l!]) = S(ﬂi, b]) +
With a;_1 aligned to b;_1,

M@G—1,j—1),
@ J ) , align a; to b;
. EndagapinA, (4)
I el )
maxy [a(@.)) , align a; to b;
. End agapin B,
I el ) .
(i) , align a; to bj
IA(i’j) =
, , Open a new
M(i — 1,j) — (GPO* + GPE4),
ma @ n-(G Of + GPE, ) gapin A (5)
X
LiG—1,)) — GPE;.A, Exte.nd an old
gap in A
IB(i,j) =
Open a new
ca _ ; B
M (POf +GPEP), o nn ©)
E 1
IsGj—1) — GPE]B, xtebnd an old
gap in B
with

m
M(0,0) = 0, M(0,j) = GPO} + ) " GPE,
j=1

n
M(i,0) = GPO{ + ) GPE{!
i=1

IA(O,]) = —OO,IB(i, 0) = —00
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where s(a;, bj) can be obtained directly from the substitu-
tion matrix S, GPO‘;1 and GPE;‘1 are, respectively, the gap
opening and extension penalty functions for the sequence
A, and GPO? and GPEZ are the corresponding penalty
functions for the sequence B. Once the computation of M
is completed, it contains the maximum alignment score,
and a trace back procedure is used to retrieve the align-
ment between A and B.

In this article, we implement the memory efficient
DP algorithm proposed in [32], which can align two
sequences of lengths, say #n and m (n > m), with a time
complexity of O(mn) and a space complexity of O(n).
Since it has been shown in [33] that the selection of a
particular substitution matrix does not noticeably affect
the alignment accuracy, and that there is little difference
in the alignment accuracy using BLOSUM [34], PAM
[35] or GONNET [36] as the substitution matrix, we use
GONNET250 as the substitution matrix.

In order to continue aligning sequences/profiles until
the highest level of the guide tree is reached, we need the
gap penalty functions: GPO; and GPE;, for each profile.
For example, consider the alignment of two sequences,
say, A and B at the lowest level of the tree to produce
the profile C. The position—specific gap opening penalty
function for profile C is defined to be

GPO¢ =
GPO + GPOP, if 4; is aligned with
] by at position i
if there is a gap in (8)
GPO?’ B at position i
GPOP if there is a gap in
k )

A at position i

where GPO;‘1 ) GPO%(3 and GPOiC are the gap opening
penalty functions at positions j, k, and i for A, B and C,
respectively. In a similar manner, we define the gap exten-
sion penalty function for C. This makes a gap more likely
to occur at a position, where a gap already exists. If there
is no gap at a position i in C, then the gap opening penalty
is increased by adding both GPO;.4 and GPOE to avoid
introducing gaps at the aligned positions.

As already mentioned, the internal nodes of the guide
tree are visited in a bottom—up order, and for each vis-
ited node a pairwise alignment of sequences/profiles is
computed using the DP approach along with the proposed
VGP function. The MSA associated with the root node is
the final alignment.

Results and discussion

The performance of MSA algorithms are usually evaluated
on alignment benchmarks containing reference align-
ments. In this article, we use four popular benchmarks,
namely, BAIiBASE 3.0 [19], OXBENCH [37], PREFAB 4.0
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[11] and SABmark 1.65 [38] to evaluate the performance
of the proposed MSAIndelFR algorithm as well as that
of the eight most—widely used MSA algorithms, namely,
Clustal W2 version 2.1, Clustal Omega version 1.2.0,
MSAProbs version 0.9.7, Kalign2 version 2.04, MAFFT
version 7.184, MUSCLE version 3.8.31., ProbCons version
1.12 and Probalign version 1.4. For MAFFT, auto option is
used with the maximum iterative refinement (maxiterate
option) set to 1000, while the default options are used
for all the other algorithms, including the proposed
MSAIndelFR.

In the present article, we select the reference align-
ments from the above four benchmarks that have pro-
tein sequences belonging to one of the 43 protein folds
(Additional file 1: Tables S1-S3). We use the PPM IndelFR
predictor to compute the average log—loss values, and
then use the algorithm in [27] to predict the IndelFRs
for protein sequences that are available in the alignment
benchmarks, even though the IndelFR database does not
contain IndelFRs for these protein sequences. We would
like to emphasize that no training is needed in the pro-
posed MSAIndelFR algorithm. Further, it does not make
use of the protein information (alpha, beta or coil) as
input. It makes use of the computed average log—loss val-
ues and the predicted IndelFRs obtained from the PPM
IndelFR predictors proposed in [27]. It should be noted
that the PPM IndelFR predictors do not use any of the
above—mentioned four benchmarks for their training, and
the training set for any of the PPM IndelFR predictors
is virtually different from the test set of the proposed
MSAIndelFR algorithm on all the four benchmarks (See
Section 5 of the Additional file 1).

We use the measures, sum-of-pairs (SP) and total
columns (TC) [20], which are the most commonly used
metrics, to evaluate and compare the performance of
the various MSA algorithms. The SP value is defined as
the number of correctly aligned amino acid pairs found
in the test alignment divided by the total number of
aligned amino acid pairs in the core blocks of the refer-
ence alignment, where the core blocks of the reference
alignment refer to the regions for which reliable align-
ments are known to exist. We use the BENCH database
(Edgar, R.C., http://www.drive5.com/bench) to determine
the core blocks in the selected benchmarks. It should be
noted that the quality (Q) metric used in [11] is equiv-
alent to SP. The TC value is defined as the number of
correctly aligned columns found in the test alignment
divided by the total number of aligned columns in the
core blocks of the reference alignment, and hence, gives
the proportion of the total alignment columns that is
recovered in the test alignment. A value of 1.0 for TC indi-
cates perfect agreement between the test and reference
alignments. It should be noted that the TC value is equiv-
alent to the SP value in the case of pairwise alignment
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(as in the PREFAB benchmark). We calculate the SP and
TC values employing the QSCORE software available at
the website [39].] In order to determine if the improve-
ments, achieved in terms of the SP and TC values, by the
proposed MSAIndelFR algorithm are statistically signif-
icant, the Wilcoxon matched-pair signed-rank test [40]
is used.

Evaluation using BAIiBASE 3.0

For evaluating multiple sequence alignment algorithms,
BAIiBASE [19] is the most widely used benchmark. This
benchmark contains 3D structural-based alignments that
are manually refined. Out of the 386 reference alignments
in BAIiBASE, there are 186 alignments that have protein
sequences which belong to one or the other of the 43
selected protein folds.

The average SP and TC values of MSAIndelFR as well as
those of the other algorithms using this benchmark as ref-
erence are given in Table 1. The results show that MSAIn-
delFR achieves the highest SP and TC values. Specifically,
it provides an average SP value of 86.23 % represent-
ing an improvement of 6.02 %, 1.37 %, 4.12 %, 4.29 %,
6.17 %, 10.37 %, 0.39 % and 0.78 % over that of MSAProbs,
MAFFT, MUSCLE, Clustal Omega, Kalign2, Clustal W2,
ProbCons and Probalign respectively. Also, it provides an
average TC value of 57.56 % representing an improvement
of 2.62 %, 3.06 %, 10.15 %, 7.20 %, 13.87 %, 18.19 %, 2.74 %
and 3.92 %, respectively, over that of the other alignment
algorithms.

Boxplots would show more detailed information about
the distribution of the SP and TC values than that pro-
vided by Table 1. They indicate whether a distribution is
skewed or if there are potential unusual observations (out-
liers) in the data set. In addition, they are very useful when
large numbers of test cases are involved and when two or
more methods are being compared. Finally, they can be
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used to determine the first, second (median), and third
quartiles as well as interquartile range (IQR) values for
various distributions. The width of a box indicates the IQR
value, which is the difference between the third and first
quartile values.

In view of the above reasons, boxplots resulting from
the distributions of the SP values of the various algo-
rithms evaluated using BAIiBASE 3.0 are shown in Fig. 4.
This figure clearly shows that MSAIndelFR performs bet-
ter than the other algorithms, since it has the lowest IQR
value as well as the highest first quartile value. It is noted
that even though MSAIndelFR, and MSAprobs have an
almost equal median value of 91 %, the distribution of the
SP values generated by MSAIndelFR is much narrower
than that generated by MSAProbs, since the former has
an IQR value of 12 %, whereas the latter a value of 20 %.
In addition, it is seen that 75 % of the MSAIndelFR align-
ments have an SP value of more than 84 % (first quartile),
whereas 25 % of the alignments have an SP value of more
than 96 % (third quartile). Figure 5 shows the distribu-
tions of the TC values of MSAIndelFR and those of the
other algorithms. It is seen from this figure that, just as the
case with respect to the SP values, MSAIndelFR performs
better than the other algorithms, just as the case is with
respect to the SP values.

Evaluation using OXBENCH

The OXBENCH benchmark [37] is a set of structure-
based alignments. Out of the 395 reference alignments
in OXBENCH, there are 191 alignments that have pro-
tein sequences which belong to one or the other of the 43
selected protein folds.

The average SP and TC values of MSAIndelFR as well as
those of the other algorithms using this benchmark as ref-
erence are given in Table 1. The results show that MSAIn-
delFR achieves the highest SP and TC values. Specifically,

Table 1 Average SP and TC values of MSAIndelFR and other multiple alignment algorithms for the benchmarks, BAIIBASE 3.0,

OXBENCH, PREFAB 4.0 and SABRE (SABmark 1.65)

BAIIBASE OXBENCH PREFAB SABRE
MSA algorithm SP (%) TC (%) SP (%) TC (%) SP (%) TC (%) SP (%) TC (%)
MSAIndelFR 86.23 57.56 91.88 83.83 59.35 59.35 53.59 34.38
MSAProbs 80.21 (54.93) (89.39) (79.78) (57.52) (57.52) (51.55) (25.21)
MAFFT 84.86 54.50 88.22 77.98 53.93 53.93 50.14 24.33
MUSCLE 82.11 4741 88.66 7893 55.74 55.74 4633 20.80
Clustal Omega 81.94 5035 88.05 7776 55.96 55.96 4511 19.58
Kalign2 80.06 43.68 87.55 7730 56.33 56.33 41.64 18.91
Clustal W2 75.86 3937 87.94 77.00 56.05 56.05 40.38 15.98
ProbCons (85.85) 54.81 88.86 78.80 56.44 56.44 51.27 2497
Probalign 8545 53.63 89.08 79.52 56.63 56.63 50.33 23.67

Bold faced values indicate the best performance, while the values in parentheses indicate the second best performance
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Fig. 4 Boxplots for the distributions of the SP values of MSAIndelFR and the other MSA algorithms using the BAIIBASE 3.0 benchmark, where the top
and bottom of a box and the line in between represent the third quartile, first quartile and median, respectively
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it provides an average SP value of 91.88 % represent-
ing an improvement of 2.49 %, 3.65 %, 3.22 %, 3.83 %,
4.33 %, 3.94 %, 3.02 % and 2.80 % over that of MSAProbs,
MAFFT, MUSCLE, Clustal Omega, Kalign2, Clustal W2,
ProbCons and Probalign, respectively. Also, it provides an
average TC value of 83.83 % representing an improvement
of 4.05 %, 5.85 %, 4.90 %, 6.07 %, 6.53 %, 6.83 %, 5.02 %
and 4.31 %, respectively, over that of the other alignment
algorithms.

The boxplots for the SP and TC value distributions
of the various algorithms are given in Additional file 1:
Figures S1 and S2, respectively. These figures clearly show
that MSAIndelFR performs better than the other algo-
rithms, since it has the lowest IQR value as well as the
highest first quartile value. In addition, it is seen that 75 %
of the MSAIndelFR alignments have an SP value of more
than 91 % (first quartile), whereas 25 % of the alignments
have an SP value of 100 % (third quartile).
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Fig. 5 Boxplots for the distributions of the TC values of MSAIndelFR and the other MSA algorithms using the BAIIBASE 3.0 benchmark, where the top
and bottom of a box and the line in between represent the third quartile, first quartile and median, respectively
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Evaluation using PREFAB 4.0

The PREFAB 4.0 benchmark [11] is a fully automatically
generated benchmark containing 1681 reference align-
ments. Out of the 1681 reference alignments in PREFAB
4.0, there are 863 alignments that have protein sequences
which belong to one or the other of the 43 selected protein
folds.

The average SP and TC values of MSAIndelFR as well
as those of the other algorithms using this benchmark
as reference are given in Table 1. The results show that
MSAIndelFR achieves the highest SP and TC values.
Specifically, it provides an average SP value of 59.35 % rep-
resenting an improvement of 1.83 %, 5.42 %, 3.61 %, 3.39 %,
3.02 %, 3.30 %, 2.92 % and 2.72 % over that of MSAProbs,
MAFFT, MUSCLE, Clustal Omega, Kalign2, Clustal W2,
ProbCons and Probalign, respectively. Also, it provides a
similar TC improvements over the other algorithms.

The boxplots for the SP and TC value distributions
of the various algorithms are given in Additional file 1:
Figures S3 and S4, respectively. These figures clearly show
that MSAIndelFR performs better than the other algo-
rithms, since it has the lowest IQR value as well as the
highest first quartile value. In addition, it is seen that 75 %
of the MSAIndelFR alignments have an SP value of more
than 31 % (first quartile), whereas 25 % of the alignments
have an SP value of 88 % (third quartile).

Evaluation using SABRE (SABmark 1.65)

The SABmark 1.65 [38] is a very challenging bench-
mark for multiple sequence alignment. This benchmark is
divided into two subsets: Twilight zone and Superfamilies.
The similarity level between any two protein sequences
is less than 50% in the Superfamily set, while it is at
most 25 % in the Twilight set. In [41], the author argued
that the pairwise reference alignments in SABmark are
not suitable to evaluate the MSA algorithms, and hence
constructed the SABRE benchmark [42], containing 423
out of the 634 SABmark groups. In this article, we use
SABRE instead of the original SABmark benchmark. Out
of the 423 reference alignments in the SABRE bench-
mark, there are 79 alignments that have protein sequences
which belong to one or the other of the 43 selected protein
folds.

The average SP and TC values of MSAIndelFR as well
as those of the other algorithms using this benchmark
as reference are given in Table 1. The results show that
MSAIndelFR achieves the highest SP and TC values.
Specifically, it provides an average SP value of 53.59 %
representing an improvement of 2.04 %, 3.45 %, 7.25 %,
8.48 %, 11.94 %, 13.21 %, 2.32 % and 3.25 % over that of
MSAProbs, MAFFT, MUSCLE, Clustal Omega, Kalign2,
Clustal W2, ProbCons and Probalign, respectively. Also, it
provides an average TC value of 34.38 % representing an
improvement of 9.18 %, 10.06 %, 13.58 %, 14.80 %, 15.48 %,
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18.40 %, 9.42 % and 10.71 %, respectively, over that of the
other alignment algorithms.

The boxplots for the SP and TC value distributions
of the various algorithms are given in Additional file 1:
Figures S5 and S6, respectively. These figures clearly show
that even for this challenging benchmark, MSAIndelFR
performs better than all the other algorithms in terms of
the median value (52 %). In addition, it is seen that 75 %
of MSAIndelFR alignments have an SP value of more than
29 % (first quartile), whereas 25 % of the alignments have
an SP value of more than 77 % (third quartile).

Statistical significance

The Wilcoxon matched-pair signed-rank test [40] is now
used to determine if the improvements achieved, in terms
of the SP and TC values, by the proposed MSAIndelFR
algorithm are statistically significant. Tables 2 and 3 give
the p-values obtained by the Wilcoxon matched-pair
signed-rank test between the proposed MSAIndelFR and
other alignment algorithms for the four benchmarks using
the SP and TC scores, respectively. A p-value less than
0.05 is considered to be statistically significant [8, 12, 13].
Thus, it is seen from Table 2 that MSAIndelFR yields
improvements that are statistically very significant over
all the other algorithms on the BAIiBASE and PREFAB
benchmarks, as far as the SP values are concerned. It
also achieves statistically significant improvements over
five of the algorithms, MAFFT, MUSCLE, Clustal Omega,
Kalign2 and Clustal W2 on the OXBENCH and SABRE
benchmarks. As to the improvement achieved in term
of the TC values, it seen from Table 3 that MSAIndelFR
achieves, in general, statistically significant improvements
over the algorithms, MAFFT, MUSCLE, Clustal Omega,
Kalign2 and Clustal W2 on all the four benchmarks.

Run time comparison
We now compare the run times of the proposed MSAIn-
delFR and other alignment algorithms using a desktop PC

Table 2 P-values obtained by the Wilcoxon matched-pair
signed-rank test between MSAIndelFR and the other multiple
alignment algorithms on the benchmarks, BAIIBASE 3.0,
OXBENCH, PREFAB 4.0 and SABRE (SABmark 1.65) using SP scores

MSA algorithm  BAIiBASE OXBENCH  PREFAB SABRE
MSAProbs 452 %1073 0128 32x 1073 0344
MAFFT 282x 1078 178 x 1077 923 x 107> 424 x 1072
MUSCLE 257 x 10711 932 %x 1074 77 x 1078 1.0x107?
Clustal Omega 251 x 1071% 196 x 107> 54 x 107> 365 x 1072
Kalign2 179 %1077 163 x107% 106x 1070 12x107*
Clustal W2 776 x 10717 34 x 107 354x 1077 325x 107
ProbCons 549 x 1073 0.243 6.17 x 1078 0.398
Probalign 567 x 1073 0215 470 x 107° 0388
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Table 3 P-values obtained by the Wilcoxon matched-pair
signed-rank test between MSAIndelFR and the other multiple
alignment algorithms on the benchmarks, BAIIBASE 3.0,
OXBENCH, PREFAB 4.0 and SABRE (SABmark 1.65) using TC scores

MSA algorithm  BAIBASE OXBENCH  PREFAB SABRE
MSAProbs 609 x 1072 0.298 32x 1073 0125
MAFFT 697 x 1077 120x 107> 923 x 107> 1.86 x 1072
MUSCLE 218 x 10711 741 x 1073 77 x1078 510x 1072
Clustal Omega 4.11x 1078 129 x 10™* 54 x 107> 847 x 1073
Kalign2 546 x 1070 136 x 107% 1.06 x 107° 399 x 1073
Clustal W2 386 x 10711 347 x 1078 354 x 1077 250 x 1074
ProbCons 248 x 1072 0.694 617 x 1078 0.288
Probalign 892 x 1072 0377 470 x 1079 0.147

with Intel(R) Core(TM) i7-2600 CPU at 3.40GHZ and
RAM of 16GB. As explained earlier, MSAIndelFR needs
the computed average log—loss values and the predicted
locations of IndelFRs to set the gap penalty functions
for each protein sequence in the selected reference align-
ments from the four benchmarks (see Egs. (2) and (3)).
This information is available in [43]. The alignment times
(in seconds) of the MSAIndelFR and other algorithms for
aligning the protein sequences from the four alignment
benchmarks are given in Table 4. It is seen from this
table that the proposed MSAIndelFR algorithm provides
the second best alignment time after Kalign2, but outper-
forms Kalign2 in terms of both the SP and TC metrics for
all the benchmarks.

Conclusion

In this article, we have proposed a novel and efficient
algorithm, MSAIndelFR algorithm, for multiple protein
sequence alignment; the algorithm incorporates the infor-

Table 4 Overall execution time (in seconds) of MSAIndelFR and
other multiple alignment algorithms using the benchmarks,
BAIIBASE 3.0, OXBENCH, PREFAB 4.0 and SABmark 1.65

MSA algorithm BAIIBASE OXBENCH PREFAB SABRE
MSAIndelFR (131.63) (9.38) (35.59) (6.51)
MSAProbs 132347 14.9 44.49 17.52
MAFFT 1270.66 33358 1511.83 155.37
MUSCLE 665.11 94.35 2892 60.58
Clustal Omega 199.86 12.07 40.7 10.13
Kalign2 32.74 7.54 32.9 3.66
Clustal W2 769.35 12.55 35.69 10.69
ProbCons 7526 4522 76.90 65.10
Probalign 4623 2540 58.38 30.59

Bold faced values indicate the best performance, while the values in parentheses
indicate the second best performance
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mation on the predicted locations of IndelFRs and the
computed average log—loss values obtained from IndelFR
predictors, each of which is designed for a different pro-
tein fold. A new variable gap penalty function has been
proposed to make the gap placement more accurate in
the protein alignment, wherein the gap opening penalty is
position—specific and the gap extension penalty is region—
specific. In order to study the performance of the pro-
posed algorithm, an extensive evaluation has been car-
ried using some of the protein sequences from the four
popular benchmarks, namely, BAIiBASE 3.0, OXBENCH,
PREFAB 4.5, and SABRE (SABmark 1.65). In this selec-
tion of these sequences, it is ensured that they belong to
one of the 43 protein folds for which IndelFR predictors
are available. The results have shown that the perfor-
mance of the proposed MSAIndelFR algorithm is superior
to that of the eight most—-widely used alignment algo-
rithms, Clustal W2, Clustal Omega, MSAProbs, Kalign2,
MAFFT, MUSCLE, ProbCons and Probalign, in terms
of both the SP and TC metrics which have been calcu-
lated using reference alignments of the four benchmarks.
Furthermore, it has been shown that the improvements
achieved over all the other algorithms by the proposed
algorithm are, in general, statistically significant. It is to
be made clear that the concepts behind the proposed
alignment algorithm are not restricted to the 43 pro-
tein folds considered in this article. These protein folds
have been used to illustrate the proposed algorithm. How-
ever, if a protein sequence to be aligned belongs to some
other protein fold, a new predictor needs to be first
constructed and then used in the proposed alignment
scheme.

Availability of supporting data
The source code is available on request from the authors.

Endnote
! An example of calculating the SP and TC values is
given in Section 2 of the Additional file 1.

Additional file

Additional file 1: Supplementary materials. Additional file 1 contains
more details about the modified version of FASTA model, example explains
how both the sum-of-pairs (SP) and the total column (TC) values are
computed, Boxplots of SP .and TC value distributions of the MSAIndelFR
and other MSA algorithms using OXBENCH, PREFAB and SABRE (SABmark)
benchmarks, and the list of the 43 protein folds from the three different
protein classes. (PDF 2703 kb)
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