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Abstract

Background: Short and long range correlations in biological sequences are central in genomic studies of
covariation. These correlations can be studied using mutual information because it measures the amount of
information one random variable contains about the other. Here we present MIA (Mutual Information Analyzer) a
user friendly graphic interface pipeline that calculates spectra of vertical entropy (VH), vertical mutual information
(VMI) and horizontal mutual information (HMI), since currently there is no user friendly integrated platform that in a
single package perform all these calculations. MIA also calculates Jensen-Shannon Divergence (JSD) between pair of
different species spectra, herein called informational distances. Thus, the resulting distance matrices can be
presented by distance histograms and informational dendrograms, giving support to discrimination of closely
related species.

Results: In order to test MIA we analyzed sequences from Drosophila Adh locus, because the taxonomy and
evolutionary patterns of different Drosophila species are well established and the gene Adh is extensively studied.
The search retrieved 959 sequences of 291 species. From the total, 450 sequences of 17 species were selected. With
this dataset MIA performed all tasks in less than three hours: gathering, storing and aligning fasta files; calculating
VH, VMI and HMI spectra; and calculating JSD between pair of different species spectra. For each task MIA saved
tables and graphics in the local disk, easily accessible for future analysis.

Conclusions: Our tests revealed that the “informational model free” spectra may represent species signatures. Since
JSD applied to Horizontal Mutual Information spectra resulted in statistically significant distances between species,
we could calculate respective hierarchical clusters, herein called Informational Dendrograms (ID). When compared
to phylogenetic trees all Informational Dendrograms presented similar taxonomy and species clusterization.
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Background

Genic and intergenic regions in chromosomes have sta-
tistically distinct properties. Most intergenic regions be-
have randomly in regard to nucleotide mutations,
besides some special regions like transcription regulatory
sites and transposons. On the other hand, most of the
genes are highly conserved, especially in regions like
promoters, TATA box, exons, splice junctions etc. But,
even these conserved regions, and others such as in-
trons, can present many polymorphic single regions as
well as two separated regions that present orchestrated
mutations in a way as to try to conserve or improve de-
termined phenotype [1-4]. Hereupon, the main goal of
this work is to provide methods and tools in order to
discriminate closely related species using informational
spectrum distances. Here we searched for polymorphic
regions seeking out covariation signals by using DNA se-
quences from Drosophila Adh locus. With these se-
quences we calculated entropy and mutual informational
spectra from different closely related species sequences.
Thereafter, via Jensen-Shannon Divergence, we calcu-
lated distances between these spectra resulting in dis-
tance matrices capable of inferring the possibility of
species discrimination.

Furthermore, in microorganisms the species definition
is coarse. Attempts to measure sequence diversity by in-
formational entropy and speciation have been proposed
in Protista [5, 6]. However, these studies suggest that be-
sides information entropy, mutual information could
provide a means to access covariation, a central problem
in diversifying molecules and species.

Thus, herein we present a computational pipeline
called MIA (Mutual Information Analyzer) developed in
Python [7] and BioPython [8]. MIA modules can be seen
in Fig. 1, and it is capable of retrieving DNA sequences,
and of calculating Entropy and Mutual Information
spectra applying a statistical framework that allows infer-
ences. This pipeline was developed due to the inexis-
tence of an application able to calculate and display
vertical Shannon entropy (VH), vertical mutual infor-
mation (VMI), horizontal mutual information (HMI),
and Jensen-Shannon Divergence (JSD) between pairs
of different species spectra, herein called informa-
tional distances.

Entropy and Mutual Information theory can be found
in [9, 10], and a nice review in [11]. Many applications
[12-14] are capable of calculating biological sequence
parameters, but only BioEdit [15] calculates mutual in-
formation and vertical entropy. There are also some the-
oretical studies like in Grosse et al. [1] focused on
horizontal mutual information of DNA sequences, and
other studies of co-evolution of proteins [3, 4, 16, 17]
based on vertical mutual information. However none
of these studies and applications has algorithms to
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calculate and display VH, VMI and HMI distributions
and their informational distances.

Therefore, we began the development of MIA guided
by the questions: Given some sequences, grouped in
recognizable sets (species), are molecular data capable of
discriminating theses sets using methods of information
theory? Can we present statistical calculations that con-
firm or deny the results? Given a set of sequences with
conserved and polymorphic residues and different
lengths, how to deal with many possible alignments and
their gaps?

In order to address these problems we demonstrated
that Entropy and Mutual Information are good methods
to deal with this complex problem, but caveats and
warnings still remain: a) multiple sequence alignment
(MSA) gives rise to many possible alignments herein
denoted “mincut” for the minimum length alignment
and “maxmer” for the maximum; b) gaps should be
replaced by vertical consensus residues, differently
from Weil et al. [4] who replaced them with a new
character (a 21th amino acid) for their protein study,
otherwise covariation between two residues will give
rise to new states containing a strange fifth nucleo-
tide; c) short strings present deviation called bias,
thus we applied a bias correction for entropy, mutual
information and respective standard errors as defined
in Roulston [18] and also demonstrated by Steuer
et al. in [11]; finally d) mutual information can be
calculated residue by residue (1 x 1 positions) or 2 by
2 residues, or n by n residues - this parameter we
will call NOL (number of letters of a word) and
herein NOL will be equal to one (see Fig. 4b).

Implementation

MIA has the following algorithms: Al) NCBI: gathers
data at NCBI and stores them in gbk file format; A2)
gbk to fasta: analyzes gbk file and organizes sequences in
fasta files per species; A3) Alignment: aligns sequences
with Muscle [19] and in the end creates two fasta files:
“mincut” cutting out columns and sequences with large
gaps and “maxmer” maintaining maximum number of
gaps; A4) Purging: replaces ambiguous nucleotides via
IUPAC nucleotide ambiguity table, and eliminates se-
quences with undesirable words in their names like “syn-
thetic”; A5) Consensus: replaces gaps by their vertical
consensus nucleotide; A6) VMI: calculates and stores
Vertical Entropy (VH) and Vertical Mutual Information
(VMI) spectra, and displays respective histograms and
heat maps; A7) HML calculates and stores Horizontal
Mutual Information (HMI) spectra, and displays histo-
grams; A8) JSD: calculates Jensen-Shannon Divergence
from pair of normalized spectra, storing distances and
their SE in distance matrix files, and displays distance
histograms; A9) HC: calculates hierarchical clusters and
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Fig. 1 MIA Pipeline: all algorithms (modules) can be seen from A1 to A5 retrieving, preparing and storing sequences; A6 to A7 informational
spectra calculation; A8 informational distances calculation and A9 informational dendrograma calculation

(3): alignment with

A9: Hierarchical
Cluster

Dendrogram
Informational tree

presents them as dendrograms, herein called informa-
tional dendrograms; A10) Entropy: simulates Shannon
entropy.

Before gathering sequences it is important to analyze
available Drosophila species data. There are some sites
specialized in Drosophila data. They present sequence
browsers, protein sequences, genes sequences and many
parameters for molecular data. Three of these sites are:
DPDB [20], Flybase [21] and BDGP [22].

In the first algorithm MIA is capable of searching for
an organism, a gene or a word in the NCBI GBK. Here
we searched for organism/genus “Drosophila” and the
gene “Adh” (alcohol dehydrogenase). The resulting
search retrieved 959 sequences of 291 species. From the
total, 450 sequences of 17 species were selected (data
gathered in March 2015). We did this task imposing an
inferior limit called “number of sequence cutoff” in such
a way that if this cutoff is high MIA finds a set with
fewer species (there are not many genera/genes with
a lot of sequences in NCBI). Otherwise, if the cutoff
is low, the set will have a larger number of species,
some of which with a low number of sequences. The
consequence is that when calculating entropy and
mutual information, a species with many sequences
provides a lower standard error, while a species with
fewer sequences provides a higher standard error.
Therefore, in the Drosophila/Adh case we set the
cutoff equal to 7 resulting in 17 species and 450
sequences.

After gathering sequences, the next step was the align-
ment algorithm - MIA uses Muscle for this task - and
thereafter starts deleting columns and sequences “with
many gaps” (which gives rise to the question — what
is the “correct percentage of maximum gaps”?)
replacing them by consensual vertical residues. How-
ever, deletions and replacements alter the informa-
tional distribution profiles. The human decision to set
the percentage of possible gaps creates “mincut” and
“maxmer” alignment sequences and their informa-
tional difference can be analyzed comparing distance
matrices. Answering the question posed, “there is no
correct choice” to how to deal with controlling gap
deletions; only empirical tests and their results are
likely ways to solve this problem in each genus/gene
case.

With the aligned sequences MIA computes vertical
entropy like did Adami in [9]. Thereafter MIA calculates
mutual information in the horizontal direction as in
Grosse et al. [1, 2, 23, 24], and in the vertical direction
as in Martin et al. [16] and Hamacher et al. [3, 4]. All
these methods are well explained in the Methods section
that follows.

VH, HMI and VMI are calculated with and with-
out bias correction; therefore the gain or loss of in-
formation for “mincut” versus “maxmer” with or
without bias correction can be compared. Informa-
tional distances between different informational spec-
tra are calculated via JSD method. Since JSD is not a
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linear function, standard errors are calculated by em-
pirical propagation giving rise to distance matrices
with SE.

ANOVA test was performed on each set of spectra for
each method (VH, VMI, and HMI), in order to assess
whether at least one spectrum was statistically different
from the others (see Additional file 1: drosophila “sum-
mary” tab). Otherwise, all distributions would be statisti-
cally similar and we could not discriminate species. As
can be noticed, this was only a first test to verify whether
we could move forward.

All informational spectra were compared to spectra
of shuffled and random sequences in order to analyze
if they are statistically distinct. Spectra of shuffled se-
quence were generated using original sequences and
shuffling the residues. Spectra of random sequence
were created drawing nucleotides randomly, up to the
same length as the original sequences. The first
method preserves nucleotide contents and the latter
is fully random tending to 25 % of representation to
each nucleotide. In this study we will present only
spectra of shuffled sequences and omit the random
ones, since they presented similar results. Notwith-
standing, MIA calculates and presents spectra for
both methods.

Methods
Shannon Entropy was defined in 1948 [25] as weighted
average of the log of state probabilities,

k
H= _Z Pm * logb Pm

m=1

Equation 1 — Shannon entropy.

In Equation 1 H is the Shannon Entropy, p,, is the
probability of the existence of a state m in k possible
states, and b is the base of the logarithm. If b is equal to
2 the entropic unit is defined as a “bit”, but if b is “e”
(Neper’s number) the entropic unit is defined as “nat”,
entropy derived from natural log. In this paper we will
work only with “nat”.

Shannon Entropy of DNA sequences can be mea-
sured aligning sequences and calculating the relative
frequency of encountering each nucleotide at deter-
mined residue (site). In this particular case only 4
possible states are found, Q ={A, C, G, T}. Maximum
entropy is defined as 1 MER [9], and it is achieved
only when all states are equiprobable (p=0.25). In this
case HLNA =—3F 1p; logy, pi=-4 (1/4 log,1/4) =2
bit or 1.386 nat. However, if one of the states has fre-
quency equal to 1 (100 %), and the others are 0, the
resulting entropy is H=0 because log 1=0 and this
residue is said to be conserved.
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We shall call Vertical Entropy (VH) the way of calcu-
lating entropy counting nucleotide frequencies in the
vertical orientation, that means, is a measure of how
polymorphic any residue is after aligning sequences for
determined species.

In Fig. 2, we present an oversimplified alignment for 8
sequences: a) S1, S2 to S8 are 8 aligned sequences, i
={1,2,3,4} are nucleotide positions (or residues), each
cell represents a nucleotide for a given sequence at a
given position i; b) is the nucleotide frequency distribu-
tion per site for each residue; c) is the relative nucleotide
frequency distribution per site; d) is the vertical entropic
spectrum; e) are the values for each nucleotide entropic
contribution and at the bottom is the vertical total en-
tropy of each residue.

Thus, given the position i =1, we realize that all nucle-
otides are “A”. For i =2 we realize that 50 % of nucleo-
tides are “A” and 50 % are “G”. As previously discussed,
the first position has H =0 nat and the residue is con-
served, the second position has H=.693 nat and the
residue is polymorphic. For i=3, see the red arrow, we
realize that this position is more polymorphic than the
previous (see Fig. 2d) but less polymorphic than i=4
that has H[4] = Hy,a = 1 MER.

Mutual Information (MI) represents the covariation
between two random variables, here denoted X and Y
[10, 11, 24]. Mutual Information (Equation 2) is de-
fined by the sum of two entropies, in position i and j,
minus the joint entropy H(i,j). As shown in the next
two sections, MI can be applied in the Vertical direc-
tion of aligned sequences or in the Horizontal direc-
tion for one single or many sequences, aligned or
not. Both calculations measure the nucleotide variabil-
ity in two positions. The first position i is represented
by the random variable X, and the second position j
is represented by the random variable Y. Therefore,
MI(X,Y) can be defined as,

MI(i, j) = H(i) + H(j) - H(i,j)

Equation 2 — Mutual Information between two posi-
tions (i, j).

Another parameter for MI calculation is the size of
the word, whose width is defined as number of letters
(NOL). Therefore, we can analyze co-variation be-
tween regions with width greater than 1. However, in
this study we will calculate MI only for NOL =1 (see
Fig. 4b).

In order to calculate the Vertical Mutual Information
(VMI), see Fig. 3, we need first to estimate the nucleo-
tide frequencies for position i and j, covering all residue
pairs. Since, MI(X,Y) is a symmetric function, in other
words, MI(X,Y) = MI(Y,X), and MI is zero if X cov-
aries independently of Y, covering (i,j) in such a way
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a) 3
1 2 3 4
S1 A A A A
52 A A A c
53 A A A G
s4 A A c T d)
S5 A G < A 1.6000
S6 A G C = 1.4000 -
=t e e N s 12000 4
S8 A G G T
1.0000
b} 0.8000 -
1 2 3 4 0.6000
— e = = = 0.4000 -+
nC 0 0 3 2
nG 0 a 2 2 0.2000 -
nT 0 0 0 2 0.0000
total 8 8 8 8
c) e)
1 i = 4 1 2 3 4
EA 1.000 0.500 0.375 0.250 HA 0.0000 0.3466 0.3678 0.3466
pC 0.000 0.000 0.375 0.250 HC 0.0000 | 0.0000 | 0.3678 | 0.3466
pG 0.000 0.500 0.250 0.250 HG 0.0000 | 0.3466 | 0.3466 | 0.3466
pT 0.000 0.000 0.000 0.250 HT 0.0000 | 0.0000 | 0.0000 | 0.3466
mgmu 0.0000 | 0.6931 | 1.0822 | 1.3863

Fig. 2 VH calculation: here we see an oversimplified DNA sequence alignment. The red arrow points to the residue (site) 3, but all residues are
calculated: @) S1,52 ... to S8 are aligned sequences versus DNA positions (residues); b) nucleotide frequency distribution per residue; €) nucleotide
relative frequency distribution per residue; d) vertical entropic spectrum; e) entropy per residue; and f) calculation of entropy for residue 3 or H[3]

H(3) = .3678 + .3678 + .3466 = 1.0822 nat = 1082 mnat

a) b) 12 1x3 1xa 23 24 34
‘ ‘ nAA 05 0375 | 025 | 0375 | 0125 | 0125
nac 0 0.375 0.25 0.125 0.125 0.125
1 2 3 4 naG 0.5 0.25 0.25 0 0.125 0.125
51 A A A A nAT 0 0 0.25 0 0.125 0
52 A A A C nCA 0 0 0 0 0 0.125
$3 A A A G nCC 0 0 0 0 0 0.125
54 A A C T nCT 0 0 0 0 ] 0.125
55 A G c A nGA 0 0 0 0 0.125 0
56 A G c = nGC 0 0 1] 0.25 0.125 0
57 A G G G nGG 0 0 0 0.25 0.125 0.125
58 A G G T nGT 0 0 0 0 0.125 0.125
c) d)
1 2 3 4
HA 0.0000 | 0.3466 | 0.3678 | 0.3466 1x2 1x3 1x4 2x3 24 34
HC 0.0000 | 0.0000 | 0.3678 | 0.3466 | H[X) 0.0000 | 0.0000 | 0.0000 | 0.6931 | 0.6931 1.0822
HG 0.0000 0.3466 | 0.3466 | 0.3466 H(Y) 0.6931 1.0822 1.3863 1.0822 1.3863 1.3863
HT 0.0000 | 0.0000 | 0.0000 | 0.3466 H(X,Y) | 0.6931 | 1.0822 | 1.3863 | 1.3209 | 2.0794 | 2.0794
M 0.0000 0.0000 0.0000 0.4545 0.0000 0.3890
|soma(tm)| 0.0000 | 0.6931 | 1.0822 | 13863
Ml | (nat)
0.4->0.5
0.3->04
0.2->0.3
0.1->0.2
0.0->0.1

Fig. 3 VMI calculation — the blue and red arrows point to a particular pair (X,Y), but all possible pairs are calculated: a) S1, S2 ... to S8 are aligned
sequences versus DNA positions (residues); b) nucleotide relative frequency distribution for all pairs of nucleotides; c) vertical entropy of each
residue and at the bottom the vertical entropy per residue; d) mutual information calculation for pair of residues; and e) on the left is the VMI
bidimensional spectrum represented as a heat map, and on the right side we see the color scale
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that i={1, L-1} and j=(i+1, L), for j>i. VMI can
also be expressed by,

2

mn € {A,C,GT}

Pann (i5)

VMI(i, j) = P ()25 ()

Punn (i) log

Equation 3 — Vertical Mutual Information.

In Equation 3 m and n are nucleotide states = {A,C,G,T}.
Since we are talking about a bidimensional relationship,
the resulting spectrum is represented by a heat map.

In Fig. 3, we present an oversimplified example of
aligned sequence with the intention of explaining how to
calculate VMI. The blue and red arrows point to a par-
ticular pair (X,Y), but all possible pairs are calculated
where: a) S1, S2 ... to S8 are 8 aligned sequences and i
or j ={1,2,3,4} are nucleotide positions (or residues); b) is
the nucleotide relative frequency distribution for all pairs
of nucleotides; c) is the vertical entropy for each residue
and at the bottom the vertical entropy per residue; d) is
the mutual information calculation for pair of residues;
and e) on the left is the VMI bidimensional spectrum
represented as a heat map, on the right side is the color
scale.

Horizontal Mutual Information (HMI) has a different
concept and method of calculation when compared to
VML HMI is defined as a measure of auto-covariation
between two positions distant k units one from the
other. Here k varies from 3 to L/2 (where L is the se-
quence length) with step equal to 1 in the 5’ to 3" direc-
tion. The step is one, because we intend to calculate all
residue to residue co-variations in the gene. In other
words, transcription and translation rules are not neces-
sary in our study.

For each value of k all sequence is covered counting
all possible pair of nucleotides (m,n) €{AA, AC, ...
TT}. Here, pmn represents the probability to find a
pair (m,n), where m and n € {A,C,G,T}. HMI(k) is
given by Equation 4, and p,, (k) and p, (k) are mar-
ginal probabilities given by Equation 5 and Equation
6, respectively.

- _ Pm(k)
HMI(k) = Zm:{A.G.T,C)an{A,G7T7C}pmn(k) * log P (K)pn (K)

Equation 4 — HMI equation for DNA sequences.
The marginal probabilities (py(k)e pn(k)) can be
calculated as,

D

n={A,C,G,T}

Pm(k) = Pinn (K)
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Equation 5 — Marginal probability of nucleotide m is

Pm (k)
and

pal)= >

m={A,C,G,T}

Pinn (K)

Equation 6 — Marginal probability of nucleotide n is
P (k).

In Fig. 4, we present an oversimplified example of
aligned sequence with the intention of explaining how to
calculate HML In this example we see: a) k=3 and the
cursor covering the sequence from the left to the right
finding = {AA, AA,GG...}; b) in this study NOL =1, but
NOL can be any other integer greater than 1; c) the mar-
ginal probabilities for X; d) the marginal probabilities for
Y; e) the joint frequencies and relative joint frequencies
for each found pair; f) HMI spectrum; and g) calculation
of HMI for this particular case.

With all calculated spectra we used Jensen-Shannon
Divergence (JSD) method to calculate the distances
between all pairs of different informational species
spectra, for VH, VMI and HMI. Since JSD needs two
distributions to calculate a distance, we had to
normalize the spectra and then apply them to this
method. Therefore, we can calculate JSD to VH, VMI
and HMI in order to calculate all distances between
pairs of different species,

P+ Q) 1

L) (H(P) + HQ)

psieiQ) = (75 2) -

Equation 7 — Jensen-Shannon Divergence (JSD).

Where P and Q are normalized spectra for differ-
ent species. Equation 7 is the JSD equation, but the
square root of JSD is indeed the distance between
two distributions [26]. A distance equal to zero
means that we cannot discriminate two distributions.
A short distance means that both distributions are
close and perhaps statistically impossible to discrim-
inate depending on SE. Large distances means that
species spectra are far allowing their discrimination,
but also dependent on the SE. Thus, it can be in-
ferred that JSD discriminates species with 95 % of
probability if most of the distances do not fall in the
confidence intervals (CI) of all the others — where
CI ~ distance + 2*SE.

Results

We tested our algorithms searching in NCBI, at
nucleotide database, for Organism = “Drosophila” and
Gene = “Adh” (Alcohol Dehydrogenase) resulting in 959
sequences of 291 species. Only species with 7 or more
sequences available were accepted to minimize the verti-
cal entropy and mutual information standard errors. The
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(X,Y); ) is the HMI spectrum; and g) is HMI calculation for k=3

a)
PEL 2
—>
@E] NOL=1 NOL=4
—— =
[a[a[c[A]AalG]c]a[c] (affalca[als]clalc]
—>
k=3
c) HX,k=3) d) H(Y,k=3)
X1#| p v[#] p |
A | 4| o.6667 a | 3] 0.5000]
c | o] 0.0000 c| 2[o0.3333]
G| 2]0.3333 G | 1]0.667|
7| o] 0.0000| 7 | o 0.0000|
6| 1.0000 6] 1.0000]
e) H(X, Y,k = 3) f)
X+ T 5] HMI(k)
A | A| 3lo.s000 (mnat)
alc| 1oaes7
G| c| 1]/0.1667
|G| 1]/0.1667
ltotal: 6/ 1.0000
3 4 5 k
g)

H(X,k = 3) = —0.667 +In(.667) —0.333 * In(.333) = 0.6365

H(Y,k = 3) = 0.5 * In(.5) — 0.333 * In(.333) — 0.167 * In(.167) = 0.7128
H(X,Y,k = 3) = —0.5 * In(.5) — 3+ 0.167 * In(.167) = 1.2424

HMI(k = 3) =.6365 + .7128 — 1.2424 = 0.1068 nat = 107 mnat

Fig. 4 HMI calculation — a) k represents the distance between two residues ranging from 3 to L/2; b) is the number of letters, here NOL = 1; ¢) is
the table of marginal frequencies of X for k= 3; d) is the table of marginal frequencies of Y for k= 3; e) is the table of frequencies for found pairs

final result was 450 sequences and 17 species, with
lengths between 405 and 2204 bp. After going through
the first two modules we encountered the Alignment
module having 3 parameters which were designed to
control column and line (sequences) gap deletions. The
first parameter “Maximum Vertical Gapsl” (set to 10 %)
allows gaps up to this percentage and transforms the
data in minimum length sequences, or “mincut”. A max-
imum length sequence is obtained with the parameter
“Maximum Vertical Gaps2” (set to 40 %) which allows
more gaps, and whose resulting sequences are called
“maxmer”. The third parameter “Maximum Horizontal
Gaps” (set to 40 %) cuts out all sequences presenting
more than 40 % of horizontal gaps. The resulting aligned
sequences can be seen calling an external program called
Seaview [12].

All aligned sequences resulted in “mincut” length
equal to 588 bp and “maxmer” length equal to 859 bp.

After this procedure, sequences were purged/filtered and
not “ACGT” nucleotides replaced with their consensus
via IUPAC [27] ambiguous table. Finally, consensus
algorithm substitutes all gaps by the vertical consensus
nucleotide.

VH, HMI and VMI were calculated for “mincut” and
“maxmer” with and without bias correction. The final re-
sults presented twelve distance matrices, twelve distance
histograms and twelve hierarchical cluster dendrograms
(2 for mincut/maxmer x 2 for with/without bias cor-
rection x 3 informational methods). In order to per-
form these informational calculations we used NOL
equal to 1.

According to the phylogeny proposed by van der
Linde et al. [28] the subfamily Drosophilinae (sub-
genus Sophophora and subgenus Drosophila) shows
that D. paulistorum is close to D. willistoni and D.
kikkawai is fairly close to D. melanogaster. The first
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Fig. 5 Vertical Entropy: four Vertical Entropy (in mnat) for maxmer sequences with bias correction, data from: a) D. paulistorum, b) D. willistoni;
©) D. kikkawai; and d) D. melanogaster. On the left side, from each species frame, we see the entropic spectrum, vertical red lines are the SE(H;),
where ‘" is the nucleotide position; the horizontal red line is 2 SD and the horizontal black line is the mean. On the right side we see the
frequency distribution; in black is the mean, in red is 1 SD and in yellow is the median. Data are explained in text
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Fig. 6 Vertical Entropy from shuffled sequences: “mincut” sequences (in mnat). On the left side we see the spectrum, in orange the SE and in
blue the signal. On the right side we see the frequency distribution; in black is the mean, in yellow is the median and in red is 1 standard
deviation. The “random” profile can be observed, very different from the D. kikkawai's VH spectrum
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two are further away from the last two, and this was
the choice to present our data in the following sec-
tions. Therefore, we will focus on these four species,
only to summarize the explanations.

Vertical entropy and mutual information

VH and VMI were computed for each of the two posi-
tions (i,j) as in [4] and also explained in methods. VH
spectrum can be seen in Fig. 5 and VMI spectrum — a
heat map - in Fig. 7. Both, VH spectra and VMI heat
maps can be visually discriminated. In order to assess
whether at least one distribution is statistically different
from the others, ANOVA test was performed and re-
sulted in p-values near zero (for all maxmer/mincut
versus with/without bias correction distributions).
Therefore, there is at least one spectrum statistically
different from all other spectra, and VH and VMI
methods may be able to discriminate sets of molecu-
lar sequences.

Observing Vertical Entropy spectra (VH), in Fig. 5, the
reader can visually discriminate the 4 frames with differ-
ent profiles and frequency distributions. The data came
from “maxmer” sequences with length equal to 859 bp,
NOL =1 and bias correction. Since the Adh locus is
highly conserved (many residues with entropy equal to
zero), the mean entropic value is very low and the stand-
ard error is large. On the left side of each frame we see
the vertical red lines are SE(H(i)), where 1’ is the nucleo-
tide position and SE(H) is the entropic standard error
calculated from the polymorphism in this position over
n sequences (species studies usually have different num-
ber of sequences). The horizontal red line stands for 2
standard deviations of the distribution and the black line
for its mean. On the right side we see the frequency
distribution graphic with 4 vertical lines: in black is
the mean, in red is 1 standard deviation, in yellow is
the median of the VH spectrum. Summarizing the
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four species: a) D. paulistorum has 12 sequences,
mean(VH) =37.7 (SD=150.8) and median =0 mnat;
b) D. willistoni has 19 sequences, mean(VH) =14.9
(SD =70.8) and median=0 mnat; ¢) D. kikkawai has
23 sequences, mean(VH) =26.6 (SD =113.5) and me-
dian =0 mnat; d) D. melanogaster has 30 sequences,
mean(VH) =96.7 (SD =151.3) and median = 0 mnat.

Spectra of shuffled sequences simulated from original
data can be seen in Fig. 6, having mean near 1 MER
(maximum entropy), which produces a completely dif-
ferent spectrum when compared to the real data.

Observing Vertical Mutual Information (VMI)
spectrum, in Fig. 7, the reader can visually discriminate
four heat maps with different patterns, different loca-
tions of peaks and different maximum values (zoom the
image). All data came from “maxmer” sequences with
length equal to 859 bp, NOL=1 and bias correction:
Summarizing the four species: a) D. paulistorum has 12
sequences, max(VMI) = 734.8 (SE = 104.6) mnat at a dis-
creet point in the heat map (112 x 138 bp); b) D. willis-
toni has 19 sequences, max(VMI) =541.0 (SE=115.2)
mnat at a discreet point in the heat map (712 x 754 bp);
¢) D. kikkawai has 23 sequences, max(VMI)=713.9
(SE =51.6) mnat close to a region with a bumpy pro-
file localized at 89 x 117 bp; and d) D. melanogaster
has 30 sequences, max(VMI) = 835.1 (SE =120.5) mnat
in a highly bumpy profile with maximum value at
637 x 712 bp.

Spectra of shuffled sequences simulated from original
data can be seen in Fig. 8, having mean = 136 mnat, a
large SD =106 mnat and median =122 mnat, a com-
pletely different spectrum when compared to the real
data. Here all mutual information is lost.

Horizontal mutual information
HMI was computed as in [1] and also explained in
methods. All 17 Horizontal MI spectra cannot be

o 100 200 300 400 500 600 700

bp-nuc

_Frequency Distribution _

100 200 300 400 500 B00 700
<H=> (mnat)

Fig. 8 Vertical MI from shuffled sequences: VMI heat map in mnat for D. kikkawai. On the left side we see the heat map for shuffled each of the
23 sequence residues with maximum VM| =841mnat. On the right side we see the frequency distribution, in black is the mean = 136 mnat, in
yellow is the median = 122 mnat and in red is the standard deviation = 106 mnat. We concluded that all mutual information is lost. The “random”
profile can be observed, very different from the D. kikkawai's VMI
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visually discriminated. In order to assess whether at least
one distribution is statistically different from the others,
ANOVA test was performed with all spectra and re-
sulted in p-values near zero. Therefore, there is at least
one spectrum statistically different from all other spec-
tra, and HMI method may be able to discriminate sets
of molecular sequences.

Observing HMI spectra, presented in Fig. 9, the reader
is unable to visually discriminate them, and that’s why
JSD (see next section) is a method to measure infor-
mational distances between spectra. All data came
from “maxmer” sequences with length equal to 859 bp,
NOL =1 and bias correction. On the left side of each of 4
species frames, we see HMI versus k distance, also called
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Fig. 10 Horizontal MI spectrum from shuffled: “maxmer-bias correction” sequences (in mnat). On the left we see the spectrum, in orange the SE

and in green the signal. The mean =0.06 (0.12) mnat is pretty near zero, an

“random” profile near zero can be observed, very different from the D. kikkawai's HMI spectrum. On the right side we see the frequency
distribution; in black is the mean, in yellow is the median and in red is 1 standard deviation
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HMI spectrum. Each value HMI(k) has its own mean and  yellow is the median. Summarizing the four species:
standard error obtained from the ensemble (all sequences a) D. paulistorum has 12 sequences, mean(HMI) =
from determined set). The mean of HMI(k) (horizontal 7.4 (SD =4.1) and median = 6.6 mnat; b) D. willistoni
black line) and its standard deviation (the red line is 2 SD)  has 19 sequences, mean(HMI)=7.9 (SD=4.1) and
can be observed. On the right side we see the frequency median =7.2 mnat; ¢) D. kikkawai has 23 sequences,
distribution for HMI spectrum with 4 vertical lines: in  mean(HMI) =9.6 (SD =4.5) and median =9.0 mnat; d)
black is the mean, in red is 1 standard deviation, and in ~ D. melanogaster has 30 sequences, mean(HMI)=9.3
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Fig. 11 JSD histogram for HMI(maxmer): JSD histogram for pairs of HMI distributions for maxmer sequences a) with bias correction; and b)
without bias correction: “am” for D. americana, "am-am” for D. americana americana, "am-tx" for D. americana texana, "ana” for D. ananassae,
“angor” for D. angor, "kik" for D. kikkawai, “mela” for D. melanogaster, “mira” for D. miranda, “paul” for D. paulistorum, “pbogo” for D. pseudoobscura
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(SD=4.2) and median =8.8 mnat. All these mean
values are very low and we certified that they are
greater than the superior value from the confidence
interval from shuffled analyses.

Spectra of shuffled sequences simulated from ori-
ginal data can be seen in Fig. 10 having mean and
median near zero mnat, a completely different spectrum
compared to real data. Once again, all mutual information
is lost. This is very important since all HMI have low
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mean, in a particular example, D. paulistorum has <
HMI > = 7.2 mnat >>0.063 (0.117) mnat for shuffled se-
quences. Therefore we can confirm that all spectra are sta-
tistically distinct compared to the spectrum of shuffled
sequences. A nice discussion can be seen in [11, 29].

JSD
JSD applied to HMI spectra (JSD[HMI]) can be seen in
Figs. 11 and 12, where informational distance histograms
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for maxmer and mincut, respectively, are displayed. Re-
markable differences between distances are observed,
many of them are statistically significant. Therefore, this
method discriminates species with NOL =1 and bias
correction, since SE are negligible (see Additional file 1:
HMI tab). However, phylogenetic studies are recom-
mended to analyze whether closely related species are
clusterized in a similar way.

A histogram calculated from spectra of shuffled se-
quences can be seen in Fig. 13, having very high
mean (680 mnat) and low standard deviation (17
mnat), a completely different profile when compared
to the real histogram. This histogram shows the loss
of the capacity to discriminate species, since the in-
formational distances are very similar as well as the
standard errors.

Observing VMI, most of informational distances have
small differences. Furthermore, for VMI and VH re-
spective standard errors are very large resulting in a
large confidence intervals. These results imply that JSD
applied to both methods results in not statistically sig-
nificant distance differences. Therefore, VH and VMI
poorly discriminate species with NOL =1 and bias cor-
rection (see Additional file 1: VMI tab and VH tab).

Hierarchical cluster
Hierarchical cluster analysis is the last algorithm and is
computed based on a distance matrix calculated from
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JSD. In Fig. 14, we see four HMI dendrograms — here
called Informational Dendrograms (ID) - obtained by
applying weighted pair group with averaging method
(WPGMA) for: a) maxmer with bias correction; b)
maxmer without bias correction; ¢) mincut with bias
correction; and d) mincut without bias correction. For
JSD[VMI], applying bias correction, distances increase
slightly and SE increases significantly (data not
shown). But, for JSD[HMI], as seen in Figs. 11 and
12, standard errors are negligible and distances in-
crease in few percentiles to 25 % when comparing
mincut to maxmer. Those observed low SEs allow us
to infer discrimination between species since distances
are greater than zero with different values between
pair of species. Changing from mincut to maxmer,
with or without bias correction, some species change
their positions in ID, but most of the clusters remain
the same, like: “wil-paul-sturt-angor” (see acronym in
the legend of Fig. 11), “tria-kik-ana”, “sim-mela-yak”,
“pbogo-pseud-persi-mira”, and the “americanas” or
“am-am_am-am_tx”". Because many of these species
can be discriminated, these clusters must be com-
pared to phylogenetic trees.

Hierarchical cluster and phylogenetic gene trees

We also calculated phylogenetic trees for maxmer and
mincut original sequences. We used Mega [14] for the
methods Maximum Likelihood (ML) and Neighbor
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Fig. 13 JSD histogram for HMI from shuffled sequences: maxmer with bias correction, mean = 675.6(18.2) mnat; “am
for D. americana americana, "am-tx" for D. americana texana, “ana” for D. ananassae, “angor” for D. angor, "kik" for D. kikkawai, “mela” for D.
melanogaster, “mira” for D. miranda, “paul” for D. paulistorum, “pbogo” for D. pseudoobscura bogotana, “persi” for D. persimilis, “pseud” for D.
pseudoobscura, "sim” for D. simulans, “sturt” for D. sturtevanti, “wil" for D. willistoni, "yak” for D. yakuba. Very high distance with a very low SD can
be observed for JSD[HMI] from shuffled sequences, demonstrating a regular profile very different from the original histogram
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(See figure on previous page.)

Fig. 14 Hierarchical cluster dendrograms calculated for JSD[HMI], also called Informational Dendrogram: @) maxmer with bias correction; b)
maxmer without bias correction; ¢) mincut with bias correction; d) mincut without bias correction. Acronyms are: “am” for D. americana, “am-am”
for D. americana americana, "am-tx" for D. americana texana, “ana” for D. ananassae, “angor” for D. angor, "kik" for D. kikkawai, “mela” for D.
melanogaster, “mira” for D. miranda, "paul” for D. paulistorum, “pbogo” for D. pseudoobscura bogotana, “persi” for D. persimilis, “pseud” for D.
pseudoobscura, “sim” for D. simulans, “sturt” for D. sturtevanti, “wil" for D. willistoni, “yak” for D. yakuba

Joining (NJ). It was not our intention at all to compare
phylogenetic trees versus mutual information dendro-
grams, but to observe whether ML and NJ can discrim-
inate species for closely related species and whether the
formed clusters are similar to the calculated informa-
tional dendrogram (ID) clusters.

In Fig. 15, we see the gene tree for maxmer se-
quences - a) ML x ID, and b) NJ x ID. ML was calcu-
lated using TN93 model, the resulted max log
likelihood (LnL) was -14561 and Ts/Tv equal to 1.30. In
Fig. 16, we see the gene tree for mincut sequences - a)
ML x ID, and b) NJ x ID. ML was calculated using TN93
model, the resulted LnL. was —-8004 and Ts/Tv equal to
1.53. One reason for different LnL is different lengths for
maxmer and mincut sequences.

For maxmer sequences (Fig. 15), ML and NJ could
not discriminate the “americanas” species (D. ameri-
cana, D. americana americana and D. americana tex-
ana). The species in group “wil-paul-angor-sturt” (D.
willistoni, D. paulistorum, and D. sturtevanti) are
fairly close and this also occurs in JSD[HMI]-cluster
method, except for D. Angor. This last group is close
to the “americanas” cluster in NJ and ID. The species
in group “sim-mela-yak” (D. simulans, D. melanoga-
ster and D. yakuba) are close in all three methods.
The species in group “tria-kik-ana” (D. triaurium, D.
kikkawai and D. ananassae) are close in all three
methods with a similar topology. And finally, the species
in group “pbogo-pseud-persi-mira” (D. pseudoobscura-
bogotana, D. pseudoobscura, D. persimilis, and D. mi-
randa) are also close in all three methods.

Discussion
Mutual Information refers to common variation between
residues/sites, here DNA sequences. It can be applied to
horizontal direction (HMI) and vertical direction (VMI).
JSD can be applied to pairs of mutual information spec-
tra representing “mutual informational distances”. These
distances are used to infer discrimination between spe-
cies. However, JSD applied to VH refers to “information
distance”, like a difference of potential as pointed by
Adami [9]. These three informational methods generated
well defined spectrum patterns, similar to molecular
signatures.

For HMI, mincut sequences resulted in almost the
same distance profile when compared to maxmer
(Figs. 11 and 12). Comparing Fig. 11: a) “with bias

correction” and b) “without bias correction”, we observe
that the profile gets bumpier, which is a nice feature that
allows better discrimination between species. The same
occurs in Fig. 12a, b.

VH and VMI spectra can be visually discriminated,
as molecular signatures (Figs. 5 and 7), but it was
more difficult to visually compare all HMI spectra
(Fig. 9). However JSD, with respective SE, allowed us
to infer that HMI can discriminate species (Figs. 11
and 12), while with VH and VMI methods it was not
possible.

Shuffled tests applied to all information spectra
and distance histograms confirmed the all original
results are statistically distinct than the shuffled
one.

Afterwards we compared Phylogenetic Gene Trees to
Informational Dendrograms calculated for HMI spectra.
In Figs. 15 and 16, we observed that the clusters and
topologies are in reasonable concordance. But, we certi-
fied that these Informational Dendrograms (JSD[HMI]-
clusterization) are not phylogenetic gene trees, they are
only a mathematical way to cluster elements of the dis-
tance matrix.

Conclusions

MIA is a user friendly pipeline capable in retrieving,
selecting, aligning and storing molecular sequences.
It is also capable in calculating Shannon Vertical
Entropy, Vertical and Horizontal Mutual Information
and JSD between these informational spectra. MIA
exports fasta files, calculated spectrum files and dis-
tance matrices in ASCII format. It displays VH, HMI
and VMI spectra. VMI heat maps can be visualized
in 2D and 3D (not shown here). MIA also displays
informational distance histograms and informational
dendrograms. It is designed to analyze possible spe-
cies discrimination via any molecular sequences, but
in this first version only DNA sequences were ana-
lyzed. More tests must be done in a near future like
increasing NOL for the same data and also more
deep analyses like: polymorphic genes (not highly
conserved), sequences with larger lengths, and many
simultaneous gene analyses.

Availability
MIA is freely available at https://github.com/flalix/MIA.


https://github.com/flalix/MIA
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