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Abstract

Background: Transcription factors (TFs) are proteins that bind to DNA and regulate gene expression. To understand
details of gene regulation, characterizing TF binding sites in different cell types, diseases and among individuals is
essential. However, sometimes TF binding can only be measured from biological samples that contain multiple cell or
tissue types. Sample heterogeneity can have a considerable effect on TF binding site detection. While manual
separation techniques can be used to isolate a cell type of interest from heterogeneous samples, such techniques are
challenging and can change intra-cellular interactions, including protein-DNA binding. Computational deconvolution
methods have emerged as an alternative strategy to study heterogeneous samples and numerous methods have
been proposed to analyze gene expression. However, no computational method exists to deconvolve cell type
specific TF binding from heterogeneous samples.

Results: We present a probabilistic method, MixChIP, to identify cell type specific TF binding sites from
heterogeneous chromatin immunoprecipitation sequencing (ChIP-seq) data. Our method simultaneously estimates
the binding strength in different cell types as well as the proportions of different cell types in each sample when only
partial prior information about cell type composition is available. We demonstrate the utility of MixChIP by analyzing
ChIP-seq data from two cell lines which we artificially mix to generate (simulated) heterogeneous samples and by
analyzing ChIP-seq data from breast cancer patients measuring oestrogen receptor (ER) binding in primary breast
cancer tissues. We show that MixChIP is more accurate in detecting TF binding sites from multiple heterogeneous
ChIP-seq samples than the standard methods which do not account for sample heterogeneity.

Conclusions: Our results show that MixChIP can estimate cell-type proportions and identify cell type specific TF
binding sites from heterogeneous ChIP-seq samples. Thus, MixChIP can be an invaluable tool in analyzing
heterogeneous ChIP-seq samples, such as those originating from cancer studies. R implementation is available at
http://research.ics.aalto.fi/csb/software/mixchip/.
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Background
Transcription factors are DNA-binding proteins that reg-
ulate expression of neighboring or distal genes. Most
of the TFs bind only a small proportion of potential
genomic sites as defined by their DNA binding domains
[1]. Detailed mapping of TF binding in different cell
types, conditions, diseases and among individuals is cen-
tral for understanding transcriptional regulation. Three
factors contribute to TF binding: sequence preference of
a TF, local chromatin context, and TF coactivators and
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repressors [2]. Furthermore, TFs often bind to distinct
subsets of potential binding sites in different cell types
which results in variation in gene regulation. As an exam-
ple, it is shown that on average one third of measured
TF binding sites overlap between the cell lines K562 and
HelaS3 [2].
In some applications, DNA-protein interactions are

measured from biological samples that contain multiple
cell or tissue types. Sample heterogeneity is a major con-
founding factor e.g. in clinical studies [3] and it can have
a significant effect in TF binding profiling and it limits
the conclusions that can be made about binding speci-
ficity [4]. For instance, tumor biopsy sample taken from
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a patient often contains unknown proportions of normal
or other infiltrating cells [5]. This is problematic espe-
cially if the heterogeneous tumor sample is compared to a
healthy sample or to another heterogeneous tumor sam-
ple with different proportions of contaminating cell types.
As an example, different subtypes of breast cancer can
be defined based on their gene expression characteristics.
One of the identified subtypes is a normal-like subtype
which has similar expression pattern to normal breast tis-
sue. Nevertheless, it is argued that a normal-like subtype
is only an artifact resulting from contamination of samples
with normal breast tissue [6].
Manual cell separation techniques, such as cell sort-

ing, enrichment and laser-capture microdissection can be
used to isolate cell types of interest from complex tis-
sue samples, but are expensive, time-consuming and may
affect cell physiology and important interactions between
different cell types [7, 8]. Computational deconvolution
methods have emerged as an alternative to solve these
problems. In silico purification allows us to process data
that are measured from a mixture of several cell types by
performing computational deconvolution after measuring
the samples. Previously, many in silico purification meth-
ods have been published for gene expression [3, 4, 7–15]
and DNA methylation data [5]. To our knowledge, how-
ever, there is no method to estimate cell type specific TF
binding sites and cell type proportions using ChIP-seq
data from heterogeneous samples.
The ChIP-seq protocol produces short sequence reads

of genomic DNA that are enriched for a target of interest
(here binding sites of a TF). After mapping the sequence
reads to a reference genome the main analysis task is to
identify TF binding sites by selecting regions with signif-
icantly large numbers of mapped reads [16]. However, it
is now known that regions with high read counts do not
necessarily correspond to real binding sites as read counts
are affected by many biases, such as local GC content,
mappability, chromatin structure and copy number varia-
tion [17]. If matching input control samples exist, such as
samples generated from genomic DNA (without immuno-
precipitation) or by using non-specific antibody, they can
be used to estimate local background biases [18].
Given that it is important to study heterogeneous sam-

ples and knowing the aforementioned challenges and
limitations, we introduce a probabilistic method for iden-
tifying cell type specific binding sites from heterogeneous
ChIP-seq samples.

Methods
Data
In silico simulated data
We used publicly available ChIP-seq data from The Ency-
clopedia of DNA Elements (ENCODE) project [19] to
demonstrate the proof-of-principle of our method. We

simulated in silico a mixture of ChIP-seq data measuring
JUND binding in two different cell lines, HepG2 and K562.
Each heterogeneous sample was generated by taking, with
a fixed ratio, randomly subsampled sequence reads from
HepG2 and K562 samples. The selected mixture ratios
of the two cell lines were 10:90, 20:80, 50:50, 80:20 and
90:10%. For instance, a sample with ratio 20:80% has 20%
of the total reads fromHepG2 sample and 80% of the total
reads from K562 sample. All in all, we simulated three
samples with eachmixture proportion totaling 15 samples
altogether. For each simulated mixture sample, the corre-
sponding input control with the same mixture ratio was
simulated using rabbit IgG control from the same HepG2
and K562 cell lines. All the generated ChIP samples
had around 21 million aligned reads whereas input con-
trol samples had approximately 48 million aligned reads.
Samples and their matching input controls are listed in
Additional file 1: Table S1.
All simulated mixture samples were mapped to hg19

genome using Bowtie [20]. Fragment sizes were estimated
with spp software using cross-correlation of positive and
negative strand tag densities [21]. Next, reads were shifted
according the fragment size estimates, clonal reads were
removed and reads mapping to each candidate binding
sites were calculated using a custom python script with
HTSeq [22]. For validation purposes, true cell type spe-
cific JUND binding sites in HepG2 and K562 cell lines
were detected from the original pure samples usingMACS
[18] with a stringent p-value < 10−7. To validate the use-
fulness of the model 10, 000 binding sites that were found
in HepG2 cell line but not in K562 were selected to repre-
sent a set of true JUND binding sites in HepG2. Similarly,
the same amount of binding sites detected only in K562
cell line were selected as true JUND binding sites in K562.
In addition, we selected 3160 random genomic loci which
did not overlap with any of the detected JUND binding
sites in the two cell lines and had on average at least three
aligned reads. Thus, altogether 23, 160 candidate binding
sites were used in our analysis. Figure 1 shows the simu-
lated heterogeneous ChIP-seq signal at selected candidate
binding sites.

Oestrogen binding data
We also applied ourmethod to the breast cancer data from
Ross-Innes et al. [23]. The data set consists of measure-
ments of oestrogen receptor-α (ER) binding in primary
breast cancer tissues and metastases. Patients were fur-
ther classified in good outcome and poor outcome groups
based on the tumour type. We decided to select the sam-
ples from the good outcome group patients because data
from these patients correlate better with each other com-
pared to the data from poor outcome group patients. Each
patient sample has also a corresponding genomic DNA
sample, which we used in the model as input controls.
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Fig. 1 Read coverage at four representative JUND binding sites in the simulated heterogeneous samples. Signals are shown as counts per 10 million
reads. The first and third columns show two binding sites where JUND is bound in HepG2 cell line but not in K562. The binding sites in the second
and fourth column are JUND binding site in K562 cell line but not in HepG2. The proportions of the two cell lines in each sample are depicted on right
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Samples together with their corresponding input controls
and GEO accession names are shown in Additional file 1:
Table S2.
We used altogether four samples (G5.1, G5.2, G7, G8)

in our model to estimate breast cancer tissue specific ER
binding sites. These samples had estimated breast cancer
cell percentages of 90, 90, 70 and 70%. Since the ground
truth of ER binding in primary breast cancer tissue is not
known we used the remaining four samples to define a set
of true (or most likely) binding sites. A genomic locus was
considered as a true binding site if it was detected as a
peak in all of the four samples G1, G2, G4 and G6. The
peak calling was performed using MACS [18] with the
default p-value threshold of 10−5. As a result, altogether
678 regions were selected as true binding sites. The nega-
tive set was constructed by taking random regions in the
genome and discarding those which overlapped with the
detected peaks from the four individual samples (G1, G2,
G4 and G6) and those which had on average less than 15
reads mapped to that region, resulting in 293 loci in the
negative set. Three illustrative examples of strong binding
sites in the four samples used for the modeling are shown
in Fig 2. Data were preprocessed in the same way as the
ENCODE data set. The samples used for modeling and
the a priori assumed proportions of breast cancer tissue
in each sample are shown in Table 1.

Model
ChIP-seq data is commonly assumed to follow Poisson
distribution [18]. An advantage of the Poisson distribu-
tion is that it has a single parameter λ which is equal to

the mean and the variance of the distribution. To cap-
ture local biases in data along the genome, one of the
most popular ChIP-seq peak finding algorithms, MACS
[18], uses a dynamic Poisson distribution to model a local
background. First, it uses a sliding window to find can-
didate binding regions that show enrichment of mapped
sequencing reads relative to a local background model,
and if enriched regions are overlapping, they are merged.
The candidate sites are tested against a local background
using a Poisson test, where the mean and the variance
of the Poisson distribution are estimated from the global
average of read counts or average read count in 1, 5
and 10 kb windows in the input control samples cen-
tred at the peak locations. We will build our cell type
specific binding analysis tool on the aforementioned
assumptions.
We denote the binding affinity measurement, i.e. read

count, of a protein in heterogeneous sample j = 1, . . . , J
and in genomic location i = 1, . . . , I as yij. Candidate bind-
ing sites i which are used in our model are pre-selected;
they can be for example any sites that show weak enrich-
ment at least in one of the heterogeneous samples. The
read count data across all sites and samples is denoted
collectively as D. Cell type specific binding affinities in
locus i for cell type t = 1, . . . ,T are denoted as xi =
(xi1, xi2, . . . , xiT ) and cell type proportions in a sample j
as pj = (pj1, pj2, . . . , pjT ). Binding affinity measurement
from a heterogeneous sample, yij, is assumed to be Poisson
distributed with a local parameter λij. The mean parame-
ter λij is a weighted average of the cell type specific binding
affinities, where the weights are the cell type proportions

Fig. 2 Illustrative ER binding sites in four samples used for the modeling: G5.1, G5.2, G7, and G8. Signals are shown as counts per 10 million reads
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Table 1 Sample list in the ER data set shown together with their
a priori assumed tumor proportions and the number of aligned
reads. Four of the samples were used in the heterogeneity
modeling and rest of the samples were used to determine a set
of high quality binding sites for validation purposes

Sample Tumor percentage Aligned Reads Used in model

G1 > 70% 12311074 –

G2 > 70% 17696624 –

G4 N/A 14568154 –

G5.1 90% 7887177 X

G5.2 90% 16055168 X

G6 100% 13429725 –

G7 70% 22747279 X

G8 70% 20227148 X

pj and sj, the scaling parameter for different sequencing
depths of each sample

f (yij|pj, xi, sj) = Poisson
(
yij|λij = sj

∑
t

pjtxit

)
. (1)

We assume the read counts in each candidate binding
site i and sample j to be conditionally independent given
the parameters; thus, the likelihood of the data can be
written as

f (D|p, x) =
∏
i

∏
j
f
(
yij|pj, xi, sj

)
, (2)

where p and x denote all the unknowns

p =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1T
p21 p22 · · · p2T
...

...
. . .

...
pJ1 pJ2 · · · pJT

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1T
x21 x22 · · · x2T
...

...
. . .

...
xI1 xI2 · · · xIT

⎞
⎟⎟⎟⎠ . (3)

We place a Dirichlet distribution as the prior for cell
type proportions in sample j, pj ∼ Dirichlet(αj =
w0p0j). Vector p0j denotes the location of the distribution
which can be thought of as the user’s prior informa-
tion of the true cell type proportions in sample j, and
w0 quantifies the variance of the prior which can be set
based on how much the prior information is trusted.
Naturally, cell type proportions in sample j, pj, as well
as prior parameter p0j sum up to one, i.e.

∑
t pjt =

1 and
∑

t p0jt = 1. This makes the Dirichlet distri-
bution a natural choice but other priors can be used
as well. We set uninformative uniform priors for the
unknown cell type specific binding affinities, i.e., xit ∼
Uniform(a, b), where a defines the lower and b the upper
bound.

Given the read count data D and hyperparameters
φ, our model defines a posterior distribution for the
unknown parameters

f (x,p|D,φ) ∝
⎛
⎝∏

j
f (pj|αj)

⎞
⎠(∏

i

∏
t
f (xit|a, b)

)
×

⎛
⎝∏

i

∏
j
f
(
yij|sj

∑
t

pjtxit

)⎞
⎠ . (4)

We use maximum a posteriori (MAP) estimation to
find the cell type specific binding affinities x̃ and cell
type proportions p̃. Optimization of the posterior func-
tion is performed using the limited-memory modifi-
cation of the Broyden-Fletcher-Goldfarb-Shanno quasi-
Newton method with box constrains (L-BFGS-B) [24]
(see Additional file 1 for partial derivatives of the log
posterior). The optimization is performed 10 times with
different initial points to avoid local optima.
Local biases can vary between cell types, samples and

even replicates. Consequently, it is important to have a
matching input control sample for each ChIP sample, such
as genomic DNA sample or sample with non-specific anti-
body [17]. Input controls can contain binding site signals
because TF binding sites are usually located in regions
of open chromatin where fragmentation is more efficient
[25]. However, our analysis suggests that input control
samples contain only little or no information about the
cell type proportions. Usually, the matching input control
comes from the same biological source as the ChIP sam-
ple. Therefore, we assume that the matching input control
sample has the same cell type proportions as the ChIP
sample and decided to estimate cell type proportions, p̃,
using only the ChIP samples. In other words, the cell type
proportions p̃, estimated from the ChIP samples, are used
for each of the loci in the matching input control samples.
The input control signal is modeled using three different
windows, similar to MACS peak finding algorithm; 1000,
5000 and 10000 base pairs around the candidate bind-
ing site. Thus, given data from the input control samples,
Dc, the posterior of cell type specific reads counts, xc,
becomes

f (xc|Dc, p̃,φ) ∝
(∏

i

∏
t

∏
r
f
(
xcitr|a, b

))

×
⎛
⎝∏

i

∏
j

∏
r
f
(
ycijr|scj

∑
t

p̃jtxcitr

)⎞
⎠, (5)

where r ∈ {1k, 5k, 10k} denotes different window sizes
around each genomic loci i, ycijr is the read count in het-
erogeneous input control sample j = 1, . . . , J in genomic
location i = 1, . . . , I and window size r (xcitr is defined
similarly), and superscript c denotes the input control
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samples. As above, we estimate the cell type specific
input control signals in the three windows by maximiz-
ing the posterior in Eq. (5) with respect to xc using
L-BFGS-B.
Once the cell type specific binding affinities x̃ and input

control signals x̃c are estimated, we would like to test
for significance of cell type specific binding. We decided
to formulate a MACS-like significance test, which uses
a dynamic Poisson distribution. In particular, under the
null hypothesis of no binding site, the dynamic λ param-
eter in the Poisson distribution for cell type t in loci i is
estimated from the cell type specific signals in the input
control, x̃cit[1k], x̃

c
it[5k] and x̃cit[10k] or from global average of

read counts

λ̃it = liSmax
(
x̃cit[1k]
1000

,
x̃cit[5k]
5000

,
x̃cit[10k]
10000

,
Rc
global

G

)
, (6)

where li is the width of the candidate binding site i
in base pairs in the ChIP sample, S is a scaling fac-
tor to normalize the sequencing depths between the
ChIP and input control sample, Rc

global is the total num-
ber of reads in input control experiment and G is
the size of the genome. As in MACS method, the p-
value of each x̃it is computed relative to a dynamic
Poisson distribution with parameter λ̃it . The whole
analysis workflow of the algorithm is illustrated in
Fig. 3.
Computational time depends on the number of sites and

samples. To perform optimization 10 times for the simu-
lated data with 8 samples and 23, 160 candidate binding
sites takes around 3 h on a standard desktop computer.
For breast cancer data set with four samples and 971 can-
didate binding sites the running time is approximately
2 min.

Fig. 3 Analysis workflow of the MixChIP method. First, the cell type proportions in each ChIP sample and cell type specific signal are estimated.
Second, the estimated proportions are used to deconvolve the signal in the input control samples using three different regions around the
candidate binding site regions
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Results
In silico simulated data
Cell type specific binding
We estimated cell type specific binding affinity and input
control signals in HepG2 and K252 cell lines from eight
heterogeneous samples using our model and evaluated
statistical significance of the cell type specific binding
sites using the dynamic Poisson null model. Hyperpa-
rameters were set to values: w0 = 4, a = 0.01,
b = 10000, and p0 = (0.1, 0.1, 0.2, 0.2, 0.8, 0.8, 0.9, 0.9)
which corresponds to the true cell type proportions or
p0 = (0.05, 0.2, 0.4, 0.35, 0.8, 0.5, 0.6, 0.7) to show that the
method works also when the prior information is not
accurate. Accuracy of the cell type specific binding analy-
sis is evaluated using the receiver operating characteristic
(ROC) curve, where the binding sites obtained from the
pure samples with a stringent p-value of < 10−7 are
considered as true binding sites. Because no other com-
putational methods have yet been proposed for cell type
specific binding analysis, performance of our probabilis-
tic model is compared to the traditional way of identifying
binding sites using multiple samples. First, Poisson test
for the read counts (i.e., MACS type of analysis) was
performed in each genomic locus in each heterogeneous
sample. For each region i, the p-values were combined
by taking the maximum of all individual p-values. This
corresponds to a test with a null hypothesis that at least
one separate null hypothesis is true and the alternative
hypothesis that all the alternative hypotheses are true.
Computing the maximum of individual p-values also cor-
responds to a commonly used approach where binding
sites are defined to be those which are found in all the
samples.
The prediction performance in both of the cell lines is

shown in Figs. 4(a–b). The detection of JUND binding
sites in both of the cells lines is highly specific and sensi-
tive. We also predicted the binding sites in a similar way
using all 15 samples (Additional file 1: Figures S1(a–b)).
Figs. 4(a–b) and S1(a–b) also show the prediction per-
formance of the traditional maximum p-value method.
Consistent with the fact that the traditional method is
not able to handle sample heterogeneity, we observed that
inclusion of samples which have 50% purity decreased
its performance (Additional file 1: Figures S1 (c–d)), and
accuracy decreased even further if we include all 15 sam-
ples (Additional file 1: Figures S1 (e–f)). Consequently, in
order to achieve best possible results for the maximum p-
value method in Figs. 4(a–b) and S1(a–b), we considered
only samples which had more than 50% of the cell line
of interest when applying the maximum p-value method.
Overall, our results using simulated heterogeneous ChIP-
seq data sets demonstrate that explicitly modeling sample
heterogeneity can significantly improve accuracy of bind-
ing site detection.

Cell type proportions
We tested how sensitive our method is to the choice
of prior for cell type proportions p. Figs. 4c) and 4f)
show the estimated cell type proportions with different
hyperparameter values p0j but with the same sharpness
parameter w0 = 4. In Fig. 4c) the prior means are set
exactly to the same locations as the true proportions of the
cell types, whereas in Fig. 4f) prior means are set so that
they contain inaccurate information about the propor-
tions. The estimated proportions are close to the true pro-
portions in Fig. 4c) as expected. However, Fig. 4f) shows
that the probabilistic method is able to infer the cell type
proportions from the data, despite the inaccurate infor-
mation encoded in the prior. Furthermore, using either
accurate or inaccurate prior proportions give at the end
similar MAP estimates for the cell type proportions as
well as for binding affinities, thus resulting in very sim-
ilar accuracy in binding site detection (compare Figs. 4
(a–b) with (d–e)). We also tested more systematically how
different prior information affects the estimated cell type
proportions. For a fixed prior sharpness parameter w0 =
4, Additional file 1: Figure S2 shows the mean squared
error (MSE) between true cell type proportions and ini-
tial prior means against MSE between true and estimated
proportions. It can be seen that MSE of the estimated
values is only a fraction of MSE of initial values. More-
over, different values for the sharpness parameter w0 did
not affect prediction performance either (Additional file
1: Figure S3). Taken together, MixChIP’s performance is
not sensitive to small fluctuations in the prior cell type
proportions.

Effect of the sample size and number of candidate binding
sites on binding site identification
Next, we checked how the sample size affects the
prediction performance. We identified binding sites using
3, 5, 8, 10 and 15 heterogeneous samples. The mixture
proportions of the samples that were used with different
sample sizes are shown in Table 2. Again, when apply-
ing the maximum p-value method, we only used samples
which had more than 50% of the cell line where the bind-
ing was evaluated. Area under the curve (AUC) values for
different sample sizes are shown in Figs. 5(a–b). As sam-
ple size increases the prediction performance of themodel
also increases. However, with only three samples, AUC
values in HepG2 and K562 cell lines are as high as 0.95
and 0.98, respectively. The accuracy of the maximum p-
value method depends more strongly on the sample size
and performance is considerably worse on small sample
size. Finally, we applied MixChIP to different numbers of
candidate binding sites to show that even with only 100
candidate sites, high accuracy can be achieved (see Fig. 6).
Collectively, our probabilistic model improves binding site
detection for all samples sizes and, importantly, performs
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Fig. 4 Estimating cell type specific binding affinity and input control signal improves TF binding predictions in the cell types of the interest when
compared to the traditional approach where sample heterogeneity is not corrected for. ROC curve of JUND binding predictions for MixChIP (black
curve) and combining p-values of individual samples by taking the maximum of p-values (orange curve) in (a) HepG2 and (b) K562 cell lines. c
Estimated proportions (grey dots) of HepG2 cells when true proportions are used as an informative prior (orange dots). d–f ROCs and the estimated
proportions as in (a-c) when priors are intentionally set to differ from the true proportions

well also for small number of samples or candidate binding
sites.

Effect of the binding strength
Sometimes the ChIP signal strength between different cell
types varies, meaning that on average the binding sites
are weaker in one cell type compared to another. This
kind of variation can be caused e.g. by altered expres-
sion level of the protein of interest and that can affect
the cell type specific binding site analysis, especially if
the weaker expression and binding sites are in the cell
type of interest. To demonstrate this we used ENCODE

ChIP-seq data of IRF3 binding in HepG2 and HeLaS3 cell
lines. We selected 1248 binding sites in HepG2 cell line
and 1300 binding sites in HeLaS3 cell line as true bind-
ing sites for the two different cell types and an additional
110 random genomic loci which did not overlap with any
of the detected IRF3 binding sites in the two cell lines.
The data was preprocessed similarly as the JUND data set.
The overall binding strength is stronger in HeLaS3 com-
pared to HepG2 cell line (Additional file 1: Figure S4).
Consequently, traditional methods which cannot account
for sample heterogeneity primarily detect ChIP-seq signal
which originates from the HeLaS3 cell line and, therefore,

Table 2 Mixture ratios of HepG2 and K562 cells in samples which were used to test the effect of the sample size

Sample size Samples

10 10:90%, 10:90%, 20:80%, 20:80%, 50:50%, 50:50%, 80:20%, 80:20%, 90:10%, 90:10%

8 10:90%, 10:90%, 20:80%, 20:80%, 80:20%, 80:20%, 90:10%, 90:10%

5 10:90%, 20:80%, 50:50%, 80:20%, 90:10%

3 20:80%, 50:50%, 80:20%
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Fig. 5 Sample size has only a minor effect for prediction performance. AUC values with different sample sizes using MixChIP (black line) and taking
the the maximum of individual p-values (orange line) in (a) HepG2 and (b) K562 cell lines

completely fail to predict IRF3 binding sites in HepG2
(Fig. 7). On the other hand, our probabilistic method is
able to account for the sample heterogeneity despite a
major difference in the binding signal strength. A small
artifact is also seen in the AUC results for the probabilis-
tic model for HepG2 cell line (Fig. 7a)) as the modeling
method incorrectly predicts binding sites in both HepG2
and HelaS3 even though IRF3 is bound to these sites only
in HelaS3 cell line.

Oestrogen receptor-α binding data
Cell type specific binding
When detecting ER binding sites using the probabilis-
tic model the hyperparameters were set to the same

values as previously with ENCODE data sets. The pre-
diction performance for breast cancer cell specific bind-
ing sites is shown as a ROC curve in Fig. 8a). Again,
the performance of MixChIP is compared against the
maximum p-value method. The probabilistic method
outperforms the traditional method. The results in
Fig. 8 demonstrate that probabilistic modeling of sam-
ple heterogeneity can improve binding site identifica-
tion also in the case of data from primary cancer
biopsies.

Cell type proportions
In the breast cancer data set we set the priors to the a
priori assumed cell type proportions given in [23] with

Fig. 6 The number of candidate binding sites has a small effect on binding site predictions. AUC values with different number of candidate binding
sites for HepG2 (a) and K562 (b). A subset of candidate binding sites was randomly sampled from the original set of sites and this was repeated 20
times for each subset size. Black line shows the median AUC value among the 20 subsets and grey shaded area shows the 25 and 75% quantiles
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Fig. 7 A significant difference in the binding affinity between the cell types can affect the binding prediction accuracy. ROC curve of IRF3 binding
predictions in cell lines (a) HepG2, (b) HeLaS3 and estimated cell type proportions (c)

sharpness parameter w0 = 4 to have informative but
not too strict prior. For two of the samples (G5.1 and
G8) the MAP estimates of mixing proportions are close
to the prior information, whereas for two of the sam-
ples (G5.2 and G7) the estimated mixing proportions
are more far away from the priors (Fig. 8b)). Differences
between the prior and posterior estimates may be due
to inter individual variation in the ER binding strength
which can influence the MAP estimates of the mixture
proportions. As an example, sample G7 has on average
only 13 reads per binding site, whereas other samples have
around 34 reads per binding site. Due to the weaker bind-
ing strength, sample G7 has a low estimated breast cancer
proportion.
Because the binding strength between the samples

varies, we wanted to see how the different scaling fac-
tors would affect the results. Instead of using sequencing

depth for scaling, we used the binding strength, i.e. the
average number of reads in binding sites in each sam-
ple. Figure S5 shows that the use of binding strength as
a scaling factor helps in correctly estimating the propor-
tions of breast cancer tissue. However, accuracy of cell
type specific binding site predictions was decreased. This
suggests that there are also other hidden factors, besides
sequencing depth, binding strength and the breast cancer
cell proportions, that explain the variation between the
samples.

Discussion
In general, transcription factor binding varies between
different tissue types. As sequencing costs continue to
decrease we will in the future see more ChIP-seq exper-
iments adapted into clinical practice where tissue het-
erogeneity is a major challenge. In this paper, we have

Fig. 8 Detecting cell type specific binding sites in primary breast cancer samples using the probabilistic model outperforms the traditional method.
a ROC curve of ER binding predictions for MixChIP (blackcurve) and maximum p-value method (orangecurve). b The prior (orangedots) and estimated
proportions (greydots) of breast cancer cells
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demonstrated a probabilistic method for estimating mix-
ture proportions of different tissue or cell types as well
as cell type specific protein binding using heterogeneous
ChIP-seq data. Even though the method is applied and
benchmarked with samples that are mixtures of two cell
types it is straightforward to extend the method to handle
more complexmixtures.While computational deconvolu-
tion methods based on gene expression data are published
regularly, there is a demand to develop in silico purifica-
tion methods for other data types as well.
Using artificially generated mixtures of ENCODE data

as well as data from primary breast cancer samples
we show that our method outperforms the traditional
approach in detecting binding sites from heterogeneous
samples. Moreover, accurate predictions can be achieved
even with small sample sizes, thus enabling real appli-
cations involving heterogeneous samples. Only partial,
but not exact, prior information about the true cell type
proportions is needed for the deconvolution. Moreover,
candidate binding sites can be any sites that show enrich-
ment at least in one of the heterogeneous samples, thus
no information about the binding sites in pure cell types
is needed. Furthermore, we used rabbit IgG antibody or
genomic DNA as input control in our analysis, but in
principle any suitable control can be used.
In practice, if the cell type of interest is the major com-

ponent in heterogeneous samples and a pure ChIP-seq
sample from the cell type of interest exists, cell type spe-
cific binding sites can be detected from the pure sample
using a standard peak finding algorithm. Then, binding
sites in each heterogeneous sample can be found in the
same way and the sites which were not detected in the
pure sample can be discarded as they probably come
from the other cell types. However, this kind of approach
would neither detect weaker binding sites nor work if the
cell type of interest is not the major component in the
heterogeneous samples.
In reality, heterogeneous tissue samples can be contain

high level of noise. Any standard quality control steps can
be used to assess the quality of the ChIP-seq data before
applying any deconvolution methods. For instance, man-
ual browser inspection is a good way to evaluate how the
experiment and antibody have worked in each sample.
As a quantitative measure, one can calculate a fraction of
reads that fall into the binding sites [26]. In the ENCODE
project samples with more than 1% of reads mapping to
the binding sites are labeled as good quality samples [26].
However, when the sample consists of multiple cell types,
the quality of the sample can be good even if the fraction
of reads in binding sites is less than 1%.
Since binding sites can vary between samples, possi-

ble future extensions include e.g. developing a variant of
our method which predicts cell type proportions for each
sample given binding profiles of a TF in pure cell types,

similar to what has been developed for cell type compo-
sition estimation in the context of microarray based gene
expression data (see e.g. [4, 14]).

Conclusions
In this work, we propose a probabilistic method,MixChIP,
for estimating mixture proportions of different tissue or
cell types as well as cell type specific protein binding
using heterogeneous ChIP-seq data. We have applied the
proposed method to artificially generated mixtures of
ENCODE data and data from primary breast cancer sam-
ples to show that MixChIP can estimate correct cell type
proportions and detects cell type specific TF binding sites
more accurately than commonly used approach. We also
show that themethod is applicable even with small sample
sizes and thus can be used in real-life problems.
To our knowledge MixChIP is the first computational

deconvolution method designed for ChIP-sequencing
data and it can be a valuable tool in analyzing heteroge-
neous ChIP-seq samples originating, for instance, from
tumor biopsy samples.

Additional file

Additional file 1: The following additional data are available. In the
Additional file we provide partial derivatives of the log posterior. (Table S1):
is a table listing ENCODE data samples used in this paper. (Table S2): is a
table listing breast cancer samples used in the paper. (Figure S1): is a
figure showing the performance of the method using all the samples and
the max p-value method when including samples with different amount of
purity. (Figure S2): is a figure showing MSE between initial cell type
proportions and true cell type proportions against MSE between estimated
proportions and true proportions. (Figure S3): is a figure showing the
prediction performance with different values of hyperparameter w0.
(Figure S4): is a figure showing the binding strength of IRF3 in HelaS3 and
HepG2 cell lines. (Figure S5): is a figure showing the prediction
performance in the breast cancer data set when different scaling factors
are used. (PDF 2541 kb)
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