
RESEARCH ARTICLE Open Access

Scalable analysis of Big pathology image
data cohorts using efficient methods and
high-performance computing strategies
Tahsin Kurc1*, Xin Qi2,8, Daihou Wang3, Fusheng Wang1,4, George Teodoro1,5, Lee Cooper6, Michael Nalisnik6,
Lin Yang7, Joel Saltz1 and David J. Foran2,8

Abstract

Background: We describe a suite of tools and methods that form a core set of capabilities for researchers and
clinical investigators to evaluate multiple analytical pipelines and quantify sensitivity and variability of the results
while conducting large-scale studies in investigative pathology and oncology. The overarching objective of the
current investigation is to address the challenges of large data sizes and high computational demands.

Results: The proposed tools and methods take advantage of state-of-the-art parallel machines and efficient
content-based image searching strategies. The content based image retrieval (CBIR) algorithms can quickly detect
and retrieve image patches similar to a query patch using a hierarchical analysis approach. The analysis component
based on high performance computing can carry out consensus clustering on 500,000 data points using a large
shared memory system.

Conclusions: Our work demonstrates efficient CBIR algorithms and high performance computing can be leveraged
for efficient analysis of large microscopy images to meet the challenges of clinically salient applications in
pathology. These technologies enable researchers and clinical investigators to make more effective use of the rich
informational content contained within digitized microscopy specimens.

Keywords: High performance computing, GPUs, Databases

Background
Examination of the micro-anatomic characteristics of
normal and diseased tissue is important in the study of
many types of disease. The evaluation process can reveal
new insights as to the underlying mechanisms of disease
onset and progression and can augment genomic and
clinical information for more accurate diagnosis and
prognosis [1–3]. It is highly desirable in research and
clinical studies to use large datasets of high-resolution
tissue images in order to obtain robust and statistically
significant results. Today a whole slide tissue image
(WSI) can be obtained in a few minutes using a state-of-
the-art scanner. These instruments provide complex
auto-focusing mechanisms and slide trays, making it

possible to automate the digitization of hundreds of
slides with minimal human intervention. We expect that
these advances will facilitate the establishment of WSI
repositories containing thousands of images for the pur-
poses of investigative research and healthcare delivery.
An example of a large repository of WSIs is The Cancer
Genome Atlas (TCGA) repository, which contains more
than 30,000 tissue images that have been obtained from
over 25 different cancer types.
As it is impractical to manually analyze thousands

of WSIs, researchers have turned their attention to-
wards computer-aided methods and analytical pipe-
lines [4–12]. The systematic analysis of WSIs is both
computationally expensive and data intensive. A WSI
may contain billions of pixels. In fact, imaging a tis-
sue specimen at 40x magnification can generate a
color image of 100,000x100,000 pixels in resolution
and close to 30GB in size (uncompressed). A

* Correspondence: tahsin.kurc@stonybrook.edu
1Department of Biomedical Informatics, Stony Brook University, Stony Brook,
USA
Full list of author information is available at the end of the article

© 2015 Kurc et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kurc et al. BMC Bioinformatics (2015) 16:399
DOI 10.1186/s12859-015-0831-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0831-6&domain=pdf
mailto:tahsin.kurc@stonybrook.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

segmentation and feature computation pipeline can
take a couple of hours to process an image on a sin-
gle CPU-core. It will generate on average 400,000 seg-
mented objects (nuclei, cells) while computing large
numbers of shape and texture features per object.
The analysis of the TCGA datasets (over 30,000 im-
ages) would require 2–3 years on a workstation and
generate 12 billion segmented nuclei and 480 billion
features in a single analysis run. If a segmented nu-
cleus were represented by a polygon of 5 points on
average and the features were stored as 4-byte float-
ing point numbers, the memory and storage require-
ments for a single analysis of 30,000 images would be
about 2.4 Terabytes. Moreover, because many analysis
pipelines are sensitive to input parameters, a dataset
may need to be analyzed multiple times while system-
atically varying the operational settings to achieve
optimized results.
These computational and data challenges and those

that are likely to emerge as imaging technologies gain
further use and adoption, require efficient and scalable
techniques and tools to conduct large-scale studies. Our
work contributes a suite of methods and software that
implement three core functions to quickly explore large
image datasets, generate analysis results, and mine the
results reliably and efficiently. These core functions are:

Function 1: Content-based search and retrieval of images
and image regions of interest from an image dataset
This function enables investigators to find images of
interest based not only on image metadata (e.g., type of
tissue, disease, imaging instrument), but also on image
content and image-based signatures. We have developed
an efficient content-based image search and retrieval
methodology that can automatically detect and return
those images (or sub-regions) in a dataset that exhibit
the most similar computational signatures to a represen-
tative, sample image patch.
A growing number of applications now routinely

utilize digital imaging technologies to support investiga-
tive research and routine diagnostic procedures. This
trend has resulted in a significant need for efficient
content-based image retrieval (CBIR) methods. CBIR has
been one of the most active research areas in a wide
spectrum of imaging informatics fields [13–25]. Several
domains stand to benefit from the use of CBIR including
education, investigative basic and clinical research, and
the practice of medicine. CBIR has been successfully uti-
lized in applications spanning radiology [16, 23, 26, 27],
pathology [21, 28–30], dermatology [31, 32] and cytology
[33–35]. Several successful CBIR systems have been de-
veloped for medical applications since the 1980’s. Some
of these systems utilize simple features such as color his-
tograms [36], shape [16, 34], texture [18, 37], or fuzzy

features [19] to characterize the content of images while
allowing higher level diagnostic abstractions based on
systematic queries [16, 37–39]. The recent adoption and
popularity of case-based reasoning and evidence-based
medicine [40] has created a compelling need for more reli-
able image retrieval strategies to support diagnostic deci-
sions. In fact, a number of state-of-the-art CBIR systems
have been designed to support the processing of queries
across imaging modalities [16, 21, 23–25, 27, 28, 41–44].
Drawing from the previous work, our research and de-

velopment effort has made several significant contribu-
tions in CBIR. To summarize, our team has developed
(1) a library of image processing methods for performing
automated registration, segmentation, feature extraction,
and classification of imaged specimens; (2) data manage-
ment and query capabilities for archiving imaged tissues
and organizing imaging results; (3) algorithms and
methods for automatically retrieving imaged specimens
based upon similarities in computational signatures and
correlated clinical data, including metadata describing
the specified tissue and physical specimen; and (4) com-
ponents for analyses of imaged tissue samples across
multi-institutional environments. These algorithms,
tools and components have been integrated into a soft-
ware system, called ImageMiner, that supports a range of
tissue related analyses in clinical and investigative oncol-
ogy and pathology [45–49].

Function 2: Computing quantitative features on images
by segmenting objects, such as nuclei and cells, and
computing shape and texture features for the delineated
structures
This function gleans quantitative information about
morphology of an imaged tissue at the sub-cellular scales.
We have developed a framework that utilizes CPUs and
GPUs in a coordinated manner. The framework enables
image analysis pipelines to exploit the hybrid architectures
of modern high-performance computing systems for
large-scale analyses.
The use of CPU-GPU equipped computing systems is

a growing trend in the high performance computing
(HPC) community [50]. Efficient utilization of these ma-
chines is a significant problem that necessitates new
techniques and software tools that can optimize the
scheduling of application operations to CPUs and GPUs.
This challenge has motivated several programming lan-
guages and runtime systems [51–62] and specialized li-
braries [63]. Ravi et al. [60, 61] proposed compiler
techniques coupled with runtime systems for execution
of generalized reductions in CPU-GPU machines.
Frameworks such as DAGuE [59] and StarPU [54] sup-
port regular linear algebra applications on CPU-GPU
machines and implement scheduling strategies that
prioritize computation of tasks in the critical path of

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 2 of 21

execution. The use of HPC systems in Biomedical In-
formatics research is an increasingly important topic,
which has been the focus of several recent research ini-
tiatives [46, 48, 57, 58, 64–70]. These efforts include
GPU-accelerated systems and applications [71–78].
A major concentration for our team has been the de-

velopment of algorithms, strategies and tools that facili-
tate high-throughput processing of large-scale WSI
datasets. We have made several contributions in ad-
dressing and resolving several key issues: (1) Some
image analysis operations have regular data access and
processing patterns, which are suitable for parallelization
on a GPU. However, data access and processing patterns
in some operations, such as morphological reconstruc-
tion and distance transform operations in image seg-
mentation, are irregular and dynamic. We have
developed a novel queue based wavefront propagation
approach to speed up such operations on GPUs, multi-
core CPUs, and combined CPU-GPU configurations
[79]; (2) Image analysis applications can be implemented
as hierarchical data flow pipelines in which coarse-grain
stages are divided into fine-grain operations. We have
developed runtime to support composition and execu-
tion of hierarchical data flow pipelines on machines with
multi-core CPUs and multiple GPUs [80, 81]. Our ex-
periments showed significant performance gains over
single program or coarse-grain workflow implementa-
tions; (3) Earlier work in mapping and scheduling of ap-
plication operations onto CPUs and GPUs primarily
targeted regular operations. Operations in image analysis
pipelines can have high variability with respect to GPU
accelerations and their performances depend on input
data. Hence, high throughput processing of datasets on
hybrid machines requires more dynamic scheduling of
operations. We have developed a novel priority-queue
based approach that takes into account the variability in
GPU acceleration of data processing operations to per-
form better scheduling decisions [80, 81]. This seemingly
simple priority-queue data structure and the associated
scheduling algorithm (which we refer to as performance
aware scheduling technique) have showed significant
performance improvements. We have combined this
scheduling approach with other optimizations such as
data locality aware task assignment, data prefetching,
and overlapping of data copy operations with computa-
tions in order to reduce data copy costs. (4) We have in-
tegrated all of these optimizations into an operational
framework.

Function 3: Storing and indexing computed quantitative
features in a database and mining them to classify
images and subjects
This function enables interrogation and mining of large
volumes of analysis results for researchers to look for

patterns in image data and correlate these signatures
with profiles of clinical and genomic data types. We have
developed methods that leverage HPC and Cloud data-
base technologies to support indexing and querying
large volumes of data. Clustering algorithms use heuris-
tics for partitioning a dataset into groups and are shown
to be sensitive to input data and initialization conditions.
Consensus and ensemble clustering approaches aim to
address this problem by combining results from multiple
clustering runs and/or multiple algorithms [82–89]. This
requires significant processing power and large memory
space when applied to large numbers of segmented
objects. For example, when classification and correlation
analyses are carried out on an ensemble of segmented
nuclei, the number of delineated objects of interest may
rise well into the millions. We introduce a parallel
implementation of consensus clustering on a shared-
memory cluster system to scale the process to large
numbers of data elements for image analysis applications.

Methods
Figure 1 illustrates the three functions we have intro-
duced in Section 1 using a high-level image analysis ex-
ample. In this scenario, an investigator is interested in
studying relationships between the properties of nuclei
and clinical and molecular data for tissues that exhibit
features similar to those of Gleason grade 5 prostate
cancer tissue images (see Section 2.1 for a description of
those features). Function 1: The investigator searches
for images in a dataset of WSIs based not only on image
metadata, e.g., prostate cancer tissue, but also based on
whether an image contains patches that are similar to a
given image query patch. The image query patch is a
small image tile containing representative tissue with the
target Gleason grade. In Section 2.1, we describe the
methodologies to perform quick, reliable CBIR. We pre-
sented a high-throughput parallelization approach for
CBIR algorithms in earlier work [49, 90]. Function 2:
The output from Function 1 is a set of images and im-
aged regions that exhibit architecture and staining char-
acteristics which are consistent with the input query
provided by the investigator. In order to extract refined
morphological information from the images, the investi-
gator composes an analytical pipeline consisting of seg-
mentation and feature computation operations. The
segmentation operations detect nuclei in each image and
extract their boundaries. The feature computation oper-
ations compute shape and texture features, such as area,
elongation, and intensity distribution, for each seg-
mented nucleus. The investigator runs this pipeline on a
distributed memory cluster to quickly process the image
set. We describe in Section 2.2 a framework to take ad-
vantage of high performance computing systems, in

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 3 of 21

which computation nodes have multi-core CPUs and
one or more GPUs, for high throughput processing of a
large number of WSIs. Function 3: The analysis of im-
ages can generate a large number of features –the num-
ber of segmented nuclei in a single analysis run can be
hundreds of millions for a dataset of a few thousand im-
ages. The investigator stores the segmentation results in
a high performance database for further analysis. The
next step after the segmentation and feature computa-
tion process is to execute a classification algorithm to
cluster the segmentation results into groups and look for
correlations between this grouping and the grouping of
data based on clinical and molecular information (e.g.,
gene mutations or patient survival rates). A consensus
clustering approach may be preferable to obtain robust
clustering results [91]. In Section 2.3, we present a con-
sensus clustering implementation for shared-memory
parallel machines.

Function 1. Efficient methodology to search for images
and image regions: hierarchical CBSIR
This function facilitates the retrieval of regions of interests
within an image dataset. These regions have similar color,
morphology or structural patterns to those of the query
image patch. In this way, investigators and physicians can
select a set of images based on their contents in addition
to any corresponding metadata such as the type of tissue
and image acquisition device utilized. In this function,
given a query patch, each image within the data set is
scanned in x and y directions systematically detecting each
image patch having the patterns of the query patch [90].
For each candidate image patch, a CBIR algorithm is ap-
plied to check if the image patch is similar to the query
patch. Existing CBIR libraries are mostly focused on nat-
ural or computer vision image retrieval. Our CBIR algo-
rithm is primarily designed to support the interrogation
and assessment of imaged histopathology specimens.

Fig. 1 Functions supported by methods and tools described in this paper. Starting from a dataset of whole slide images, a researcher can
employ methods in Function 1 to select a subset of images based on image content. If an image has a patch that is similar to the query patch,
the image is selected for processing. The selected set of images is then processed through analysis pipelines in Function 2. In the figure, the
analysis pipeline segments nuclei in each image and computes a set of shape and texture features. The segmented nuclei and their features are
loaded to a database for future analyses in Function 3. In addition, the researcher runs a clustering algorithm to cluster nuclei and patients into
groups to look at correlations with groupings based on clinical and genomic data. Clustering, more specifically consensus clustering, requires
significant memory and computation power. Using the methods described in this paper, the research can employ a shared-memory system to
perform consensus clustering

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 4 of 21

This approach is based on a novel method called hier-
archical annular feature (HAF) and a three-stage search
scheme. It provides several benefits: (1) scale and rota-
tion invariance; (2) capacity to capture spatial configur-
ation of image local features; and (3) suitability for
hierarchical searching and parallel sub-image retrieval.

Execution of CBIR process
The CBIR process is executed in three stages: hierarch-
ical searching, refined searching and mean-shift cluster-
ing. The hierarchical searching stage is an iterative
process that discards those candidates exhibiting
signatures inconsistent with the query. This is done in
step-wise fashion in each iteration. The stage begins by
calculating the image features of the inner (first) central
bins for candidate patches and compares them with
those of the query patch. Based on the level of dissimi-
larity between the query patch and the patch being
tested, it removes a certain percentage of candidates
after the first iteration. For the second iteration, it calcu-
lates the image features from the second central bin
only, and further eliminates a certain percentage of can-
didates by computing the dissimilarity with the features
of the query patch from the two inner bins. At the end
of this stage, the final candidates are those that have
passed all prior iterations. These are the candidates that
are most similar to the query patch. The final results are
further refined by computing image features from 8-
equally-divided segments of each annular bin. To rank
the candidates in each step, dissimilarity between the
query’s and the candidate patches’ features is defined as
their Euclidean distances. The hierarchical searching
procedure can greatly reduce the time complexity, be-
cause it rejects a large portion of candidates in each iter-
ation. The number of candidates moving to the next
step is significantly reduced by rejecting the obvious
negative candidates. In the refined searching stage, each
annular bin is equally divided into 8 segments, and
image features in each segment is computed and com-
bined to generate one single feature vector. Due to the

very limited number of candidates passing the hierarch-
ical searching stage, this refined process is not particu-
larly time consuming. In the last stage, a mean-shift
clustering is applied to generate the final searching
results.

Description of the Computation of Hierarchical Annular
Features (HAF)
A given image is segmented into several closed bins with
equal intervals, as shown in Fig. 2. Next, image feature
of each bin is computed and then all the image features
are concatenated to form a single vector, which we call
hierarchical annular feature (HAF). With HAF, the dis-
criminative power of each image patch descriptor is sig-
nificantly improved compared with traditional image
features extracted from the whole image. For medical
images, it is very likely that image patches containing
different structures have quite similar intensity distribu-
tion as a whole, but yet exhibit different HAF signatures.
For the study reported in this paper, we focused on a

representative application focused on prostate cancer.
Prostate cancer is the second leading cause of male
deaths in the U.S. with over 230,000 men diagnosed an-
nually. Gleason scoring is the standard method for
stratifying prostate cancer from onset of malignancy
through advanced disease. Gleason grade 3 typically con-
sists of infiltrative well-formed glands, varying in size
and shapes. Grade 4 consists of poorly formed, fused or
cribriform glands. Grade 5 consists of solids sheets or
single cells with no glandular formation. In recognition
of the complexity of the different Gleason grades, we
utilized two different resolution image features to cap-
ture the characteristics of the underlying pathology of an
ensemble of digitized prostate specimens. At low-
magnification (10X), texture features are extracted to
identify those regions with different textural variance. At
high-magnification (20X), structural features are charac-
terized. This strategy takes advantage of sampling
patches from the whole-slide image while generating fea-
ture quantification at two different resolutions. This

Fig. 2 Content-based image search using hierarchical annular features (HAF). In the first stage of the search operation, an iterative process is
carried out in which a percent of candidate images or image patches are discarded in each iteration. At the end of this stage, successful
candidates are refined in the second stage of processing

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 5 of 21

approach effectively minimizes the computation time
while maintaining a high level of discriminatory per-
formance. Section 3.1 provides the details of the steps
taken to achieve automated analysis of imaged prostate
histology specimens for the purposes of performing
computer-assisted Gleason grading.

Texture features
The Gabor filter is a widely used because of its capacity
to capture image texture characteristics at multiple di-
rections and resolutions. In our work, we use 5 scales,
and 8 directions to build the Gabor filter set. The mean
and variance extracted from the filtered image are used
to build an 80-dimension feature vector.

Structural features
In addition to the spatial structural differences, the dens-
ity of nuclei on glands within the tissue samples in-
creases during the course of disease progression which
is reflected in the assignment of higher Gleason grades.
In the case of Grade 5 images, however, only the nuclei
and cytoplasm are evident with no clear glandular for-
mation. The algorithms that we developed perform color
segmentation to classify ach pixel as nuclear, lumen,
cytoplasm or stroma. Figure 3 illustrates the glandular
nuclei (green cross labeled) and stromal region nuclei
(red cross labeled).

Function 2. High throughput computation of quantitative
measures on hybrid CPU-GPU systems
In most pathology imaging applications it is necessary to
process image sets using a pipeline which performs
image segmentation and a series of computational stages
to generate the quantitative image features used in the
analysis. In this paper, we introduce a nuclear segmenta-
tion pipeline. In the segmentation stage, nuclei in the
image are automatically detected and their boundaries
are extracted. The feature computation stage computes
shape and texture features including area, elongation
and intensity distribution or each segmented nucleus.
These features may then be processed in a classification
stage to cluster nuclei, images and patients into groups.
We provide a detailed description of the high-
performance computing approaches used for managing
and clustering segmented nuclei in Section 2.3. In this
section, we present approaches to enable high through-
put processing of a large set of WSIs in a pipeline of
image segmentation and feature computation stages.
The goal is to reduce the execution times of the pipeline
from days to hours and from weeks to days, when hun-
dreds or thousands of images are to be analyzed.
Modern high performance computing systems with

nodes of multi-core CPUs and co-processors (i.e., mul-
tiple GPUs and/or Intel Xeon Phi’s) offer substantial

computation capacity and distributed memory space.
We have devised a framework, which integrates a suite
of techniques, optimizations, and a runtime system, to
take advantage of such systems to speed up processing
of large numbers of WSIs [81]. Our framework imple-
ments several optimizations at multiple levels of an ana-
lytical pipeline. This includes optimizations in order to
execute irregular pipeline operations on GPUs efficiently
and scheduling of multi-level pipelines of operations to
CPUs and GPUs in coordination to enable rapid pro-
cessing of a large set of WSIs. The runtime system is de-
signed to support high-throughput processing through a
combined bag-of-tasks and dataflow computation pat-
tern. We have chosen this design because of the charac-
teristics of WSI data and WSI analysis pipelines as we
describe below.
A possible strategy for speeding up segmentation of

nuclei on a multi-core CPU is to parallelize each oper-
ation to run on multiple CPU cores. The processing of
an image (or image tile) is partitioned across multiple
cores. When a nucleus is detected, the segmentation of
the nucleus is also carried out on multiple cores. This

Fig. 3 Detected glandular nuclei (rendered with green cross) and
stromal region nuclei (labeled with red-crosses) during the content-
based image search and retrieval process

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 6 of 21

parallelization strategy is generally more applicable for a
data set that has a relatively small number of large ob-
jects, because synchronization and data movement over-
heads can be amortized. A nucleus, however, occupies a
relatively small region (e.g., 8x8 pixels) compared with
the entire image (which can be 100Kx100K pixels). We
performed micro-benchmarks on CPUs and GPUs to in-
vestigate performance with respect to atomic operations,
random data accesses, etc. For instance, in a benchmark
for atomic operations using all the cores available on the
GPU and on the CPU, the GPU was able to execute
close to 20 times more operations than the CPU. When
we evaluated the performance of random memory data
reads, the GPU was again faster – as it performed up to
895 MB/s vs. 305 MB/s for the multi-core CPU in read-
ing operations. These benchmarks showed that the GPU
is more suitable than the CPU for finer-grain
parallelization in our image analysis pipelines and that a
coarser grain parallelization would be better for the
CPU. While a nucleus is small, an image may contain
hundreds of thousands to millions of nuclei. Moreover,
we target datasets with hundreds to thousands of im-
ages. For execution on CPUs, an image level
parallelization with a bag-of-tasks execution model will
be more suitable for these datasets than a parallelization
strategy that partitions the processing of a nucleus
across multiple CPU-cores. Thus, in our framework,
each image in a dataset is partitioned into rectangular
tiles. Each CPU core is assigned an image tile and the
task of segmenting all the nuclei in that image tile –
we have not developed multi-core CPU implementa-
tions of operations in this work for this reason. Mul-
tiple image tiles are processed concurrently on
multiple cores, multiple CPUs, and multiple nodes, as
well as on multiple GPUs when a node has GPUs.
This approach is effective because even medium size
datasets with a few hundred images can have tens of
thousands of image tiles and tens of millions of
nuclei.

For execution on GPUs, we have leveraged existing
implementations from the OpenCV library [63] and
other research groups [92, 93] whenever possible. When
no efficient implementations were available, we devel-
oped them in-house [79–81]. In our case, one of the
challenges to the efficient use of a GPU is the fact that
many operations in the segmentation stage are irregular
and, hence, are more challenging to execute on a GPU.
Data access patterns in these operations are irregular
(random), because only active elements are accessed,
and those elements are determined dynamically during
execution. For instance, several operations, such as Re-
construct to Nucleus, Fill Holes, and Pre-Watershed, are
computed using a flood fill scheme proposed by Vincent
[92]. This scheme in essence implements an irregular
wavefront propagation in which active elements are the
pixels in wavefronts. We have designed and imple-
mented an efficient hierarchical parallel queue to sup-
port execution of such irregular operations on a GPU.
While the maintenance of this queue is much more
complex than having a sequential CPU-based queue,
comparisons of our implementations to the state-of-the
art implementations show that our approach is very effi-
cient [79]. Other operations in the segmentation stage,
such as Area Threshold and Black and White Label, are
parallelized using a Map-Reduce pattern. They rely on
the use of atomic instructions, which may become a
bottleneck on GPUs and multi-core CPUs. Operations
in the feature computation stage are mostly regular and
have a high computing intensity. As such, they are more
suited for efficient execution on GPUs and expected to
attain higher GPU speedups. We have used CUDA1 for
all of the GPU implementations. The list of the opera-
tions in our current implementation is presented in
Tables 1 and 2. The sources of the CPU and GPU imple-
mentations are presented in their respective columns of
the table.
Even though not all operations (e.g., irregular opera-

tions) in an analysis pipeline map perfectly to GPUs,

Table 1 The list of operations in the segmentation and feature computation stages and the sources of the CPU and GPU versions

Segmentation Computations

Operation CPU Implementation GPU Implementation

Red Blood Cell Detection (RBC Detection) Vincent [92] and OpenCV Implemented

Morphological Open (Morph. Open) OpenCV OpenCV

Reconstruct to Nucleus (ReconToNuclei) Vincent [92] Implemented

Area Threshold Implemented Implemented

Fill Holes Vincent [92] Implemented

Pre-Watershed Vincent [92], and OpenCV for distance transformation Implemented

Watershed OpenCV Körbes [93]

Black and White Label (BWLabel) Implemented Implemented

We used the implementation of the morphological reconstruction operation by Vincent for the implementation of several segmentation operations. Implemented
indicates our implementation of the respective operations

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 7 of 21

most modern high performance machines come with
one or more GPUs as co-processing units. Our goal is to
leverage this additional processing capacity as efficiently
as possible. We should note that the runtime system of
our framework does not use only GPUs on a machine.
As we shall describe below, it coordinates the scheduling
of operations to CPU cores and GPUs to harvest the ag-
gregate computation capacity of the machine. Each
image tile is assigned to an idle CPU core or GPU; mul-
tiple CPU cores and GPUs process different input tiles
concurrently.
The runtime system employs a Manager-Worker

model (Fig. 5(a)) to implement the combined bag-of-
tasks and dataflow pattern of execution. There is one
Manager, and each node of a parallel machine is desig-
nated as a Worker. The processing of a single image tile
is formulated as a two-level coarse-grain dataflow pat-
tern. Segmentation and feature computation stages are
the first level, and the operations invoked within each
stage constitute the second level (Fig. 4). The segmenta-
tion stage itself is organized into a dataflow graph. The
feature computation stage is implemented as a bag-of-
tasks, i.e., multiple feature computation operations can
be executed concurrently on segmented objects. This
hierarchical organization of an analysis pipeline into
computation stages and finer-grain operations within
each stage is critical to the efficient use of nodes with
CPUs and GPUs, because it allows for more flexible as-
signment of finer-grain operations to processing units
(CPU cores or GPUs) and, hence, better utilization of
available processing capacity.
The Manager creates instances of the segmentation

and feature computation stages, each of which is repre-
sented by a stage task: (image tile, processing stage), and
records the dependencies between the instances to en-
force correct execution. The stage tasks are scheduled to

the Workers using a demand-driven approach. When a
Worker completes a stage task, it requests more tasks
from the Manager, which chooses one or more tasks
from the set of available tasks and assigns them to the
Worker. A Worker may ask for multiple tasks from the
Manager in order to keep all the computing devices on a
node busy. Local Worker Resource Manager (WRM)
(Fig. 5(b)) controls the CPU cores and GPUs used by a
Worker. When the Worker receives a stage task, the
WRM instantiates the finer-grain operations comprising
the stage task. It dynamically creates operation tasks,
represented by a tuple (input data, operation), and
schedules them for execution as it resolves the depend-
encies between the operations – operations in the seg-
mentation stage form a pipeline and operations in the
feature computation stage depend on the output of the
last operation in the segmentation stage.
The set of stage tasks assigned to a Worker may create

many operation tasks. The primary problem is to map
operation tasks to available CPU cores and GPUs effi-
ciently to fully utilize the computing capacity of a node.
Our runtime system addresses this mapping and sched-
uling problem in two ways. First, it makes use of the
concept of function variants [51, 94]. A function variant
represents multiple implementations of a function with
the same signature – the same function name and the
same input and output parameters. In our case, the
function variant corresponds to the CPU and GPU
implementations of each operation. When an operation
has only one variant, the runtime system can restrict the
assignment of the operation to the appropriate type of
computing device. Second, the runtime system executes
a performance aware scheduling strategy to more effect-
ively schedule operations to CPUs and GPUs for the best
aggregate analysis pipeline performance. Several recent
efforts [51–54] have worked on the problem of

Table 2 The list of operations in the segmentation and feature computation stages and the sources of the CPU and GPU versions

Feature Computations

Class Operations Computed Features CPU and GPU
Implementation

Pixel Statistics Histogram Calculation Mean, Median, Min, Max, 25 %, 50 %,
and 75 % quartile

Implemented

Gradient
Statistics

Gradient and Histogram Calculation Mean, Median, Min, Max, 25 %, 50 %,
and 75 % quartile

Implemented

Haralick Normalization pixel values and Co-occurrence matrix Inertia, Energy, Entropy, Homogeneity,
Max prob, Cluster shade, Prominence

Implemented

Edge Canny and Sobel Canny area, Sobel area OpenCV (Canny),
Implemented (Sobel)

Morphometry Pixel counting, Dist. among points, Area and Perimeter, Fitting ellipse,
Bounding box, Convex hull, Connected components, Area, Perimeter,
Equivalent diameter, Compactness, Major/Minor axis length, Orientation,
Eccentricity, Aspect ratio, Convex area, Euler number

Implemented

We used the implementation of the morphological reconstruction operation by Vincent for the implementation of several segmentation operations. Implemented
indicates our implementation of the respective operations

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 8 of 21

partitioning and mapping tasks between CPUs and
GPUs for applications in which all operations have simi-
lar GPU speedups. In our case, operations in the seg-
mentation and feature computation phases have diverse
computation and data access patterns. As a result, the
amount of acceleration on a GPU varies across the oper-
ations. We have developed a task scheduling strategy,
called Performance Aware Task Scheduling (PATS),
which assigns tasks to CPU cores or GPUs based on an
estimate of each task’s GPU speedup and on the compu-
tational loads of the CPUs and GPUs [80, 81]. The
scheduler employs a demand-driven approach in which
devices (CPU-cores and GPUs) request tasks as they be-
come idle. It uses a priority queue of operation tasks,
i.e., (data element, operation) tuples, sorted based on the
expected amount of GPU acceleration of each tuple.
New task tuples are inserted into the queue such that
the queue remains sorted (see Fig. 5(b)). When a CPU
core or a GPU becomes idle, one of the tuples from the
queue is assigned to the idle device. If the idle device is
a CPU core, the tuple with the minimum estimated
speedup value is assigned to the CPU core. If the idle de-
vice is a GPU, the tuple with the maximum estimated
speedup is assigned to the GPU. The priority queue
structure allows for dynamic assignment of tasks to ap-
propriate computing devices with a small maintenance
overhead. Moreover, PATS relies on the order of tasks in
the queue rather than the accuracy of the speedup esti-
mates of individual tasks. As long as inaccuracy in
speedup estimates is not large enough to affect the task
order in the queue, PATS will correctly choose and map
tasks to computing devices.
The cost of data transfer between the CPU and the

GPU reduces the benefits of using the GPU. We have

extended the base scheduler to facilitate data reuse. In
addition to the extension for data reuse, we have imple-
mented pre-fetching and asynchronous data copy to fur-
ther reduce data transfer overheads [95].

Function 3. Managing and mining quantitative measures
After nuclei have been segmented and their features
computed, a research study will require storage and
management of the results for future analyses. It will
employ machine learning and classification algorithms in
order to look for relationships between tissue specimens
and correlations of image features with genomic and
clinical data. In this section we provide an overview of
our work to address challenges in managing large vol-
umes of segmented objects and features and in carrying
out consensus clustering of large volumes of results.

Data management
We leverage emerging database technologies and high
performance computing systems in order to scale data
management capabilities to support large scale analysis
studies.
We have developed a detailed data model to capture

and index complex analysis results along with metadata
about how the results were generated [96]. This data
model represents essential information about images,
markups, annotations, and provenance. Image data com-
ponents capture image reference, resolution, magnifica-
tion, tissue type, disease type as well as metadata about
image acquisition parameters. For image markups, in
addition to basic geometric shapes (such as points, rect-
angles, and circles), polygons and polylines as well as ir-
regular image masks are also supported. Annotations
could be human observations, machine generated

Fig. 4 Pipeline for segmenting nuclei in a whole slide tissue image, and computing a feature vector of characteristics per nucleus. The input to
the pipeline is an image or image tile. The output is a set of features for each segmented nucleus. The segmentation stage consists of a pipeline
of operations that detect nuclei and extract the boundary of each nucleus – please see Tables 1 and 2 for the full names of the operations. Each
segmented nucleus is processed in the feature computation stage to compute a set of shape and texture features. The features include
circularity, area, mean gradient of intensity (please see Tables 1 and 2 for the types and names of the features) as shown in the figure

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 9 of 21

features and classifications. Annotations can come with
different measurement scales and have a large range of
data types, including scalar values, arrays, matrixes, and
histograms. Comparisons of results from multiple algo-
rithms and/or multiple human observers require combi-
nations of metadata and spatial queries on large volumes
of segmentations and features. The data model is sup-
ported by a runtime system which is implemented on a
relational database system for small-to-moderate scale

deployments (e.g., image datasets containing up to a
hundred images) and on a Cloud computing framework
for large scale deployments (involving thousands of im-
ages and large numbers of analysis runs) [97]. Both these
implementations enable a variety of query types, ranging
from metadata queries such as “Find the number of seg-
mented objects whose feature f is within the range of a
and b” to complex spatial queries such as “Which brain
tumor nuclei classified by observer O and brain tumor

Fig. 5 Strategy for high throughput processing of images. (a) Execution on multiple nodes (left) is accomplished using a Manager-Worker model, in
which stage tasks are assigned to Workers in a demand-driven fashion. A stage task is represented as a tuple of (stage name, data). The stage name
may be “segmentation” in which case data will be an image tile, or it may be “feature computation” in which case data will be a mask representing
segmented nuclei in an image tile and the image tile itself. The runtime system schedules stage tasks to available nodes while enforcing dependencies
in the analysis pipeline and handles movement of data between stages. A node may be assigned multiple stage tasks. (b) A stage task scheduled to a
Worker (right) is represented as a dataflow of operations for the segmentation stage and a set of operations for the feature computation stage. These
operations are scheduled to CPU cores and GPUs by the Worker Resource Manager (WRM). The WRM uses the priority queue structure (shown as
“sorted by speedup rectangle” in the figure) to dynamically schedule a waiting operation to an available computing devices

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 10 of 21

nuclei classified by algorithm P exhibit spatial overlap in
a given whole slide tissue image” and “What are the
min, max, and average values of distance between nuclei
of type A as classified by observer O”.

Consensus clustering on large shared-memory systems
Clustering is a common data mining operation [98].
Clustering algorithms employ heuristics and are sensitive
to input parameters. A preferred mechanism is the con-
sensus clustering approach to reduce sensitivity to input
data and clustering parameters and obtain more repro-
ducible results [91]. In consensus clustering, multiple
runs of clustering algorithms on a dataset are combined
to form the final clustering results. This process is com-
putationally expensive and requires large memory space
when applied to a large number of objects and features.
Our implementation is based on the method proposed

by Monti et. al. [91] and consists of the following main
steps: sampling, base clustering, construction of a consen-
sus matrix, clustering of the consensus matrix, and map-
ping. The sampling step extracts N data points (i.e.,
nuclei and cells) from the entire dataset via sampling. In
the second step, a clustering algorithm, e.g., K-means
[99, 100], is executed M times with different initial con-
ditions. The third step constructs a consensus matrix
from the M runs. The consensus matrix is an NxN
matrix. The value of element (i,j) indicates the number
or percentage of the clustering runs, in which the two
data points i and j were in the same cluster. In the
fourth step, the consensus matrix is clustered to produce
the final clustering result. The matrix is conceptually
treated as a dataset of N data points, in which each data
point has N dimensions. That is, each row (or column)
of the matrix is viewed as a data point, and the row (or
the column) values correspond to the values of the N di-
mensional vector of the data point. The last step maps
the data points that were not selected in the sampling
step to the final set of clusters. Each data point is
mapped to the center of the closest cluster.
We focused on the base clustering, consensus matrix

construction and consensus matrix clustering steps,
since they are the most expensive. We use a publicly
available parallel k-means algorithm [101] as our base
clustering algorithm. In our implementation, the base
clustering step is executed M times consecutively with
one instance of the k-means algorithm using all of the
available cores at each run. To construct the consensus
matrix, the rows of the matrix are partitioned evenly
among CPU cores. To compute a row i of the consensus
matrix, the CPU core to which row i is mapped reads
the base clustering results, which are stored in the
shared memory, computes the number of times data
points (i,j) are in the same cluster, and updates row i.
The consensus matrix is a sparse matrix. When all M

base clustering runs have been processed, row i is com-
pressed using run length encoding to reduce memory
usage. Multiple rows of the consensus matrix are com-
puted concurrently. The clustering of the consensus
matrix is carried out using the parallel k-means algo-
rithm. We have modified the k-means implementation
so that it works with compressed rows.

Results and discussion
We present an evaluation of the methods described in
Section 2 using real image datasets. The results are orga-
nized into three subsections with respected to the three
core functions.

Function 1: CBIR performance: speed and accuracy
In this section we present an experimental evaluation of
the CBIR speed and accuracy performance using a data-
set of prostate cancer images. To avoid the pitfalls of de-
veloping the tools in isolation and then later evaluating
them in a clinical setting, we work closely with oncolo-
gists and pathologists and test and optimize performance
throughout the course of the development cycle.
In the first phase of the project we utilized the TMA

analysis tools to investigate the effect of therapeutic star-
vation on prostate cancer by quantifying Beclin1 staining
characteristics. Mixed sets of new TMA’s were prepared
with antibody for Beclin 1 and antibodies for androgen
co-factor MED1, high-molecular weight keratin 34BE12,
p63, and alpha methyl-Co A racemase (P504S AMACR).
To validate the proposed CBIR algorithm, we tested

it on a dataset of 530 prostate histopathology images.
The dataset was collected from 28 cases of whole
slide imaging (WSI) from University of Iowa School
of Medicine and University of Pittsburgh Medical
Center (UPMC), with pixel resolution of 4096x4096
at 20X optical magnification, and 2048x2048 at 10X
optical magnification. In consideration of the average
query patch size for prostate gland representation in
the given magnification, we use 5 bins in the HAF
feature, and 50 % overlap percentage during the hier-
archical searching, thus the HAF feature would cap-
ture enough content information in the underlying
pathology while keep the computation amount within
reasonable range.
To test the performance of the algorithm on prostate

images of different Gleason grades, we conducted our
experiments using randomly selected query patches of
Gleason grade 3, 4 and 5. Figure 6 shows representative
examples for prostate Gleason grade 3 (a), 4 (b) and 5
(c) query images retrieval results respectively.
To further evaluate the accuracy of the CBIR algo-

rithm, the recall rate from the top 100 retrieved patches
was calculated. We define the recall rate as

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 11 of 21

recallRate ¼ Total relevant results retrieved
All relevant patches exists in the topN range

We define a retrieved result “relevant” if it has the
same Gleason grade as the query image. We use top 100
as the calculation range. The average recall rate curves
of Gleason grade 3, 4 and 5 are showed in Fig. 7.

Function 2: high performance computation of
quantitative measures
The methods and tools to support function 2 were eval-
uated on a distributed memory parallel machine called
Keeneland [50]. Each Keeneland node has a dual 6-core
Intel X5660 CPUs, 24GB RAM, and 3 NVIDIA M2090
GPUs. The nodes are connected using a QDR Infiniband
switch. The image datasets used in the evaluation had

been obtained in brain tumor studies [2]. Each image
was partitioned into tiles of 4 K × 4 K pixels. The experi-
ments were repeated 3 times; the standard deviation was
not higher than 2 %. The speedups were calculated
based on the single CPU core versions of the operations.
The CPU codes were compiled using “gcc 4.1.2” with
the “-O3” optimization as well as the vectorization op-
tion to let the compiler auto-vectorize regular opera-
tions, especially in the feature computation phase. The
GPU codes were compiled using CUDA 4.0. The
OpenCV 2.3.1 library was used for the operations based
on OpenCV. Our codes are publicly available as Git re-
positories,2 .3

Performance of GPU-enabled operations
The first set of experiments evaluates the performance
of the segmentation and feature computation pipeline
when the sizes of image tiles are varied. We want a tile
size that results in a large number of tiles (high through-
put concurrent execution across nodes and computing
devices) and that leads to good speedup on a GPU.
Figure 8(a) presents the execution times of the pipeline
with the CPU operations and GPU-enabled operations
when the image tile size is varied for an input image of
16Kx16K pixels. Figure 8(b) presents the speedup on the
GPU in each configuration. We observed that tile size
has little impact on the CPU execution times, but the
GPU execution times decrease with larger tiles as a con-
sequence of the larger amount of parallelism available
that leads to better GPU utilization. The better GPU
utilization is a result of the reduced percent in total exe-
cution time of GPU kernel launch cost/synchronization
and higher data transfer rates with larger data. The ana-
lysis pipeline involves dozens of kernels, some of which
are computationally inexpensive operations, such as data
type transformations (from 4-byte integers to 1-byte
characters), setting matrix memory to a value (memset),
or device-to-device data copies. The cost of launching
such kernels is high when processing small image tiles.
The kernel for type transformations, for instance, takes
about 77us and 864us, respectively for 1Kx1K and
4Kx4Ktiles. An operation processing a 4Kx4K image re-
gion in 1Kx1K tiles needs to call the kernel 16 times,
which takes 1232us, compared to once when the same
region is processed in 4Kx4K tiles. For the memset and
device-to-device kernels, a single kernel call costs more
or less the same for 1Kx1K and 4Kx4K tiles, making the
situation worse. These performance issues are also ob-
served in kernels with higher execution times, such as
Reconstruct to Nucleus (ReconToNuclei), Fill Holes,
Pre-Watershed and Watershed. The ReconToNuclei ker-
nel, for instance, takes about 41 ms and 348 ms, respect-
ively for 1Kx1K and 4Kx4K tiles. Processing a 4Kx4K
image region in 1Kx1K tiles would result in a time cost

Fig. 6 An example set of prostate Gleason grade query patches
(left) and sets of matching image patches in a given set of images
(right). a Gleason grade 3 query patch and matching image regions.
b Gleason grade 4 query patch and matching image regions.
c Gleason grade 5 query patch and matching image regions

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 12 of 21

of 656 ms. In addition to fewer kernel calls, larger image
tiles lead to lower probability of thread collision. This in
turn reduces the amount of serialization during atomic
memory updates during the execution of a kernel. These
results corroborate with other studies [102, 103] in
which similar CPU/GPU relative performance trends
were observed as data sizes increase. As is shown in
Figs. 8(a) and (b), the 4Kx4K tile size attains the best
performance (tile sizes higher than 4Kx4K did not show
significant performance gains). Hence we used 4Kx4K
tiles in the rest of the experiments.
Figures 8(c) and (d) present the amount of GPU accel-

eration for operations in the segmentation and feature
computation steps and their weight to the execution of
the entire pipeline, respectively. The amount of acceler-
ation varies significantly among the operations because
of their different computation patterns. The segmenta-
tion operations are mostly irregular and, as such, are
likely to attain lower speedups on the GPU compared
with operations with more regular data access and pro-
cessing patterns. The operations that perform a flood fill
execution strategy (ReconToNuclei, Fill Holes, Pre-
Watershed), for instance, perform irregular data access.
As described in Section 2.2, we implemented a hier-
archical parallel queue data structure to improve the
performance of such operations on GPUs. These op-
erations attained similar levels of acceleration. The
Pre-Watershed operation achieved slightly higher per-
formance improvements because it is more compute
intensive. AreaThreshold and BWLabel (Black and
White Label), for instance, rely on the use of atomic
instructions. Atomic instructions on a GPU may be
costly in cases in which threads in a warp (group of

threads that execute the same instruction in a lock-
step) try to access the same memory address, because
data accesses are serialized. This explains the low
speedups attained by these operations. The operations
in the feature computation phase are more regular
and compute intensive. Those operations benefit from
the high data throughput of a GPU for regular data
access as well as the high computation capacity of
the GPU.
We profiled the operations in the segmentation and

feature computation steps using the NVIDIA nvprof tool
to measure their efficiency with respect to the use of the
GPU stream multiprocessors (sm_efficiency) and the
number of instructions executed per cycle (IPC). We
have chosen these metrics because most of the opera-
tions in targeted analytical pipelines execute integer op-
erations or a mixture of integer and floating-point
operations. As is presented in Table 3, the efficiency of
the operation kernels is high (over 93 %), as is expected
from kernels that are designed well for GPU execution.
Among the kernels, regular operations, such as Red
Blood Cell Detection and feature computation, achieved
higher efficiency, while irregular operations, such as
those based on the flood-fill scheme (see Section 2.2),
tend to have a slightly lower efficiency. This is expected
since the flood-fill scheme only touches pixels if they
contribute to wave propagation. In this scheme, there
will be few active pixels (those in the wavefront that are
stored in a queue) towards the end of execution. As a re-
sult, some stream multiprocessors (SMs) have no work
assigned to them. The IPC metric is higher for opera-
tions that achieve higher speedup values, as expected.
For floating point operations, the maximum IPC is 2,

Fig. 7 Average recall rate curves of Gleason grades 3, 4 and 5, respectively

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 13 of 21

Fig. 8 Performance improvements with the GPU-based version of the segmentation and feature computation pipeline. a Application execution
according to tile size. b Application speedup according to tile size. c Speedup of internal operations of the application using 4Kx4K image tiles.
d Percentage of the application execution time consumed per operation using 4Kx4K image tiles

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 14 of 21

whereas it may be higher for integer-based operations.
Also, memory-bound operations tend to have smaller
IPC values. We should note that the feature computa-
tion step includes several operations that mix integer
and floating-point instructions. We should note that al-
though useful in our evaluation, the reported metrics
may not be useful for comparing two different algo-
rithms – for instance, there are different implementa-
tions of the flood fill scheme that are regular (perform
raster-/anti-raster scan passes on the image). These
implementations will show higher values for the re-
ported metrics while resulting in higher (worse) execu-
tion times as compared with our implementations.

Cooperative execution on CPUs and GPUs
These experiments assess the performance impact when
CPU cores and GPUs are cooperatively used on a com-
putation node. Two version of the pipeline were used in
the experiments: (i) 1 L refers to the version in which
the operations are bundled together and each stage exe-
cutes either using CPU or GPU; (ii) 2 L is the version
expressed as a hierarchical pipeline with individual oper-
ations in a stage exposed for scheduling. Two scheduling
strategies were compared: (i) First Come, First Served
(FCFS), which does not take into account performance
variability, and (ii) PATS. PATS uses the speedups pre-
sented in Fig. 8(c) for scheduling decisions.
The results obtained using three randomly selected

images are presented in Fig. 9(a). 3 CPU cores manage
the 3 GPUs, leaving only 9 CPU cores for computation,
in configurations where the CPU cores and GPUs are
used together. Each GPU and each CPU core receive an
image tile for processing via our scheduling strategies in
these experiments; as such all of the available CPU-cores
are used during execution. As is shown in the figure, the

performance of the analysis pipeline improves by 80 %
when the GPUs are used compared to when only CPUs
are used. In the 1 L version of the application, PATS is
not able to make better decisions than FCFS, because all
operations in a stage are executed as a single coarse-
grain task. The 2 L version using PATS improved the
performance by more than 30 %. This performance gain
is a result of PATS ability to maximize system utilization
by assigning a task to the most appropriate device. As
shown in Table 4, PATS mapped most of the tasks with
high GPU speedups to GPUs and the ones with lower
speedups to CPUs. The FCFS, however, scheduled 58 %
of the tasks to the GPUs and 42 % to the CPUs regard-
less of the GPU speedup of an operation. Figure 9(b)
shows the performance impact of the data locality con-
scious task assignment (DL) and data prefetching (Pre-
fetching) optimizations. The 2 L version of the pipeline
was used in the experiments, because the data transfer
cost to execution ratio is higher compared to the 1 L
version. The data transfer cost in the 1 L version is a
small fraction of the execution time, because instances
of the stages are scheduled as coarse-grain tasks. The
optimizations improved the performance of the analysis
pipeline by 10 % (when FCFS is used for task schedul-
ing) and 7 % (when PATS is used for task scheduling).
The gains are smaller with PATS because PATS may de-
cide that it is better to download the operation results to
map another operation to the GPU.

Execution on multiple nodes
These experiments evaluate the scalability of the ana-
lysis pipeline when multiple nodes of the machine are
used. The evaluation was carried out using 340 Glio-
blastoma brain tumor WSIs, which were partitioned
into a total of 36,848 4 K × 4 K tiles. The input data
tiles were stored as image files on the Lustre file sys-
tem. The results represent end-to-end execution of
the analysis pipeline, which includes the overhead of
reading input data. The execution times, as the num-
ber of nodes is varied from 8 to 100, are shown in
Fig. 10(a). All implementations of the analysis pipeline
achieved good speedup when more nodes are added.
The performance improvements with the cooperative
use of CPUs and GPUs as compared to the CPU only
executions were on average 2.45x and 1.66x times
with PATS and FCFS, respectively. The performance
gains with the cooperative use of CPUs and GPUs are
significant across the board. The analysis pipeline
with CPU + GPU and PATS is at least 2.1x faster than
the version that uses 12-CPU cores only. Figure 10(b)
presents the throughput (tiles/s) with respect to the
number of nodes. On 100 nodes with 1200 CPU
cores and 300 GPUs, the entire set of 36,848 tiles
was processed in less than four minutes.

Table 3 Profiling information of the pipeline operations using
NVIDIA nvprof tool

Pipeline Operation Metric

sm_efficiency IPC

Red Blood Cell (RBC) Detection 99.49 2.45

Morphological Open 93.12 1.41

Reconstruct to Nucleus 95.38 1.48

Area Threshold 99.30 1.05

Fill Holes 95.38 1.48

Pre-Watershed 96.35 2.13

Watershed 97.59 2.12

Black and White Label 99.86 1.12

Features Computation 98.53 3.36

We collected sm_efficiency and IPC metrics, which are the percentage of time
at least one warp is active on a multiprocessor averaged over all
multiprocessors on the GPU and the instructions executed per
cycle, respectively

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 15 of 21

Function 3: performance of consensus clustering
implementation
The performance evaluation of the consensus clustering
implementation was carried out on a state-of-the-art
shared-memory system, called Nautilus. The Nautilus
system is an SGI Altrix UV 1000 funded by the National
Science Foundation to provide resources for data ana-
lysis, remote visualization, and method development. It
consists of 1024 CPU cores and 4 TB global shared
memory accessible through a job scheduling system. In
the experiments we used a dataset with 200 million nu-
clei with 75 features per nucleus. We created a sample
of 500,000 data points by randomly selecting nuclei from
all the image tiles such that each image tile contributed
the same amount of nuclei – if an image tile had fewer
nuclei than necessary, all of the nuclei in that image tile
were added to the sampled dataset. The execution times
of the base clustering, consensus matrix construction,
and final clustering phases of the consensus clustering
process are shown in Fig. 11. The number of clusters
was set to 200 in the experiments. As is seen from the

figure, the execution times of all the phases decrease as
more CPU cores are added – speedup values of 2.52,
2.76, and 2.82 are achieved on 768 cores compared to
256 cores. The memory consumption on 768 cores was
about 1.1 TB including space required for the data struc-
tures used by the k-means algorithm.

Conclusions
Grading cancer specimens is a challenging task and can
be ambiguous for some cases exhibiting characteristics
within the various stages of progression ranging from
low grade to high. Innovations in tissue imaging tech-
nologies have made it possible for researchers and clini-
cians to collect high-resolution whole slide images more
efficiently. These datasets contain rich information that
can complement information from gene expression, clin-
ical, and radiology image datasets to better understand
the underlying biology of disease onset and progression
and to improve the diagnosis and grading process. How-
ever, the size of the datasets and compute-intensive
pipelines necessary for analysis create barriers to the use

Fig. 9 Performance of segmentation and feature Computation steps with different versions: multi-core CPU, multi-GPU, and cooperative CPU-
GPU. The CPU-GPU version also evaluates the composition of the application as a single level coarse-grained pipeline (1 L) in which all stage
operations are executed as a single task, and the hierarchical pipeline (2 L) in which fine-grained operations in a stage are exported to the
runtime system. Additionally, FCFS and PATS scheduling strategies are used to assign tasks to CPUs and GPUs. a Performance of multi-core CPU,
multi-GPU and cooperative CPU-GPU versions of the application. b Improvements with data locality (DL) mapping and asynchronous data
copy optimizations

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 16 of 21

of tissue image data. In our work we have identified
three core functions to support more effective use of
large datasets of tissue images in research and clinical
settings. These functions are implemented through a
suite of efficient methods as well as runtime frameworks

that target modern high performance computing
platforms.
The capacity to search and compare the morphology

and staining characteristics across imaged specimens or
within a given tissue sample is extremely valuable for
assisting investigators and physicians who are charged
with staging and classifying tissue samples. The methods
of Function 1 (CBIR) enable this capacity. They can be
used to generate image-based feature signature of unclas-
sified imaged specimens with the profiles of a set of “gold-
standard” cases and enable automatic retrieval of those
samples exhibiting the most similar morphological and
staining characteristics – in the case of prostate cancers,
to deliver the computed Gleason score and confidence
interval to the individual seeking support. Likewise inves-
tigators can provide a representative sample within a given
imaged specimen and use the methods to quickly detect
and locate other sub-regions throughout the specimen,
which exhibit similar signatures. Our team is currently
building an ImageMiner portal for diverse histopathology
image analysis and applications, which includes medical
image segmentation, CBIR, and registration. Upon com-
pletion the portal will be made available as open source to
the research and clinical communities.

Fig. 10 Multi-node execution of the Segmentation and Feature Computation in a strong-scaling experiment. a Execution times. b Throughput in
number of tiles processed per second

Table 4 Percent of tasks assigned to CPU and GPU according
to the scheduling policy

Pipeline Operation Scheduling policy

FCFS PATS

CPU GPU CPU GPU

Red Blood Cell Detection 42.7 57.3 20.2 79.8

Morphological Open 42.5 57.5 96.6 3.4

Reconstruct to Nucleus 42.6 57.4 8.9 91.1

Area Threshold 42.7 57.3 100 0

Fill Holes 43.2 56.8 89.8 10.2

Pre-Watershed 42.1 57.9 0 100

Watershed 42.2 57.8 10.2 89.8

Black and White Label 43.1 56.9 89.5 10.5

Features Computation 43.2 56.8 9.3 90.7

While FCFS assigns all pipeline operations with similar proportion to CPU and
GPU, PATS preferably assigns to the GPU operations that attain higher
speedups on this device. Thus, PATS better utilizes the hybrid system

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 17 of 21

The methods and tools of Functions 2 and 3 are crit-
ical to building the capacity for analyses with very large
tissue image datasets. Our work has demonstrated that
high data processing rates can be achieved on modern
HPC systems with CPU-GPU hybrid nodes. This is made
possible by employing techniques that take into account
variation in GPU performance of individual operations
and implement data reuse and data prefetching optimi-
zations. Shared memory systems provide a viable plat-
form with large memory space and computing capacity
for the classification stage when it is applied on seg-
mented objects.

Availability of data and materials
The experiments for the high performance computing
software tools used datasets publicly available from The
Cancer Genome Atlas repository (https://tcga-data.nci.-
nih.gov/tcga/). The source codes for the analysis pipe-
lines in these experiments are released as a public open
source through the following links: https://github.com/
SBU-BMI/nscale and https://github.com/SBU-BMI/re-
gion-templates.

Ethics
The work presented in this manuscript is focused on the
development of software tools and methods. We have
used publicly available datasets and de-identified data-
sets approved by the Institutional Review Boards for the
respective grants: 5R01LM011119-05, 5R01LM009239-
07, and 1U24CA180924-01A1.

Consent
This work is not a prospective study involving human
participants.

Availability of supporting data
The datasets used in the high performance computing
experiments are publicly available from The Cancer
Genome Atlas repository (https://tcga-data.nci.nih.gov/
tcga/).

Endnotes
1http://nvidia.com/cuda
2https://github.com/SBU-BMI/nscale
3https://github.com/SBU-BMI/region-templates

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TK, GT, MN, FW designed the high performance computing and data
management components and carried out experiments for performance
evaluation. XQ, DW, LY developed the content based image retrieval
methodologies. XQ, DW, LY, LC provided image analysis expertise and
provided codes used for image analysis. JS and DF supervised the overall
effort. All authors read and approved the final manuscript.

Acknowledgments
This work was funded in part by HHSN261200800001E from the NCI,
1U24CA180924-01A1 from the NCI, 5R01LM011119-05 and 5R01LM009239-07
from the NLM, and CNPq. This research used resources provided by the
XSEDE Science Gateways program under grant TG-ASC130023, the
Keeneland Computing Facility at the Georgia Institute of Technology,
supported by the NSF under Contract OCI-0910735, and the Nautilus system
at the University of Tennessee’s Center for Remote Data Analysis and
Visualization supported by NSF Award ARRA-NSF-OCI-0906324.

Author details
1Department of Biomedical Informatics, Stony Brook University, Stony Brook,
USA. 2Department of Pathology & Laboratory Medicine, Rutgers – Robert
Wood Johnson Medical School, New Brunswick, USA. 3Department of
Electrical and Computer Engineering, Rutgers University, New Brunswick,
USA. 4Department of Computer Science, Stony Brook University, Stony Brook,
USA. 5Department of Computer Science, University of Brasilia, Brasília, Brazil.
6Department of Biomedical Informatics, Emory University, Atlanta, USA.
7Department of Biomedical Engineering, University of Florida, Gainesville,
USA. 8Rutgers Cancer Institute of New Jersey, New Brunswick, USA.

Fig. 11 Execution times of three phases (base clustering runs, consensus matrix construction, and final clustering) in the consensus clustering
process. The number of samples is 500,000. The base clustering runs and the final clustering are set to generate 200 clusters. The number of CPU
cores is varied from 256 to 768. Note that the y-axis is logarithmic scale

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 18 of 21

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://github.com/SBU-BMI/nscale
https://github.com/SBU-BMI/nscale
https://github.com/SBU-BMI/region-templates
https://github.com/SBU-BMI/region-templates
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://nvidia.com/cuda
https://github.com/SBU-BMI/nscale
https://github.com/SBU-BMI/region-templates

Received: 25 March 2015 Accepted: 16 November 2015

References
1. Saltz J, Kurc T, Cooper L, Kong J, Gutman D, Wang F, et al.. Multi-Scale,

Integrative Study of Brain Tumor: In Silico Brain Tumor Research Center.
Proceedings of the Annual Symposium of American Medical Informatics
Association 2010 Summit on Translational Bioinformatics (AMIA-TBI 2010),
San Francisco, LA 2010.

2. Cooper LAD, Kong J, Gutman DA, Wang F, Cholleti SR, Pan TC, et al. An
integrative approach for in silico glioma research. IEEE Trans Biomed Eng.
2010;57(10):2617–21.

3. Cooper LAD, Kong J, Gutman DA, Wang F, Gao J, Appin C, et al. Integrated
morphologic analysis for the identification and characterization of disease
subtypes. J Am Med Inform Assoc. 2012;19(2):317–23.

4. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, et al.
Assessing the significance of chromosomal aberrations in cancer:
methodology and application to glioma. Proc Natl Acad Sci U S A. 2007;
104(50):20007–12.

5. Filippi-Chiela EC, Oliveira MM, Jurkovski B, Callegari-Jacques SM, da Silva VD,
Lenz G. Nuclear morphometric analysis (NMA): screening of senescence,
apoptosis and nuclear irregularities. PLoS ONE. 2012;7(8):e42522.

6. Gurcan MN, Pan T, Shimada H, Saltz J. Image Analysis for Neuroblastoma
Classification: Segmentation of Cell Nuclei. In: 28th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. 2006.
p. 4844–7.

7. Han J, Chang H, Fontenay GV, Spellman PT, Borowsky A, Parvin B. Molecular
bases of morphometric composition in Glioblastoma multiforme. In: 9th
IEEE International Symposium on Biomedical Imaging (ISBI ’12): 2012. IEEE:
1631-1634.

8. Kothari S, Osunkoya AO, Phan JH, Wang MD: Biological interpretation of
morphological patterns in histopathological whole-slide images. In: The
ACM Conference on Bioinformatics, Computational Biology and
Biomedicine: 2012. ACM: 218-225.

9. Phan J, Quo C, Cheng C, Wang M. Multi-scale integration of-omic, imaging,
and clinical data in biomedical informatics. IEEE Rev Biomed Eng. 2012;5:74–87.

10. Cooper L, Kong J, Wang F, Kurc T, Moreno C, Brat D et al.. Morphological
Signatures and Genomic Correlates in Glioblastoma. In: IEEE International
Symposium on Biomedical Imaging: From Nano to Macro: 2011; Beijing,
China. 1624-1627.

11. Kong J, Cooper L, Sharma A, Kurc T, Brat D, Saltz J. Texture Based Image
Recognition in Microscopy Images of Diffuse Gliomas With Multi-Class
Gentle Boosting Mechanism. Dallas: The 35th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP); 2010. p. 457–60.

12. Kong J, Sertel O, Boyer KL, Saltz JH, Gurcan MN, Shimada H. Computer-
assisted grading of neuroblastic differentiation. Arch Pathol Lab Med. 2008;
132(6):903–4.

13. Gudivada VN, Raghavan VV: Content-based image retrieval system.
Computer 1995:18-21.

14. Flickener M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, et al. Query
by image and video content: the qbic system. Computer. 1995;28(9):23–32.

15. Smith JR, Chang SF. Visualseek: A Fully Automated Content-Based Image
Query System. In: Proceeding of the Fourth ACM Internation Multimedia
Conference and Exhibition. 1996. p. 87–98.

16. Tagare HD, Jaffe CC, Duncan J. Medical image databases: a content-based
retrieval approach. J Am Med Inform Assoc. 1997;4:184–98.

17. Smeulders AWM, Worring M, Santini S, Gupta A, Jainh R. Content-based
image retrieval at the end of early years. IEEE Trans Pattern Anal Machine
Intel. 2000;22:1349–80.

18. Wang J, Li J, Wiederhold G. Simplicity: semantics-sensitive integrated
matching for picture libraries. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2001;23:947–63.

19. Chen Y, Wang J. A region-based fuzzy feature matching approach to
content-based image retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2002;24:1252–67.

20. Chang E, Goh K, Sychay G, Wu G. CBSA: content-based soft annotation for
multimodal image retreival using bayes point machines. IEEE Transations on
Circuits and Systems for Video Technology. 2003;13:26–38.

21. Zheng L, Wetzel AW, Gilbertson J, Becich MJ. Design and analysis of a
content-based pathology image retrieval system. IEEE Trans Inf Technol
Biomed. 2003;7(4):245–55.

22. Muller H, Michoux N, Bandon D, Geissbuhler A. A review of content-basd
image retrieval systems in medical applicaitons - clinical benefits and future
directions. Int J Med Inform. 2004;73:1–23.

23. Lehmann TM, Guld MO, Deselaeers T, Keysers D, Schubert H, Spitzer K, et al.
Automatic categorization of medical images for content-based retrieval and
data mining. Comput Med Imaging Graph. 2005;29:143–55.

24. Lam M, Disney T, Pham M, Raicu D, Furst J, Susomboon R. Content-based
image retrieval for pulmonary computed tomography nodule images. Proc
SPIE 6516, Medical Imaging 2007: PACS and Imaging Informatics, 65160 N
2007, 6516.

25. Rahman MM, Antani SK, Thoma GR. A learning-based similarity fusion and
filtering approach for biomedical image retrieval using SVM classificaiton
and relevance feedback. IEEE Trans Inf Technol Biomed. 2011;15(4):640–6.

26. Thies C, Malik A, Keysers D, Kohnen M, Fischer B, Lehmann TM. Hierarchical
feature clustering for content-based retrieval in medical image databases.
Proc SPIE. 2003;5032:598–608.

27. El-Naqa I, Yang Y, Galatsanos NP, NIshikawa RM, Wernick MN. A similarity
learning approach to content-based image retrieval: application to digital
mammography. IEEE Trans Med Imaging. 2004;23:1233–44.

28. Akakin HC, Gurcan MN. Content-based microscopic image retrieval system
for multi-image queries. IEEE Trans Inf Technol Biomed. 2012;16:758–69.

29. Zhang Q, Izquierdo E. Histology image retrieval in optimized multifeature
spaces. IEEE Journal of Biomedical and Health Informatics. 2013;17:240–9.

30. Tang HL, Hanka R, Ip HH. Histology image retrieval based on semantic
content analysis. IEEE Trans Inf Technol Biomed. 2003;7:26–36.

31. Schmidt-Saugenon P, Guillod J, Thiran JP. Towards a computer-aided
diagnosis system for pigmented skin lesions. Comput Med Imag Graphics.
2003;27:65–78.

32. Sbober A, Eccher C, Blanzieri E, Bauer P, Cristifolini M, Zumiani G, et al. A
multiple classifier system for early melanoma diagnosis. Artifical Intel Med.
2003;27:29–44.

33. Meyer F. Automatic screening of cytological specimens. Comput Vis
Graphics Image Proces. 1986;35:356–69.

34. Mattie MEL, Staib ES, Tagare HD, Duncan J, Miller PL. Content-based cell
image retrieval using automated feature extraction. J Am Med Informatics
Assoc. 2000;7:404–15.

35. Beretti S, Bimbo AD, Pala P. Content-Based Retrieval of 3D Cellular
Structures. In: Proceeding of the 2nd International Conference on
Multimedica and Exposition, IEEE Computer Society. 2001. p. 1096–9.

36. Pentland A, Picard RW, Sclaroff S. Phtobook: tools for content-based
manipulation of image databases. Int J Comput Vis. 1996;18:233–45.

37. Lehmann TM, Guld MO, Thies C, Fischer B, Spitzer K, Keysers D, et al.
Content-based image retrieval in medical applications. Methods Inf Med.
2004;4:354–60.

38. Cox IJ, Miller ML, Omohundro SM, Yianilos PN. Target Testing and the
Picchunter Multimedica Retrieval System. Advances in Digital Libraries.
Washington: Library of Congress; 1996. p. 66–75.

39. Carson C, Belongies S, Greenspan H, Malik J. Region-Based Image Querying.
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. 1997. p. 42–51.

40. Bui AAT, Taira RK, Dionision JDN, Aberle DR, El-Saden S, Kangarloo H.
Evidence-based rediology. Acad Radiol. 2002;9:662–9.

41. Qi X, Wang D, Rodero I, Diaz-Montes J, Gensure RH, Xing F, et al. Content-
based histopathology image retrieval using Comet Cloud. BMC
Bioinformatics. 2014;15:287. doi:10.1186/1471-2105-1115-1287.

42. Kong J, Cooper LAD, Wang F, Gutman DA, Gao J, Chisolm C, et al. Integrative,
multimodal analysis of glioblastoma using tcga molecular data, pathology
images and clinical outcomes. IEEE Trans Biomed Eng. 2011;58:3469–74.

43. Cavallaro A, Graf F, Kriegel H, Schubert M, Thoma M. Reion of Interest
Queries in CT Scans. In: Proceedings of the 12th Internatinal Conference on
Advances in Spatial and Temporal Databases. 2011. p. 65–73.

44. Naik J, Doyle S, Basavanhally A, Ganesan S, Feldman MD, Tomaszwski JE, et
al. A boosted distance metric: application to content based image retrieval
and classification of digitized histopathology. Proceedings of SPIE Medical
Imaging. 2009;7260:1–4.

45. Chen W, Schmidt C, Parashar M, Reiss M, Foran DJ. Decentralized data
sharing of tissue microarrays for investigative research in oncology. Cancer
Informat. 2006;2:373–88.

46. Yang L, Chen W, Meer P, Salaru G, Feldman MD, Foran DJ. High throughput
analysis of breast cancer specimens on the grid. Med Image Comput Assist
Interv. 2007;10(1):617–25.

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 19 of 21

http://dx.doi.org/10.1186/1471-2105-1115-1287

47. Yang L, Tuzel O, Chen W, Meer P, Salaru G, Goodell LA, et al. PathMiner: a
web-based tool for computer-assisted diganostics in pathology. IEEE Trans
Inf Technol Biomed. 2009;13(3):291–9.

48. Foran DJ, Yang L, Chen W, Hu J, Goodell LA, Reiss M, et al. ImageMiner: a
software system for comparative analysis of tissue microarrays using
content-based image retrieval, high-performance computing, and grid
technology. J Am Med Inform Assoc. 2011;18(4):403–15.

49. Qi X, Kim H, Xing F, Parashar M, Foran DJ, Yang L. The analysis of image
feature robustness using CometCloud. Journal of Pathology Informatics.
2012;3.

50. Vetter JS, Glassbrook R, Dongarra J, Schwan K, Loftis B, McNally S, et al.
Keeneland: bringing heterogeneous GPU computing to the computational
science community. Computing in Science and Engineering. 2011;13(5):90–5.

51. Linderman MD, Collins JD, Wang H, Meng TH. Merge: a programming
model for heterogeneous multi-core systems. SIGPLAN Notices. 2008;43(3):
287–96.

52. Diamos GF, Yalamanchili S. Harmony: An Execution Model and Runtime for
Heterogeneous Many-Core Systems. In: Proceedings of the 17th
International Symposium on High Performance Distributed Computing, vol.
1383447. Boston: ACM; 2008. p. 197–200.

53. Luk C-K, Hong S, Kim H. Qilin: Exploiting Parallelism on Heterogeneous
Multiprocessors With Adaptive Mapping. In: Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, vol.
1669121. New York: ACM; 2009. p. 45–55.

54. Augonnet C, Thibault S, Namyst R, Wacrenier P-A. StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr
Comput : Pract Exper. 2011;23(2):187–98.

55. Teodoro G, Oliveira RS, Sertel O, Gurcan MN, Jr. WM, Çatalyürek ÜV, Ferreira
R: Coordinating the use of GPU and CPU for improving performance of
compute intensive applications. In: CLUSTER: 2009; New Orleans, Louisiana.
conf/cluster/TeodoroOSGMCF09: IEEE: 1-10.

56. Sundaram N, Raghunathan A, Chakradhar ST: A framework for efficient and
scalable execution of domain-specific templates on GPUs. In: Proceedings of
the 2009 IEEE International Symposium on Parallel & Distributed Processing:
2009. 1587427: IEEE Computer Society: 1-12.

57. Teodoro G, Hartley TDR, Catalyurek U, Ferreira R: Run-time optimizations for
replicated dataflows on heterogeneous environments. In: Proceedings of
the 19th ACM International Symposium on High Performance Distributed
Computing: 2010; Chicago, Illinois. 1851479: ACM: 13-24.

58. Teodoro G, Hartley TD, Catalyurek UV, Ferreira R. Optimizing dataflow
applications on heterogeneous environments. Clust Comput. 2012;15(2):
125–44.

59. Bosilca G, Bouteiller A, Herault T, Lemarinier P, Saengpatsa NO, Tomov S,
Dongarra JJ: Performance Portability of a GPU Enabled Factorization with
the DAGuE Framework. In: Proceedings of the 2011 IEEE International
Conference on Cluster Computing: 2011. 2065710: IEEE Computer Society:
395-402.

60. Ravi VT, Ma W, Chiu D, Agrawal G. Compiler and Runtime Support for
Enabling Generalized Reduction Computations on Heterogeneous Parallel
Configurations. In: Proceedings of the 24th ACM International Conference
on Supercomputing, vol. 1810106. Tsukuba, Ibaraki, Japan: ACM;
2010. p. 137–46.

61. Huo X, Ravi VT, Agrawal G. Porting irregular reductions on heterogeneous
CPU-GPU configurations. In: Proceedings of the 18th International
Conference on High Performance Computing, vol. 2192618. Bangalore: IEEE
Computer Society; 2011. p. 1–10.

62. Lee S, Min S-J, Eigenmann R: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming:
2009; Raleigh, NC, USA. 1504194: ACM: 101-110.

63. Bradski G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV
library: O’Reilly. 2008.

64. Kahn MG, Weng C. Clinical research informatics: a conceptual perspective.
J Am Med Inform Assoc. 2012;19:36–42.

65. Carriero N, Osier MV, Cheung K-H, Miller PL, Gerstein M, Zhao H, et al. Case
Report: A High Productivity/Low Maintenance Approach to High-
performance Computation for Biomedicine: Four Case Studies. J Am Med
Inform Assoc. 2005;12(1):90–8.

66. Lindberg DAB, Humphrey BL. High-performance computing and
communications and the national information infrastructure: New
opportunities and challenges. J Am Med Inform Assoc. 1995;2(3):197.

67. Huang Y, Lowe HJ, Klein D, Cucina RJ. Improved identification of noun
phrases in clinical radiology reports using a high-performance statistical
natural language parser augmented with the UMLS specialist lexicon. J Am
Med Inform Assoc. 2004;12(3):275–85.

68. Kaspar M, Parsad NM, Silverstein JC. An optimized web-based approach for
collaborative stereoscopic medical visualization. J Am Med Inform Assoc.
2013;20(3):535–43.

69. Yang L, Chen W, Meer P, Salaru G, Goodell LA, Berstis V, et al. Virtual
microscopy and grid-enabled decision support for large-scale analysis of
imaged pathology specimens. Trans Info Tech Biomed. 2009;13(4):636–44.

70. Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone ME,
et al. Biological imaging software tools. Nat Meth. 2012;9(7):697–710.

71. Fang Z, Lee JH. High-throughput optogenetic functional magnetic
resonance imaging with parallel computations. J Neurosci Methods. 2013;
218(2):184–95.

72. Wang Y, Du H, Xia M, Ren L, Xu M, Xie T, et al. A hybrid CPU-GPU
accelerated framework for fast mapping of high-resolution human brain
connectome. PLoS ONE. 2013;8(5):e62789.

73. Webb C, Gray A. Large-scale virtual acoustics simulation at audio rates using
three dimensional finite difference time domain and multiple graphics
processing units. J Acoust Soc Am. 2013;133(5):3613.

74. Hernández M, Guerrero GD, Cecilia JM, García JM, Inuggi A, Jbabdi S, et al.
Accelerating fibre orientation estimation from diffusion weighted magnetic
resonance imaging using GPUs. PLoS ONE. 2013;8(4), e61892.

75. Hu X, Liu Q, Zhang Z, Li Z, Wang S, He L, et al. SHEsisEpi, a GPU-enhanced
genome-wide SNP-SNP interaction scanning algorithm, efficiently reveals
the risk genetic epistasis in bipolar disorder. Cell Res. 2010;20(7):854–7.

76. Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN. Computer-
aided prognosis of neuroblastoma on whole-slide images: classification of
stromal development. Pattern Recogn. 2009;42(6):1093–103.

77. Ruiz A, Sertel O, Ujaldon M, Catalyurek U, Saltz JH, Gurcan M. Pathological
Image Analysis Using the GPU: Stroma Classification for Neuroblastoma. In:
IEEE International Conference on Bioinformatics and Biomedicine: 2007;
Fremont, CA. 78-88.

78. Hartley TDR, Catalyurek U, Ruiz A, Igual F, Mayo R, Ujaldon M: Biomedical
image analysis on a cooperative cluster of GPUs and multicores. In:
Proceedings of the 22nd annual international conference on
Supercomputing: 2008; Island of Kos, Greece. 1375533: ACM: 15-25.

79. Teodoro G, Pan T, Kurc TM, Kong J, Cooper LAD, Saltz JH. Efficient irregular
wavefront propagation algorithms on hybrid CPU–GPU machines. Parallel
Comput. 2013;39(4–5):189–211.

80. Teodoro G, Kurc TM, Pan T, Cooper LAD, Jun K, Widener P et al..:
Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped
Systems. In: Proceedings of the IEEE 26th International Parallel & Distributed
Processing Symposium: 21-25 May 2012 2012; Shanghai, China. 1093-1104.

81. Teodoro G, T. Pan, T. M. Kurc, J. Kong, L. A. Cooper, N. Podhorszki, et al..
High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU
Cluster Platforms. In: the 27th IEEE International Parallel and Distributed
Processing Symposium (IPDPS): May 20-24 2013; Boston, Massachusetts, USA.
May 20-24. 24: 103 - 114.

82. Asur S, Ucar D, Parthasarathy S. An ensemble framework for clustering
protein-protein interaction networks. Bioinformatics. 2007;23(13):i29–40.

83. Forero P, Cano A, Giannakis G. Consensus Based k-Means Algorithm for
Distributed Learning Using wireless sensor networks. Signal and Info
Process, Sedona, AZ: Proc Workshop on Sensors; 2008.

84. Hore P, Hall LO, Goldgof DB. A scalable framework for cluster ensembles.
Pattern Recogn. 2009;42(5):676–88.

85. Iam-on N, Garrett S. LinkCluE: a MATLAB package for link-based cluster
ensembles. J Stat Softw. 2010;36(9):1–36.

86. Luo DJ, Ding C, Huang H, Nie FP. Consensus Spectral Clustering in Near-
Linear Time. IEEE 27th International Conference on Data Engineering (ICDE
2011). 2011. p. 1079–90.

87. Minaei-Bidgoli B, Topchy A, Punch W. A Comparison of Resampling Methods
for Clustering Ensembles. International Conference on Machine Learning;
Models, Technologies and Application (MLMTA04). 2004. p. 939–45.

88. Strehl A, Ghosh J. Cluster Ensembles - A Knowledge Reuse Framework for
Combining Partitionings. In: Proceedings of Eighteenth National Conference
on Artificial Intelligence (AAAI-02)/Fourteenth Innovative Applications of
Artificial Intelligence Conference (IAAI-02). 2002. p. 93–8.

89. Zhang J, Yang Y, Wang H, Mahmood A, Huang F. Semi-Supervised
Clustering Ensemble Based on Collaborative Training. In: Nguyen L, Wang G,

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 20 of 21

Grzymala-Busse J, Janicki R, Hassanien A, Yu H, editors. Rough Sets and
Knowledge Technology, ser Lecture Notes in Computer Science. 7414th ed.
Berlin Heidelberg: Springer; 2012. p. 450–5.

90. Yang L, Qi X, Xing F, Kurc T, Saltz J, Foran DJ. Parallel content-based sub-image
retrieval using hierarchical searching. Bioinformatics. 2014;30(7):996–1002.

91. Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-
based method for class discovery and visualization of gene expression
microarray data. Mach Learn. 2003;52(1):91–118.

92. Vincent L. Morphological grayscale reconstruction in image analysis:
applications and efficient algorithms. IEEE Trans Image Process. 1993;2(2):
176–201.

93. Körbes A, Vitor GB, Lotufo RA, Ferreira JV. Advances on Watershed
Processing on GPU Architecture. In: Proceedings of the 10th
International Conference on Mathematical Morphology and its
Applications to Image and Signal Processing, vol. 2023072. Verbania-
Intra: Springer; 2011. p. 260–71.

94. Millstein T. Practical predicate dispatch. SIGPLAN Notices. 2004;39:345–464.
95. Jablin TB, Prabhu P, Jablin JA, Johnson NP, Beard SR, August DI. Automatic

CPU-GPU Communication Management and Optimization. In: Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, vol. 1993516. San Jose: ACM; 2011. p. 142–51.

96. Wang F, Kong J, Cooper L, Pan T, Kurc T, Chen W, et al. A data model and
database for high-resolution pathology analytical image informatics.
J Pathol Inform. 2011;2:32.

97. Wang F, Kong J, Gao J, Cooper LA, Kurc T, Zhou Z, et al. A high-
performance spatial database based approach for pathology imaging
algorithm evaluation. J Pathol Inform. 2013;4:5.

98. Hartigan J. Clustering Algorithms. Hoboken: Wiley; 1975.
99. Forgy EW. Cluster Analysis of Multivariate Data - Efficiency vs Interpretability

of Classifications. Biometrics. 1965;21(3):768.
100. Lloyd SP. Least-Squares Quantization in Pcm. IEEE Trans Inf Theory. 1982;

28(2):129–37.
101. Parallel k-means data clustering package [http://users.eecs.northwestern.

edu/~wkliao/Kmeans. Access date: Nov, 2015
102. Volkov V, Demmel JW. Benchmarking GPUs to tune dense linear albebra.

International Conference for High Performance Computing, Networking,
Storage and Analysis, Supercomputing. 2008;2008:499–509.

103. Tomov S, Dongarra J, Baboulin M. Towards dense linear algebra for hybrid
GPU accelerated many core systems. Parallel Comput. 2010;36(5-6):232–40.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Kurc et al. BMC Bioinformatics (2015) 16:399 Page 21 of 21

https://www.google.com/search?client=firefox-a&rls=org.mozilla:en-US:official&biw=1280&bih=860&noj=1&q=hoboken+nj&stick=H4sIAAAAAAAAAOPgE-LUz9U3MMotLypT4gAxK_LMk7S0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQCykbPNQwAAAA&sa=X&ved=0ahUKEwiBysXIlanJAhUCoZQKHcOABnAQmxMIjQEoATAP
http://users.eecs.northwestern.edu/~wkliao/Kmeans
http://users.eecs.northwestern.edu/~wkliao/Kmeans

	Abstract
	Background
	Results
	Conclusions

	Background
	Function 1: Content-based search and retrieval of images and image regions of interest from an image dataset
	Function 2: Computing quantitative features on images by segmenting objects, such as nuclei and cells, and computing shape and texture features for the delineated structures
	Function 3: Storing and indexing computed quantitative features in a database and mining them to classify images and subjects

	Methods
	Function 1. Efficient methodology to search for images and image regions: hierarchical CBSIR
	Execution of CBIR process
	Description of the Computation of Hierarchical Annular Features (HAF)
	Texture features
	Structural features

	Function 2. High throughput computation of quantitative measures on hybrid CPU-GPU systems
	Function 3. Managing and mining quantitative measures
	Data management
	Consensus clustering on large shared-memory systems

	Results and discussion
	Function 1: CBIR performance: speed and accuracy
	Function 2: high performance computation of quantitative measures
	Performance of GPU-enabled operations
	Cooperative execution on CPUs and GPUs
	Execution on multiple nodes

	Function 3: performance of consensus clustering implementation

	Conclusions
	Availability of data and materials
	Ethics
	Consent
	Availability of supporting data

	http://nvidia.com/cuda
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

