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Accurate prediction of nuclear receptors
with conjoint triad feature
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Abstract

Background: Nuclear receptors (NRs) form a large family of ligand-inducible transcription factors that regulate
gene expressions involved in numerous physiological phenomena, such as embryogenesis, homeostasis, cell
growth and death. These nuclear receptors-related pathways are important targets of marketed drugs. Therefore,
the design of a reliable computational model for predicting NRs from amino acid sequence has now been a
significant biomedical problem.

Results: Conjoint triad feature (CTF) mainly considers neighbor relationships in protein sequences by encoding each
protein sequence using the triad (continuous three amino acids) frequency distribution extracted from a 7-letter reduced
alphabet. In addition, chaos game representation (CGR) can investigate the patterns hidden in protein sequences and
visually reveal previously unknown structure. In this paper, three methods, CTF, CGR, amino acid composition (AAC), are
applied to formulate the protein samples. By considering different combinations of three methods, we study seven
groups of features, and each group is evaluated by the 10-fold cross-validation test. Meanwhile, a new non-redundant
dataset containing 474 NR sequences and 500 non-NR sequences is built based on the latest NucleaRDB database.
Comparing the results of numerical experiments, the group of combined features with CTF and AAC gets the best result
with the accuracy of 96.30 % for identifying NRs from non-NRs. Moreover, if it is classified as a NR, it will be further put
into the second level, which will classify a NR into one of the eight main subfamilies. At the second level, the group of
combined features with CTF and AAC also gets the best accuracy of 94.73 %. Subsequently, the proposed predictor is
compared with two existing methods, and the comparisons show that the accuracies of two levels significantly increase
to 98.79 % (NR-2L: 92.56 %; iNR-PhysChem: 98.18 %; the first level) and 93.71 % (NR-2L: 88.68 %; iNR-PhysChem: 92.45 %;
the second level) with the introduction of our CTF-based method. Finally, each component of CTF features is
analyzed via the statistical significant test, and a simplified model only with the resulting top-50 significant
features achieves accuracy of 95.28 %.

Conclusions: The experimental results demonstrate that our CTF-based method is an effective way for predicting
nuclear receptor proteins. Furthermore, the top-50 significant features obtained from the statistical significant test are
considered as the “intrinsic features” in predicting NRs based on the analysis of relative importance.
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Background
Nuclear receptors (NRs) are members of a large family
of ligand-inducible transcription factors that regulate
gene expressions involved in numerous physiological
phenomena. These physiological phenomena cover many
aspects of multicellular organisms’ lives, including em-
bryogenesis, homeostasis, cell growth and death [1]. Dif-
ferent from cell surface receptors which have strong
affinities with water-soluble peptide hormones and
growth factors, NRs mostly bind to lipophilic hormone
ligands, such as steroids, retinoids, thyroid hormones,
vitamin D3 and so forth. These fat-soluble ligands can
get into cytoplasm through lipid bilayer of cell mem-
branes, and bind to NRs. Furthermore, the resulting
allosteric ligand-protein complexes get into cell nucleus
and regulate expressions of target genes [1].
All NRs are modular proteins which share common

structure organizations. They mostly have 6 (or 5)
functional protein domains, including N-terminal A/B
domain, DNA-binding domain (DBD, C domain), D
domain, ligand-binding domain (LBD, E domain) and F
domain of C-terminal end [2]. The N-terminal A/B do-
main contains at least one activation function 1 region
(AF-1) which can operate autonomously and several
varied autonomous transactivation domains (AD). It has
not now been reported about the crystal structure of A/
B domains, which possibly are involved in post-
translational modification according to the report [3].
The most conserved domain is DBD, which acts as a
central role of binding to specific DNA sequences. Sev-
eral crystal structures of DBDs are reported, and they
usually contain two typical cysteine-rich zinc finger mo-
tifs [4, 5]. The P box in the first zinc finger determines
the DNA-binding sequence specificity through a short
AGGTCA motif. In addition, the D domain contains the
nuclear localization signal (NLS) and severs as a hinge
between the DBD and the LBD, permitting the DBDs
and LBDs to adopt different conformations under hor-
mone activation. Among all the domains, the largest
domain is LBD, whose 3D structure is moderately con-
served and comprises 12 α-helices and a β-turn [6]. In
general, behind helix 3 and in the front of helices 7 and
10, LBD contains at least one ligand-binding pocket,
which enables the binding of ligands. Ligand binding will
induce a conformational change in LBD of NRs. Further-
more, agonists and antagonists will lead to distinct
structural alterations of nuclear receptor LBDs [7]. NRs
may or may not contain the F domain, whose structure
and function remain unknown [2].
Based on aforementioned six (or five) domains, NRs can

perform their function through typical features of do-
mains. They can bind to ligands at the LBD, leading to the
allosteric change of their 3D structures. As a result, stron-
ger affinities with chromatin will be made by these

conformational changes, which allow NRs to bind to
DNA through the DBD. Agonist which acts as activated
ligand will enhance the expression of the target gene,
whereas antagonist which severs as depressing ligand will
silence the gene expression. These specific abilities of
regulating gene expressions imply that since NRs are re-
lated to major human diseases, such as breast cancer, dia-
betes, osteoporosis and so on, they are promising
pharmacological targets [2]. Basically, NRs are the largest
family of hormone receptors, comprising 49 genes in the
human genome [8]. According to statistics, about 13 % of
marketed drugs target NRs, which are among the one of
most frequent targets of therapeutic drugs [9].
Conventional methods for identifying non-annotated

proteins are experimental means, such as X-ray crystal-
lography or NMR spectroscopy and so on. These effect-
ive techniques provide a detailed 3D structure of a
protein for helping understand its function [4–6]. With
the absence of experiment conditions, researchers may
choose to run a standard basic local alignment search
tool (BLAST) [10] to identify a protein to be NR based
on the conserved motifs comprising two zinc fingers of
the DNA-binding domain [1]. However, NRs are divided
into eight classes according to their ligand binding,
DNA binding, and dimerization properties [1, 8]. The
search tool, such as BLAST, cannot identify subfamilies
of NRs [11] because different classes of NRs share low
sequence similarities. Therefore, it is essential to develop
novel methods to recognize NRs and their subfamilies.
An alternative way to identify NRs is to develop compu-

tational methods. With the rapid development of large-
scale genome and proteome sequencing project, huge
amounts of biological data begin to accumulate. In the area
of NRs, the NucleaRDB is a molecular class-specific infor-
mation system that collects, combines, validates and dis-
seminates large amounts of heterogeneous data on nuclear
hormone receptors [8, 12]. The collection of all these data
provides possibilities to develop computational methods for
predicting the function of NR proteins by their primary se-
quences. According to the latest release of NucleaRDB (July
01, 2011 - Version 11.7.1), the data are grouped into eight
families or classes based on their ligand binding, DNA
binding, and dimerization properties of NRs [8]. The eight
families are (1) Thyroid hormone like, (2) HNF4-like, (3)
Estrogen like, (4) Nerve Growth factor IB-like, (5) Fushi
tarazu-F1 like, (6) Germ cell nuclear factor like, (7) Knirps
like, and (8) DAX like. These NRs families and their struc-
tural features are closely correlated with their function [11],
and it would be significant to develop a powerful computa-
tional method to classify NRs into particular families for
the purpose of understanding their biological function and
their potential as future drug targets.
In 2004, an early attempt for predicting NRs and their

subfamilies was performed by Bhasin and Raghava based
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on amino acid composition (AAC) and dipeptide com-
position (DC) features [11]. Gao et al. [13] developed a
feature selection approach to identify relevant features,
and a reduced feature subset containing 30 features (18
AACs and 12 DCs) resulted in an improved overall ac-
curacy. In the same year, Gao et al. employed pseudo
amino acid composition (PseAA) for predicting and rec-
ognizing NRs using support vector machines (SVM)
[14]. In 2011, Wang et al. [15] integrated various types
of features, such as AAC, DC, complexity factor (CF)
and fourier spectrum components (FSC), to represent
protein sequences as 881-dimensional vectors. Thus,
these sequence-derived features were put into fuzzy K
nearest neighbor (FKNN) classifier to identify NRs and
their families. Subsequently, Xiao et al. [16] constructed
a predicting model based on physical-chemical matrix
via a series of auto-covariance and cross-covariance
transformations, and resulting predictor achieved higher
accuracy rates of recognition on the same dataset [15].
Recently, a proteome-scale two level predicting method,
named “NRfamPred”, was developed based on dipeptide
composition [17].
Here, we develop an integrated model by employing

conjoint triad feature (CTF) and chaos game representa-
tion (CGR) to give an appropriate numerical representa-
tion of nuclear receptor protein sequence. Originally,
CTF was used for prediction of protein-protein inter-
action (PPI) as important features of protein sequences
and achieved excellent performance [18]. Whereafter,
CTF was extended to represent protein sequence for
identifying RNA-protein interaction (RPI) [19, 20] and
became a popular method for suitable representation of
protein sequence [21–24]. On the other hand, in 1990,
Jeffrey [25] proposed the chaos game representation
(CGR) of DNA sequences, and CGR method could exca-
vate hidden patterns in sequences. Subsequently, CGR
method of DNA sequences was extended to represent
protein sequences by Basu et al. [26], who used CGR
algorithm to generate protein sequence by virtue of a
12-sided regular polygon. Each vertex of polygon repre-
sented a group of amino acid residues according to con-
servative substitutions. The authors claimed that CGR
had the potential to reveal the evolutionary and func-
tional relationships even between the proteins with no
significant sequence homology. Up to present, CGR
method has achieved many applications and attracted
increasing studies in the area of bioinformatics [27–30].
At present, it is widely believed that the features for

input vector of support vector machine (SVM) directly
determined the efficiency of prediction model. So far no
report yet has been published about CTF, CGR together
with AAC as features to predict NRs. In this paper, we
will present a CTF-based method, which is proposed to
improve the accuracy of the classification of NRs.

Methods
Dataset
There are several well known datasets for identify NRs
and their subfamilies in the literatures before, such as
D282 [11, 13, 14] and D159 [15, 16]. According to the
latest information in NucleaRDB website (http://www.
receptors.org/nucleardb) and recent publication [8],
NucleaRDB updated its contents and information on
July 01, 2011. The updated database added some recent-
published sequences and structures of NRs, many of
which are not been included in D282 and D159 (Table 2).
Take more information into consideration, a new dataset
was built from the latest version of NucleaRDB in this
report. The newly updated NucleaRDB classified all the
NRs into eight main families, (1) NR1: thyroid hormone
like, (2) NR2: HNF4-like, (3) NR3: estrogen like, (4)
NR4: nerve Growth factor IB-like, (5) NR5: fushi tarazu-
F1 like, (6) NR6: germ cell nuclear factor like, (7) NR7:
knirps like, and (8) NR8: DAX like. All the protein se-
quences of eight subfamilies were downloaded (detailed
information can be found in Table 2).
To reduce the homology bias of prediction, a redun-

dancy reduction procedure was performed on this data-
set by CD-HIT program [31], and a cutoff threshold of
60 % was imposed to exclude those proteins from the
benchmark datasets that have equal to or greater than
60 % sequence identity to any other in a same subset.
Usually, a cutoff threshold of 25 % was recommended
[32–34]. However, such a stringent criterion deduces
that number of proteins would be too few to have statis-
tical significance, so the cutoff threshold of 60 % is
adopted in this study. As a result, the new dataset con-
tains 474 NR sequences in total. On the other hand, to
estimate the ability of the present method in discrimin-
ating NRs from non-NRs, a negative dataset containing
500 non-NRs sequences were collected from D159 [15].
Our final training set (denote by D474) contains 474 NR
sequences and 500 non-NR sequences (Tables 1, 2),
which can be downloaded in the Additional file 1.

Sample representation
For our computational approach, each protein is repre-
sented as a numerical vector, so as to be put into SVM
for classification. Actually, a number of methods were
used to extract information from protein sequences, for
example, amino acid composition (AAC) was used to
transform NR sequences into 20-dimension numerical
vectors [11]. Meanwhile, in order to extract the informa-
tion of sequence order, dipeptide composition (DC) was

Table 1 Dataset

Dataset Numbers of NRs Numbers of Non-NRs

Training Dataset 474 500
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proposed to represent NR sequences by 400-dimension
vectors, which captured local-order information and
had been reported to improve classifications [11]. In
addition, Gao et al. [14] used the concept of Chou’s
pseudo amino acid composition to represent each protein
sequence by numerical features, which reflected a
protein’s overall sequence pattern. Recently, a web
server called Pse-in-One [35] was established, which
can generate various protein features to construct the
predictor. Based on all works mentioned above, here
three kinds of feature-derived methods, AAC, CTF,
CGR, are employed to capture pivotal information of
NR sequences.

Amino acid composition
Amino acid composition (AAC) was the most popular
and also simplest way to represent protein sequences,
and it is believed to be the fundamental features to
perform protein prediction problems.
More precisely, a protein sequence P with L amino

acid residues can be expressed as:

P ¼ R1R2R3R4R5⋯RL:

The AAC of a protein is defined as the normalized
frequency of each amino acid in that protein; i.e.,

AAC ¼ ½f 1; f 2; f 3;⋯; f 20�T ;
where f i ¼ ni

L , and ni is the occurrence number of the
i-th amino acid with each i(i = 1,⋯, 20).

Conjoint triad feature
Conjoint triad feature (CTF) was originally used to trans-
form protein sequences into 343-dimension numerical vec-
tors for successfully predicting PPI [18], and was extended
to predict RPI [19, 20], enzyme function [21], functional re-
lated proteins [23]. CTF clustered 20 amino acids into
seven classes ({AGV}, {ILFP}, {YMTS}, {HNQW}, {RK},

{DE}, {C}) according to their dipoles and volumes of the
side chains [18]. Subsequently, they regarded any three con-
tinuous amino acids as a unit. It is worthy to note that the
triads can be categorized according to the classes of amino
acids, i.e., triads composed by three amino acids belonging
to the same classes can be treated identically. Finally, CTF
counts the frequencies of each triad type. By this way, each
protein sequence is represented by a 343 (7 × 7 × 7) dimen-
sional vector.
More precisely, a protein sequence P with L amino

acid residues can be expressed as:

P ¼ R1R2R3R4R5⋯RL:

Then we successively consider sliding windows with
continuous three residues R1R2R3, R2R3R4, R3R4R5, ⋯,
RL − 2RL − 1RL. The CTF of a protein is defined as the nor-
malized frequency of the corresponding 3-mer in that
protein; i.e.,

CTF ¼ f 1; f 2; f 3⋯; f 343½ �T ;
where f i ¼ ni

L−2 , and ni is the occurrence number of
the i-th triad type of all continuous three residues with
each i(i = 1,⋯, 343). More detailed description for the
CTF can be found in the following literatures [18, 23].

Chaos game representation
The chaos game representation (CGR) algorithm of pro-
teins is first proposed by Basu et al. [26]. The algorithm
of CGR picture drawing is listed as below:
Step 1. Draw a 12-sided regular polygon, and each

vertex represents a kind group of amino acids (Fig. 1.);
Step 2. Pick the center of polygon P0 to be the initial

point;
Step 3. Given a protein sequence with length N, we

draw N points in the polygon by the following way: In
turn we read alphabet from the protein sequence, since
each read belongs to one group of amino acids, then we

Table 2 The detailed GPCRs subfamilies of dataset

NRs family Subset Number of proteins
from NucleaRDB

Number of proteins after
CD-HIT (cut off threshold 0.6)

D159 (cut off threshold 0.6) D282 (cut off threshold 0.9)

Thyroid hormone like NR1 1172 162 50 114

HNF4-like NR2 736 140 36 72

Estrogen like NR3 704 82 37 75

Nerve Growth factor IB-like NR4 119 23 7 -

Fushi tarazu-F1 like NR5 151 29 12 21

Germ cell nuclear factor like NR6 41 7 5 -

Knirps like NR7 47 21 12 -

DAX like NR8 46 10 - -

Overall 3016 474 159 282

Wang and Hu BMC Bioinformatics  (2015) 16:402 Page 4 of 13



determine a certain vertex of polygon and draw the mid-
point between initial point P0 and the chosen vertex.
After finishing drawing one point, we set it to be the
new initial point, and we can draw N points with such
iteration.
More precisely, if we denote P0(0, 0) as the center of

the polygon and V1(1, 0) as the first vertex of the poly-
gon, we can easily get coordinates of the other eleven
vertexes with the following formula:

Vk xð Þ ¼ cos
k−1
6

π

Vk yð Þ ¼ sin
k−1
6

π
k ¼ 2; 3;⋯; 12:

8><
>:

ð1Þ

Then we compute coordinates of each CGR point as
follows:

CGRi xð Þ ¼ 1
2

CGRi−1 xð Þ þ V i xð Þð Þ
CGRi yð Þ ¼ 1

2
CGRi−1 yð Þ þ V i yð Þð Þ

i ¼ 1; 2;⋯; N ;

8><
>:

ð2Þ
where CGRi(x, y) refers to the coordinate of the i-th
point drawn in the CGR picture, and Vi(x, y) represents
the coordinate of chosen vertex by the i-th read (each
read determines a certain vertex of polygon).
The CGR algorithm can generate an image that

contains fractal structure and visually reveal previously
unknown structure information for each concatenated
amino acid sequences. Furthermore, for the sake of
operable mathematical classification, a mathematical
characterization of the CGR picture will be needed. We

extract the frequency information of each segment by
dividing the 12-sided polygon into 24 segments (grids),
which are labeled serially with numbers 1–24, as shown
in Fig. 1.
For each segment, i.e. Sk, k = 1, 2,⋯, 24, we denote by

Lk, k = 1, 2,⋯, 24 the number of points which fall into
Lk. The points falling on boundaries of adjacent seg-
ments should be counted in any one of the neighboring
segment. Then set

Dk ¼ Lk
N

; k ¼ 1; 2;⋯; 24; ð3Þ

where N is the length of amino acid sequence. From the
above CGR and segment-counting algorithm, we find
that each amino acid sequence induces a 24-dimensional
vector (D1,⋯,D24).

Support vector machines
A support vector machine (SVM) performs a nonlinear
mapping of the input vector x from the input space, the
(a positive integer) dimensional euclidean space, into a
higher dimensional Hilbert space, where the mapping is
determined by the kernel function. It finds the Optimal
Separating Hyper plane (OSH) in the space H corre-
sponding to a non-linear boundary in the input space.
For a given data set, only the kernel function and the re-
gularity parameter C must be selected. A complete de-
scription to the usage of SVMs for pattern recognition
could be found in [36]. In this study, the RBF kernel
function (with a parameter γ) is adopted and the imple-
mentation of SVM is based on LibSVM 3.17, which is an
open source that can be downloaded in the website:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.

Evaluation of the prediction performance
Usually, in statistical prediction, the following three
criteria are often used to examine a predictor for its
effectiveness in practical application: self-consistency test
(re-substitution test), subsampling (K-fold cross-validation)
test and jackknife test [37]. Particularly, the jackknife test
often can be used to examine a predictor for its effective-
ness in practical application [37] because the jackknife test
is deemed the most rigorous one that can exclude the
memory effects during the entire testing process and can
always yield a unique result for a given dataset, as eluci-
dated in [38] and demonstrated by [32]. In this paper, on
the one hand, when comparing with other methods, we
adopt the jackknife test following the original test method.
On the other hand, to test the performance of our hybrid
method, we choose 10-fold cross-validation due to the
new larger dataset.
Generally, the performance of the prediction method is

measured by sensitivity (Sens), specificity (Spec), accuracy

Fig. 1 CGR picture. The segments labeled serially with numbers 1–24.
(Also can be found in the reference ([30])
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(Acc) and Matthew’s correlation coefficient (MCC) value,
calculated as:

Sens ¼ TP
TP þ FN

Spec ¼ TN
TN þ FP

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

where TP means the number of true positives (NRs pre-
dicted as NRs) in one experiment, FN means the num-
ber of false negatives (NRs predicted as non-NRs), TN
means the number of true negatives (non-NRs predicted
as non-NRs), FP means the number of false positives
(non-NRs predicted as NRs). Additionally, to test the
balance between true positive rate and false positive rate,
we also draw the receive operating characteristic (ROC)
curves and compute the corresponding the area under
the curve (AUC) values (The AUC for a perfect classifier
is 1, and for a random classifier is 0.5).
Moreover, for the second level of multi – class classifi-

cation problem, in order to compute the predicting per-
formance of each class, we follow the evaluation criteria
described in [39]. Firstly, four indexes of each subfamily
are computed based on Equation 6:

TP ið Þ ¼ Nþ ið Þ−Nþ
− ið Þ

TN ið Þ ¼ N− ið Þ−N−
þ ið Þ

FP ið Þ ¼ Nþ
− ið Þ

FN ið Þ ¼ N−
þ ið Þ

; i ¼ 1; 2;…; 8:

8>><
>>:

ð6Þ

where N+(i) is the total number of the samples in the
subset NRi, whereas N−

+(i) is the number of samples in
NRi that are incorrectly predicted belonging to the other
subsets, and N−(i) is the total number of samples in all
of the other subsets, whereas N+

−(i) is the number of
samples that are incorrectly predicted belonging to NRi.
Subsequently, the performance of predicting method
about each subfamily is evaluated by:

Results and discussion
Predicting NRs and their subfamilies
Firstly, this work focuses on how to seek the best combi-
nations of three groups of feature-derived methods, i.e.
AAC, CTF, CGR, to predict nuclear receptors (NRs) and
their subfamilies. At the first level, an un-annotated pro-
tein is predicted to be either an NR or a non-NR. If it is
classified as a NR, it will be further put into the second
level, which will classify a NR into one of the eight sub-
families. The detailed flowchart can be found in Fig. 2.
In order to seek the optimal combined features in the

feature space, a series of comparative experiments are
carried on via 10-fold cross-validation test. More pre-
cisely, all the protein sequences are randomly divided
into ten groups for the following ten folds, and in each
fold, one group is used for testing and other nine groups
are used for training. Subsequently, a SVM classifier is
trained by using inputting feature vectors and class la-
bels (1 for NR; 0 for non-NR) extracted from the train-
ing dataset.
The numerical experiments are designed on seven groups

of feature sets. Feature set 1: AAC features (20-dimen-
sional); Feature set 2: CGR features (24-dimensional); Fea-
ture set 3: CTF features (343-dimensional); Feature set 4:
AAC and CGR features (20 + 24 = 44-dimensional); Feature
set 5: AAC and CTF features (20 + 343 = 363-dimensional);
Feature set 6: CGR and CTF features (24 + 343 = 367-di-
mensional); Feature set 7: AAC together with CGR and
CTF features (20 + 24 + 343 = 387-dimensional).
The detailed results which include average values of

Sens, Spec, Acc, MCC and AUC in identifying the NR
proteins from non-NR proteins are listed in Table 3.
From Table 3, for the first level, the average Accs range
from 0.8511 to 0.9630, and the average MCCs range
from 0.7022 to 0.9261, and the average AUCs range
from 0.9290 to 0.9923. Particularly, Feature set 5, i.e.
CTF + AAC features, performs the best results, and the
average Acc achieves 96.30 % with the optimal parame-
ters γ = 0.1899,C = 10.1197. Additionally, ROC curves of
all seven different feature sets are shown in Fig. 3.
The results in identifying eight main NR families are

listed in Table 4, from which we could find that the

Sens ið Þ ¼ TP ið Þ
TP ið Þ þ FN ið Þ

Spec ið Þ ¼ TN ið Þ
TN ið Þ þ FP ið Þ

Acc ið Þ ¼ TP ið Þ þ TN ið Þ
TP ið Þ þ FP ið Þ þ TN ið Þ þ FN ið Þ

MCC ið Þ ¼ TP ið Þ � TN ið Þ−FP ið Þ � FN ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP ið Þ þ FN ið ÞÞ TP ið Þ þ FP ið Þð Þ TN ið Þ þ FP ið Þð Þ TN ið Þ þ FN ið ÞÞððp

; i ¼ 1; 2;⋯8:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ
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overall Senss range from 0.6772 to 0.9473, and the
overall MCCs range from 0.6311 to 0.9397. Particularly,
Feature set 5, CTF + AAC features, performs the best
results, and the overall Sens achieves 94.73 % and
overall MCC value achieves 0.9397.

Comparing the predicting results of different combina-
tions of features, it is worthy to note three important
phenomena. Firstly, Feature set 5, CTF +AAC features,
achieves the best performance both in the first level and in
the second level, which means that the impact of jointly
considering CTF and AAC features is excellent. Secondly,
Feature set 3, CTF features, surprisingly achieves the sec-
ond best performance after Feature set 5, which implies
that CTF features alone may achieve relatively good results.
Particularly, if we compare the predicting performances be-
tween Feature set 3 and Feature set 6 (Table 3 and Table 4),
we find that the overall acc unexpectedly reduces from
0.9430 to 0.9409 (Table 4) or remains equal (Table 3) when
CGR features are added to CTF features, demonstrating
that CGR features cannot provide useful helps in predicting
NRs and their subfamilies. Thirdly, the differences between
Feature set 5 and Feature set 3 are rather small, indicating
that AAC features contribute little to predictions.

Fig. 2 Flowchart to describe the operation process

Table 3 Results in identifying the NR proteins from non-NR
Proteins

Feature set Dimension Sens Spec Acc MCC AUC

AAC 20 0.9388 0.9320 0.9353 0.8706 0.9923

CGR 24 0.8567 0.8460 0.8511 0.7022 0.9290

CTF 343 0.9346 0.9880 0.9620 0.9240 0.9920

AAC + CGR 44 0.9388 0.9240 0.9312 0.8624 0.9923

AAC + CTF 363 0.9451 0.9800 0.9630 0.9261 0.9923

CTF + CGR 367 0.9409 0.9820 0.9620 0.9246 0.9915

CTF + CGR + AAC 387 0.9409 0.9800 0.9610 0.9220 0.9914

(10-fold cross-validation test)
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Those above results lead us to conclude that CTF is
an important feature in prediction of NRs and their sub-
families. When feature combinations are AAC (or CGR)
with CTF feature lost, the average Acc of first level and
second level are at most 93 % and 71 % respectively,
whereas the average accuracy of first level and second
level have promoted up to 96 % and 94 % respectively
when CTF feature is added.
At the second level, for the purpose of investigating

the detailed predicting performances of each subfam-
ilies between the two best feature set (Feature set 5
and Feature set 3), we list more detailed predicting
information which includes specific values of Sens,
Spec, Acc, MCC in each subfamilies in Table 5. It is
noteworthy that Feature set 3 and Feature set 5 both
perform satisfactory results, and the overall Sens
achieve 0.9430 and 0.9473 respectively, which also
illustrates that among all the 474 NRs, 447 NRs and
449 NRs are correctly classified into their original
subfamilies respectively.

Comparisons with other methods at the first level
Many existing methods have classified NRs at a sin-
gle level. In order to explain the superiority of our
hybrid methods, we implement our algorithms on
the same dataset (D159, 159 NRs, seven subfamilies)
in NR-2L [15] and iNR-PhysChem [16] via the same
test method-jackknife test. As a result, we list the
detailed comparisons between our methods (Feature
set 1-7) and existing methods (NR-2L, iNR-PhysChem)
in Table 6.
From Table 6, as was expected, Feature set 5 again

achieves the best predicting performances, which in-
cludes Acc value with 98.79 % and MCC value with
0.9667, higher than 92.56 %, 0.8500 from NR-2L [15]
and 98.18 %, 0.9600 from iNR-PhysChem respectively.
As same as before, Feature set 3 also achieves the second
best results and the differences between Feature set 3
and Feature set 5 are also very small. Another note-
worthy thing is that the predicting performances of
Feature set 3,5,6,7 from our methods are all better than

Fig. 3 Receiver operating characteristic (ROC) curves for NRs predictions. ROC curves illustrate the trade-off between true positive rate and false
positive rate for SVM classifiers, by using seven different groups of feature combinations on new dataset D474

Table 4 Success rates in identifying eight main NR families

Feature set Dimension Overall Sens Overall MCC Gamma C

AAC 20 0.7173 0.6769 2.0231 71.8882

CGR 24 0.6772 0.6311 1.0098 77.9671

CTF 343 0.9430 0.9349 0.0192 11.0849

AAC + CGR 44 0.7806 0.7492 2.5595 13.0576

AAC + CTF 363 0.9473 0.9397 0.0159 10.3440

CTF + CGR 367 0.9409 0.9325 0.0015 104.92

CTF + CGR + AAC 387 0.9409 0.9325 0.0138 11.6455

(10-fold cross-validation test)
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NR-2L and iNR-PhysChem. The comparisons above
indicate that our method has achieved a higher overall
accuracy on the same benchmark datasets than some
previous methods.

Comparisons with other methods at the second level
We also make comparison with NR-2L [15] and iNR-
PhysChem [16] developed on dataset D159 (159 NRs,
seven subfamilies) at the second level. NR-2L is the first
classifier for predicting NRs at two levels with seven
subfamilies. We implement our method on D159 at the
second level via the same test method-jackknife test. All
the detailed results and comparisons between our method
(Feature set 3) and existing methods (NR-2L, iNR-
PhysChem) are listed in Table 7.
Predicting results from Table 7 demonstrate that

CTF method results in an overall Sens of 93.71 % at
the second level of D159 dataset, higher than 88.68 %
from NR-2L and 92.45 % from iNR-PhysChem. Sig-
nificantly, comparing NR-2L and iNR-PhysChem, pre-
dicting performance increases five and two percent by
using CTF method respectively. These results indicate

that the proposed method of this paper outperforms
NR-2L and iNR-PhysChem at the second levels.

NR proteins and non-NR proteins display distinct CTF-feature
properties
Above results demonstrate that CTF method shows super-
iority both in the first level and in the second level when
comparing existing methods and other methods. Next, for
the propose of investigating “intrinsic features” among CTF
features, we perform the statistical test between 474 NR
proteins and 500 non-NR proteins for each feature which is
taken from 343 CTF features (two-side Wilcoxon rank-sum
test). As a result, 279 of the overall 343 features show
significant differences between NR proteins and non-
NR proteins (p < 0.01, each detailed p-value can be
found in the Additional file 2). Among all the features, the
most two significant features are the 35th feature
({C}-{RK}-{AGV}) and 239th feature ({AGV}-{C}-{RK})
(corresponding p-values are 2.83 × 10− 113, 1.28 × 10− 109

respectively). For the convenience of following analysis,
we list the names and their corresponding p-values of
the top 50 significant features in the Table 8. It is

Table 5 Predicting performance in identifying eight main NR families based on Feature set 3 and Feature set 5

NR Subfamily CTF CTF + AAC

Sens(i) Spec(i) Acc(i) MCC(i) Sens(i) Spec(i) Acc(i) MCC(i)

NR1 158/162 = 0.9753 0.9519 0.9599 0.9135 158/162 = 0.9753 0.9551 0.9620 0.8966

NR2 132/140 = 0.9429 0.9700 0.9620 0.9091 133/140 = 0.95 0.9731 0.9663 0.9189

NR3 77/82 = 0.9390 0.9949 0.9852 0.9479 78/82 = 0.9512 0.9949 0.9873 0.955

NR4 20/23 = 0.8696 1 0.9937 0.9294 20/23 = 0.8696 1 0.9937 0.9294

NR5 27/29 = 0.9310 1 0.9958 0.9627 27/29 = 0.9310 1 0.9958 0.9627

NR6 5/7 = 0.7143 1 0.9958 0.8434 5/7 = 0.7143 1 0.9958 0.8433

NR7 20/21 = 0.9524 1 0.9979 0.9748 20/21 = 0.9524 1 0.9979 0.9748

NR8 8/10 = 0.8 1 0.9958 0.8925 8/10 = 0.8 1 0.9958 0.8340

Overall 447/474 = 0.9430 0.9919 0.9858 0.9349 449/474 = 0.9473 0.9925 0.9868 0.9397

(10-fold cross-validation test)

Table 6 Comparisons with NR-2L and iNR-PhysChem at a single level (jackknife test)

Feature Dimension Acc MCC Independent test dataset

AAC 20 0.9348 0.8288 0.9504

CGR 24 0.8847 0.7693 0.8268

CTF 343 0.9863 0.9625 0.9831

AAC + CGR 44 0.9439 0.8457 0.9410

AAC + CTF 363 0.9879 0.9667 0.9878

CTF + CGR 367 0.9863 0.9727 0.9850

CTF + CGR + AAC 387 0.9848 0.9583 0.9878

NR-2L 881 0.9256 0.8500 0.9803

iNR-PhysChem 1000 0.9818 0.9600 -
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noteworthy that the p-values of the top-50 significant
features are all below 1.00 × 10− 23, which means that these
top-50 features all display distinct properties between 474
NR proteins and 500 non-NR proteins. It leads us to con-
sider these top- 10 (or top-50) significant features are the
“intrinsic features” in identifying NR proteins.

Relative importance of significant CTF features
To further verify these top-10 (or top-50) significant fea-
tures are the “intrinsic features” in identifying NR proteins,
we perform a detailed analysis of relative important of these
features. Precisely, considering that these top-10 (or top-50)
significant features are particularly importance for NR

Table 7 Comparisons with NR-2L and iNR-PhysChem at the second level (jackknife test)

NR
Subfamily

CTF NR-2L iNR-PhysChem

Sens(i) MCC(i) Sens(i) MCC(i) Sens(i) MCC(i)

NR1 49/50 = 0.9800 0.9029 43/50 = 0.8600 0.88 47/50 = 0.9400 0.87

NR2 32/36 = 0.8889 0.8907 31/36 = 0.8611 0.85 35/36 = 0.9722 0.93

NR3 37/37 = 1 0.9660 37/37 = 1.00 0.86 37/37 = 1.00 0.95

NR4 6/7 = 0.8571 0.9228 6/7 = 0.8571 0.70 5/7 = 0.7143 0.84

NR5 10/12 = 0.8333 0.9067 10/12 = 0.8333 0.86 10/12 = 0.8333 0.91

NR6 5/5 = 1 1 5/5 = 1.00 1.00 5/5 = 1.00 1.00

NR0 10/12 = 0.8333 0.9067 9/12 = 0.7500 0.86 8/12 = 0.6667 0.81

Overall 149/159 = 0.9371 0.9266 141/159 = 0.8868 0.87 147/159 = 0.9245 0.91

Table 8 The top-50 significant features in CTF and their p-values

ID Feature p-value ID Feature p-value

1 {C}-{RK}-{AGV} 2.83E-113 26 {HNQW}-{YMIS}-{C} 1.83E-30

2 {AGV}-{C}-{RK} 1.28E-109 27 {ILFP}-{ILFP}-{YMIS} 4.15E-30

3 {C}-{AGV}-{DE} 1.10E-89 28 {AGV}-{ILFP}-{ILFP} 8.51E-30

4 {DE}-{AGV}-{C} 2.48E-89 29 {YMIS}-{ILFP}-{ILFP} 1.25E-29

5 {C}-{RK}-{ILFP} 5.91E-89 30 {YMIS}-{YMIS}-{C} 1.34E-29

6 {C}-{DE}-{AGV} 1.08E-85 31 {YMIS}-{AGV}-{YMIS} 1.70E-29

7 {YMIS}-{C}-{DE} 1.33E-72 32 {RK}-{AGV}-{C} 9.04E-29

8 {RK}-{C}-{ILFP} 3.69E-72 33 {YMIS}-{AGV}-{AGV} 1.34E-28

9 {RK}-{RK}-{C} 2.15E-54 34 {YMIS}-{AGV}-{C} 3.07E-28

10 {AGV}-{C}-{AGV} 1.37E-48 35 {ILFP}-{HNQW}-{DE} 1.03E-27

11 {YMIS}-{C}-{RK} 1.93E-46 36 {HNQW}-{YMIS}-{AGV} 1.21E-27

12 {RK}-{C}-{HNQW} 1.15E-42 37 {RK}-{RK}-{YMIS} 1.93E-27

13 {ILFP}-{RK}-{RK} 3.18E-41 38 {RK}-{YMIS}-{ILFP} 1.06E-26

14 {HNQW}-{RK}-{C} 2.37E-40 39 {RK}-{ILFP}-{ILFP} 2.32E-26

15 {YMIS}-{YMIS}-{YMIS} 7.58E-40 40 {ILFP}-{YMIS}-{YMIS} 3.03E-26

16 {RK}-{AGV}-{ILFP} 5.18E-37 41 {ILFP}-{AGV}-{C} 5.91E-26

17 {HNQW}-{HNQW}-{C} 1.32E-36 42 {RK}-{HNQW}-{C} 1.57E-25

18 {AGV}-{DE}-{RK} 4.68E-36 43 {ILFP}-{YMIS}-{ILFP} 2.26E-25

19 {ILFP}-{ILFP}-{RK} 4.00E-34 44 {DE}-{RK}-{AGV} 2.62E-25

20 {AGV}-{AGV}-{YMIS} 1.25E-33 45 {ILFP}-{YMIS}-{DE} 5.45E-25

21 {C}-{ILFP}-{AGV} 2.43E-33 46 {C}-{AGV}-{AGV} 7.34E-25

22 {YMIS}-{YMIS}-{ILFP} 2.21E-31 47 {YMIS}-{ILFP}-{HNQW} 9.15E-25

23 {ILFP}-{ILFP}-{ILFP} 2.27E-31 48 {C}-{HNQW}-{AGV} 1.05E-24

24 {AGV}-{YMIS}-{YMIS} 4.38E-31 49 {YMIS}-{ILFP}-{YMIS} 3.83E-24

25 {AGV}-{YMIS}-{AGV} 8.37E-31 50 {C}-{HNQW}-{YMIS} 4.09E-24
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proteins predictions, we ask whether our prediction model
could be simplified by using these top-10 (or top-50) fea-
tures alone.
To answer this question, we adopt a two-direction

strategy to demonstrate the importance of these signifi-
cant features. One is to perform the predictions by using
only top-10 (or top-50) features, whereas another is to
perform the predictions by using the remaining CTF
features with top-10 (or top-50) features (denote by
“CTF-10”, or “CTF-50”) taken away. Remarkably, the
performance of the simplified (top-50 significant features,
Acc = 0.9528) and the full (343 CTF features, Acc = 0.9620)
models is not significantly different (Table 9), whereas the
difference between the performance of the CTF-50 model
(CTF features with top-50 features taken away, 293 fea-
tures, Acc = 0.9035) and the performance of the full model
(343 CTF features, Acc = 0.9620) is obviously large (Table 9).
Our findings indicate that the top-50 significant features
are truly “intrinsic features” in identifying NR proteins, and
we surmise these features contain substantial conserved
motif information of NR proteins.

Further discussion
With the purpose of supporting our method, a further
discussion is proposed. The results mentioned in Table 6
and 7 show that our novel method is superior to NR-2L
and iNR-PhysChem. Investigates its reason, the CTF
method plays a crucial role in predicting NRs. According
to reports, amino acid composition (AAC) are simplest
but effective features in predicting NRs [11, 13, 14],
however, only AAC features are insufficient with a lake
of sequence order information. To compensate for this
deficiency, CTF- and CGR-based method is proposed in
this research. From the results of Tables 3 and 4, the best
accuracy achieves in the group with combined features of
CTF and AAC. Moreover, the detailed comparisons be-
tween different features show an interesting phenomenon.
On the one hand, we find that CTF are fundamental fea-
tures and each group with absence of CTF achieves unsat-
isfied accuracy from the detailed results of Tables 3 and 4.
On the other hand, although only CTF features cannot

achieve the best accuracy, the predicting performances of
only CTF features are good enough, so that they are
already better than the two existing methods (NR-2L and
iNR-PhysChem).
Taking above results into consideration, it is worthy to

explore the reasons why CTF features are important for
predicting NRs. Let us recall what CTF was and the rela-
tionship between CTF and prediction of protein-protein
interactions (PPIs). In 2007, CTF originally was pro-
posed to solve PPIs prediction problems [18]. The au-
thors took the attitude that PPIs were mostly dominated
by electrostatic and hydrophobic interactions between
amino acids from interacting proteins, which might be
reflected by the dipoles and volumes of the side chains
of amino acids, respectively. Subsequently, 20 kinds of
amino acids were classified into seven classes based on
their dipoles and their volumes of the side chains. The
amino acids belong to the same class were considered to
have similar electrostatic and hydrophobic properties.
Finally, any continuous amino acids were considered as
a unit, from which 343 numerical features were ex-
tracted based on their conjoint electrostatic and hydro-
phobic properties. The CTF method based on conjoint
electrostatic and hydrophobic properties naturally was
extended to study RNA-protein interactions [19, 20] for
the reasons that RNA-protein interaction also might be
influenced by electrostatic and hydrophobic interactions
between amino acid (from protein) and nucleic acid
(from RNA) similarly.
In situation of predicting NRs, proteins which prob-

ably are considered as NRs mostly are involved in sev-
eral interactions, including between small molecules (in
cytoplasm, through LBD), between other proteins and
between DNA (in nucleus, through DBD). All these in-
teractions are related to electrostatic and hydrophobic
interactions, which might be the reasons why CTF
method can get better performances than other existing
methods in this study.

Conclusions
Nuclear receptors play a vitally important role in many
processes of transcriptional regulations. The conjoint
triad feature clusters 20 amino acids into seven classes
according to their dipoles and volumes of the side
chains. Any three continuous amino acids are regarded
as a unit, from which 343 features can be extracted. The
chaos game representation algorithm presents each pro-
tein sequence to a CGR picture with an iterated fractal
approach. CGR pictures are divided into different seg-
ments, from which 24 quantitative features are extracted
by computing the frequencies of points in each of the
segments. We combine two factors (CTF, CGR) with
amino acid composition as the candidate features which

Table 9 Relative importance of the top-50 significant features

Feature Dimension D159 D474

Acc MCC Acc MCC

CTF 343 0.9863 0.9625 0.9620 0.9240

Top-10 10 0.9621 0.9241 0.9312 0.8624

Top-50 50 0.9772 0.9545 0.9538 0.9076

CTF-10 333 0.9681 0.9363 0.9384 0.8768

CTF-50 293 0.9408 0.8816 0.9035 0.8070

NR-2L 881 0.9256 0.8500 - -

iNR-PhysChem 1000 0.9818 0.9600 - -
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are used to predict NRs and their subfamilies by SVM
based on a newly building dataset.
Taking the results into consideration, on the one hand,

we can find the highest predicting Acc and MCC value
achieve in the combination of CTF and AAC, with the
best average accuracy of 96.30 % and MCC value of
0.9261 at the first level by 10-fold cross-validation. At
the second level, the combined features of CTF and
AAC also get the best overall Sens of 94.73 %. It is note-
worthy that only CTF features also achieve the satisfac-
tory results, average accuracy is 96.20 % for the first
level and the overall Sens is 94.30 % for the second level.
The differences between CTF + AAC features and only
CTF features are not significant. These considerable
results suggest that CTF method is an effective way
to predict NRs and their subfamilies.
Considering the importance of CTF method, we further

analyze each feature from CTF method by statistical sig-
nificant test. As a result, we select the top-50 significant
features by ranking the p-value of statistical test. At last, a
simplified model with only these 50 features is used to
predict NRs and achieve average accuracy of 95.28 %
(comparing CTF +AAC, 96.30 %). Another remaining fea-
ture set with those top-50 significant features taken away
(343–50 = 293 dimensional) is designed to predict NRs
and the corresponding average accuracy falls to 90.35 %.
These analyses of relative importance lead us to conclude
that the top-50 significant features are “intrinsic features”
for predicting NRs from non-NRs.
Actually, so far several papers addressed the problem

of predicting NRs [11, 13–16]. Among them, Wang et al.
[15] constructed a predicting model, called NR-2L. They
studied several groups of features from the primary
sequence and predicted NRs and their subfamilies by
Fuzzy K nearest neighbor (FK-NN) classifier both in a
non-redundant training set and an independent dataset.
Finally, they got the results with accuracy of 92.56 % and
of 88.68 % respectively. To compare with the existing
methods NR-2L [15] and iNR-PhysChem [16], we pre-
dict the same datasets mentioned in NR-2L with our
model. We find that accuracies and MCC values sig-
nificantly increase to 98.79 % (NR-2L: 92.56 %; iNR-
PhysChem: 98.18 %) and 93.71 % (NR-2L: 88.68 %;
iNR-PhysChem: 92.45 %) with the introduction of our
CTF-based method. The comparisons to the previous
works demonstrate that our CTF-based method out-
performs the existing methods.
On the base of all the above efforts, we conclude that

our CTF-based method adds some new contributions in
the area of predicting NRs and their subfamilies:

(1)New contribution to dataset: Although D159 is an
excellent benchmark dataset, it was constructed in
2011 on the base of NucleaRDB release 5.0.

Actually, NucleaRDB updated its contents in 2012
with more NR protein sequences added. The dataset
which is built in this paper increase NR protein
sequences from 159 (D159) to 474, most of which
are newly added to the subsequent study.

(2)New contribution to methodology: CTF method
was originally invented for predicting protein-protein
interactions, and it was extended to identify
RNA-protein interactions. Although CTF method
is not a newly invented method, to our best
knowledge, no reports employed it to predict NRs
and their subfamilies. In this paper, we employ CTF
method to perform such a prediction and obtain
some improvements comparing existing methods.

(3)New contribution to the feature selection:
Furthermore, each component of CTF features is
analyzed via the statistical significant test, and the
resulting top-50 features (ranking by p-value) are
considered as the “intrinsic features” in predicting
NRs based on the analysis of relative importance.

In conclusion, a CTF-based method is proposed and the
detailed results imply that this method is an effective way
to predict NRs and their subfamilies. For the future effort,
user-friendly and publicly accessible web-servers represent
a future direction for developing practically more useful
models, simulated methods, or predictors [40-42], and we
shall make efforts in our future work to provide a web-
server for the method presented in this paper.
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