
RESEARCH ARTICLE Open Access

Multi-label multi-instance transfer learning
for simultaneous reconstruction and cross-
talk modeling of multiple human signaling
pathways
Suyu Mei1,2* and Hao Zhu2

Abstract

Background: Signaling pathways play important roles in the life processes of cell growth, cell apoptosis and
organism development. At present the signal transduction networks are far from complete. As an effective
complement to experimental methods, computational modeling is suited to rapidly reconstruct the signaling
pathways at low cost. To our knowledge, the existing computational methods seldom simultaneously exploit more
than three signaling pathways into one predictive model for the discovery of novel signaling components and the
cross-talk modeling between signaling pathways.

Results: In this work, we propose a multi-label multi-instance transfer learning method to simultaneously
reconstruct 27 human signaling pathways and model their cross-talks. Computational results show that the
proposed method demonstrates satisfactory multi-label learning performance and rational proteome-wide
predictions. Some predicted signaling components or pathway targeted proteins have been validated by recent
literature. The predicted signaling components are further linked to pathways using the experimentally derived PPIs
(protein-protein interactions) to reconstruct the human signaling pathways. Thus the map of the cross-talks via
common signaling components and common signaling PPIs is conveniently inferred to provide valuable insights
into the regulatory and cooperative relationships between signaling pathways. Lastly, gene ontology enrichment
analysis is conducted to gain statistical knowledge about the reconstructed human signaling pathways.

Conclusions: Multi-label learning framework has been demonstrated effective in this work to model the
phenomena that a signaling protein belongs to more than one signaling pathway. As results, novel signaling
components and pathways targeted proteins are predicted to simultaneously reconstruct multiple human signaling
pathways and the static map of their cross-talks for further biomedical research.

Background
Signaling pathways play important roles in the life pro-
cesses of cell growth, differentiation and apoptosis. The
stimuli from extracellular environment and cellular
matrix are sensed, amplified and transducted to nucleus
via signaling pathways to yield complex biological re-
sponses (e.g. enzyme activity, transcription factors
activation/deactivation, gene expression, ion-channel

activity, etc.) [1]. Malfunction of signaling pathways is
likely to lead to a variety of pathologies [2].
Protein-protein interaction (PPI) networks play funda-

mental roles in the study of signaling transduction, be-
cause extracellular signals are generally transmitted from
membrane to nucleus via a series of PPIs and molecular
modifications. Thus reconstruction of PPI networks, in-
cluding experimental techniques [2, 3] and computa-
tional modeling [4–8], has attracted much attention in
recent years. At present, the existing computational
methods for reconstruction of signaling pathways mainly
rely on shortest path algorithm [9–11] and message-
passing algorithm [12]. For instance, Tuncbag et al. [12]
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used message-passing algorithm to derive directed forest
from PPI networks, based on which to infer signaling
pathways. These methods are simple with least demand-
ing data constraint in that only PPI network topology is
needed. Besides, the method [12] used confidence
weighted interactome to explicitly counteract the noise
of PPI network topology, so that the risk of false nega-
tives and false positives is reduced. Nevertheless, PPI
network topology based methods need to be further im-
proved from the two concerns: (1) signaling pathways
possibly contain feedback loops that make the shortest
path algorithm inaccurate to yield false signaling compo-
nents; (2) the experimental data of signaling components
should be exploited to guide the search of novel signal-
ing components in PPI networks.
Comparatively machine learning methods are effective

to simultaneously exploit multiple experimental data of
signaling pathways without prior knowledge about the
underlying biochemical mechanism [13–16]. Recon-
struction of signaling pathways can be decomposed into
two steps: the first step is recognition of signaling com-
ponents, and the second step is to link the predicted sig-
naling components to the existing signaling pathways via
experimental PPIs or predicted PPIs. The existing ma-
chine learning methods focus on the discovery of novel
signaling components [14–16]. In [14], a multi-class
SVM model is trained using the feature information of
protein domain to predict novel signaling components.
In [15], the data of experimentally verified signaling
components are used to train a SVM model for the pre-
diction of homologous signaling pathways. In [16], the
ortholog pairs of known interacting signaling compo-
nents from known signaling pathways, called signalogs,
are directly treated as signaling PPIs and then used the
signalogs to construct homologous signaling pathways.
Actually, computational reconstruction of signaling
pathways, as a complex problem, needs to address the
three major concerns: (1) discovery of novel signaling
components, especially those signaling components that
belong to more than one signaling pathway; (2) linking
to signaling pathways the predicted signaling compo-
nents via signaling PPIs; (3) cross-talk modeling between
signaling pathways. To our knowledge, the existing com-
putational methods seldom explicitly address the three
major concerns to date. Recently, cross-talk modeling
between signaling pathways has aroused much attention.
For instances, graph search method is used to find the
common cross-talk signaling components between the
three signaling pathways (EGFR, IGF-1R and IR)[17],
and PRISM modeling language is used to formally de-
scribe the common modules between signaling pathways
[18]. Unfortunately, these methods are generally descrip-
tive and can neither predict novel signaling components
nor model signaling cross-talks.

In this work, we propose a multi-label multi-instance
transfer learning method to simultaneously reconstruct
multiple human signaling pathways and model their
cross-talks. In this method, the data of the known signal-
ing components from 27 human signaling pathways are
used to train a 28-class multi-label SVM (support vector
machine) model, wherein the 28th class contains the
negative data that are randomly sampled from the pro-
teins that do not belong to the 27 signaling pathways.
The scenario that a signaling component is shared by or
belongs to multiple signaling pathways is modeled under
multi-label learning framework. To enrich the know-
ledge of the protein concerned, each protein is depicted
with two instances, one instance called target instance is
represented with its own gene ontology annotations, and
the other instance called homolog instance is repre-
sented with the gene ontology annotations of its homo-
logs. Besides enriching the target instance, the homolog
instance is especially useful to substitute the target in-
stance when the protein concerned is completely not an-
notated. Unlike traditional supervised learning, the
evaluation of multi-label learning model is conducted
using three performance metrics, namely exact match
ratio, microaverage F-measure and macroaverage F-
measure. To evaluate the reliability of the proposed
model, we validate the proteome-wide predictions
against recent literature as well as conduct cross valid-
ation on the training data. Then we link the predicted
signaling components to signaling pathways via experi-
mental PPIs and derive the cross-talks between the 27
human signaling pathways to provide valuable cues for
further biomedical research.

Data and methods
Human signaling pathways
To date there are several major signaling pathway
databases for free academic use, e.g. KEGG (Kyoto
Encyclopedia of Genes and Genomes) [19], Reactome
[20], SPAD (Signaling Pathway Database) [21], NetPath
[22], SignaLink [23] etc. In this work, we choose Net-
Path (http://www.netpath.org/) to construct the training
for the reasons: (1) NetPath manually curates 35 human
cancer/immune signaling pathways, the largest reposi-
tory of human cancer signaling pathways at present to
our knowledge; (2) The signaling components explicitly
provided by NetPath are conveniently treated as the
training data. KEGG is rather small and contains a lim-
ited number of human signaling pathways. The other da-
tabases like Reactome and SignaLink are timely updated,
but likewise collect very limited number of human can-
cer signaling pathways so as not to directly serve our
purpose. We incorporate the closely related cancero-
genic signaling pathways into a single model to facilitate
effective knowledge sharing. To date NetPath has
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manually curates 35 human immune/cancer signaling
pathways that contain 11 sub-types of Interleukin (IL-1
~ IL-11). For simplicity, IL-1 ~ IL-11 are merged into
one single class, thus we obtain 27 human signaling
pathways as shown in Table 1. The signaling compo-
nents provided on the website (http://www.netpath.org/)
are directly used as training data and the training data
are further validated against SwissProt database [24] and
GOA database [25] to remove those proteins that are
not manually curated and contain empty set of gene
ontology annotations. The number of signaling compo-
nents of each signaling pathway is shown in Table 1.
In general, signaling pathways temporally and spatially

communicate via common signaling components and
common signaling PPIs. Take the experimental NetPath

database for example, EGFR signaling pathway shares 108
common signaling components with Interleukin signaling
pathway and 106 common signaling components with
TCR signaling pathway. To measure the relatedness of
any two signaling pathways, we define two cross-talk ra-
tios: the cross-talk ratio of signaling components (CTRSC)
and the cross-talk ratio of signaling PPIs (CTRSPPI). As-
sume ASC and BSC to denote the sets of signaling compo-
nents of two signaling pathway A and B, then CTRSC is
defined as CTRSC = |ASC ∩ BSC|/|ASC ∪ BSC|, where |A| de-
notes the cardinality of set A. CTRSC is actually the
ratio of the overlap between set ASC and set BSC. The
cross-talk ratio of signaling components (CTRSC)that
is derived from the experimental NetPath database is
illustrated in Fig. 1(a). We see that there generally are

Table 1 Statistics of the predicted signaling components and the derived signaling PPIs for the 27 human signaling pathways

Class name Name of signaling pathway Size #Novel SC #Novel signaling PPI

TI HI ∩ TI HI ∩

Notch Notch receptor 83 67 239 27 56 126 25

TCR T cell receptor 260 660 779 221 418 431 125

TGFBeta Transforming growth factor beta receptor 216 293 563 94 336 545 104

TNF Tumor necrosis factor alpha 318 653 1016 302 493 985 261

Wnt Wnt signaling 108 92 219 49 36 89 23

IL Interleukin (IL-1 ~ IL-11) 260 131 502 65 167 394 55

Alpha6 Alpha6 beta4 integrin 74 36 158 1 2 83 0

AR Androgen receptor 173 649 495 156 535 321 104

BCR B cell receptor 175 177 298 52 96 160 29

BDNF Brain-derived neurotrophic factor 128 139 373 64 106 212 65

CRH Corticotropin-releasing hormone 71 27 124 3 28 43 4

EGFR Epidermal growth factor receptor 432 104 1206 426 110 118 446

FGF1 Fibroblast growth factor-1 103 105 202 15 34 120 1

FSH Follicle-stimulating hormone 53 25 145 14 3 36 1

Gastrin Gastrin signaling 94 10 196 3 2 91 2

Ghrelin Ghrelin receptor 76 45 213 27 32 103 24

Hedgehog Hedgehog signaling 36 19 70 11 34 19 2

ID Inhibitor of differentiation 45 41 79 13 26 19 9

Kit Kit receptor 110 4 128 3 7 89 4

Leptin Leptin signaling 107 7 179 4 8 103 8

OSM Oncostatin-M 77 1 120 0 1 54 0

Prolactin Prolactin receptor 115 23 222 7 14 113 4

RAGE Advanced glycation end-products 92 5 195 2 10 84 0

RANKL Receptor activator of nuclear factor kappa-B ligand 85 92 147 4 16 56 3

TSH Thyroid-stimulating hormone 105 33 229 20 26 91 14

TSLP Thymic stromal lymphopoietin 192 797 463 129 186 132 8

TWEAK TNF-related weak inducer of apoptosis 46 5 91 1 6 38 0

Others Other class or miscellaneous proteins 432

#Novel SC denotes the number of predicted novel signaling components. TI denotes the target instance case, HI denotes the homolog instance and ∩denotes
the intersection
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a certain number of signaling components shared be-
tween any two signaling pathways. Take TCR for in-
stance, TCR seems to be more correlated with IL
(CTRSC = 18.7 %), BCR (CTRSC = 23.9 %), EGFR
(CTRSC = 18.1 %) and Kit (CTRSC = 18.2 %).
Similarly assume ASPPI and BSPPI to denote the sets

of signaling PPIs of two signaling pathway A and B,
we define the cross-talk ratio of signaling PPIs as
CTRSPPI = |ASPPI ∩ BSPPI|/|ASPPI ∪ BSPPI| and derive the
cross-talk ratio CTRSPPI from the experimental Net-
Path database as illustrated in Fig. 1(b). Compara-
tively, the cross-talk ratio CTRSPPI is generally much

lower than the cross-talk ratio CTRSC, implying that a
signaling pathway more depends on cross-talk signal-
ing components to stimulate or communicate with
other signaling pathways than cross-talk signaling
PPIs. Take TCR for example again, TCR seems to be
more correlated with BCR (CTRSPPI = 4.3 %).
Using the obtained signaling components, we can eas-

ily train a predictive model to predict an unseen protein
to one or more than one signaling pathway. To handle
the case that a protein may not belong to any of the 27
signaling pathways, we need to construct a negative class
for the completeness of classification. The negative class

Fig. 1 a Matrix plots cross-talk ratio (%) of signaling components between the experimental human signaling pathways. b Matrix plots the
cross-talk ratio (%) of signaling PPIs between the experimental human signaling pathways. c Matrix plots cross-talk ratio (%) of signaling
components between the reconstructed human signaling pathways. d Matrix plots the cross-talk ratio (%) of signaling PPIs between the
reconstructed human signaling pathways. The values along the diagonals are trivial and the color bar is used to highlight the magnitude of
cross-talks between two human signaling pathways
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named others contains the proteins that either are not
signaling proteins or do not belong to the 27 signaling
pathways. The data of the others are randomly sampled
from the proteins that do not belong to the 27 signaling
pathways. Actually the space of class others is very large,
we restrict the size of class others equal to that of the
class that contains maximum number of signaling com-
ponents for the purpose of reducing the risk of model
bias.

Multi-label multi-instance transfer learning
Transfer learning
Transfer learning has been proven effective in know-
ledge/ information transfer across related but heteroge-
neous domains [26]. In recent years, transfer learning,
sometimes in the form of multi-task learning, has found
many applications in computational biology [4, 5, 27–
30]. Knowledge transfer is generally conducted via
model parameter optimization [27] and evolutionary ho-
mologs [4, 5, 28–30]. As compared with the methods of
object function optimization, homolog knowledge trans-
fer is easy to be biologically interpreted and is robust
against data unavailability. The machine learning frame-
works that are adopted to implement knowledge transfer
include ensemble learning [4, 30], multi-instance learn-
ing [5], semi-supervised learning [27] and multi-kernel
learning [28, 29].
In this work, we use multi-learning framework to

model the phenomena that a signaling protein belongs
to more than one signaling pathway, and use multi-
instance learning framework to implement homolog
knowledge transfer. Each protein is represented with
two instances, one instance called target instance is used
to represent the GO feature information of the protein
itself, and the other instance called homolog instance is
used to represent the GO feature information of the ho-
mologs. The two instances are treated independently to
augment the training data. AdaBoost has been used
multi-instance learning framework [5], but here we
adopt multi-label SVM (support vector machine) as base
classifier instead in that SVM is more efficient to handle
large data [31].

Multi-instance feature construction
Here each protein is represented with two instances, i.e.
the target instance and the homolog instance. The
homolog instance is constructed using the GO terms of
the homologs, which are extracted from SwissProt data-
base [24] using PSI-BLast [32] (E-value = 10) against all
species. The GO terms are extracted from GOA data-
base [25]. Using U to denote the training set, we obtain
two sets of GO terms for each protein i, one set denoted

as homolog set Si
H

contains the GO terms of the

homologs, and the other set denoted as target set Si
T

contains the GO terms of the protein itself. Then the set
of GO terms of training set U is defined as follows:

S ¼∪
i∈U

Si
T
∪Si

H

� �
ð1Þ

Based on the denotations, the target instance and the
homolog instance are formally defined as follows:

Bi
T g½ � ¼ 1; g ∈SiT∧g∈S

0; g ∉SiT∧g∈S
; Bi

H g½ � ¼ 1; g ∈SiH∧g∈S

0; g∉SiH∧g∈S

((

ð2Þ

where BT
i [g] denotes the component g of the target in-

stance BT
i and BH

i [g] denotes the component g of the
homolog instance BH

i . Formula (2) means that if protein
i is annotated with the GO term g, then the correspond-
ing component in the feature vector BT

i is set 1; other-
wise the component is set 0. Similarly, if the homologs
of protein i possess the GO term g, then the correspond-
ing component in the feature vector BH

i is set 1; other-
wise the component is set 0. If both Si

T
and Si

H
are

empty set, then protein i is removed from the training
set.

Multi-label learning for modeling cross-talks between
signaling pathways
As illustrated in Fig. 1(a), most human signaling path-
ways share common signaling proteins. From points of
view of machine learning, the phenomenon that one
protein belongs to multiple signaling pathways is suited
to be modeled by multi-label learning. At present there
are two approaches to convert multi-label learning into
traditional unique-label learning, one approach is label
combination method, and the other approach is binary
method [33]. Label combination method converts to
new label encodings the label combinations that occur
in the training data, e.g. the label combination {1, 2, 3} is
encoded as {1}, the label combination {1, 4} is encoded
as {2}, etc. Binary method trains one binary classifier for
each class label by treating as positive the data associ-
ated with the class label and treats as negative the data
associated with all the other class labels. Here we choose
label combination method in that the method trains only
one classifier for n-class problems, while the binary
method needs to train n binary classifiers for n-class
problems.
As compared with traditional supervised learning, the

performance estimation of multi-label learning is more
complicated. In traditional learning scenario, the stand-
ard evaluation criterion is accuracy. In multi-label learn-
ing scenario, a direct extension of accuracy is exact
match ratio that regards the prediction as correct if and
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only if all the associated class labels are correctly pre-
dicted. However, exact match ratio does not count par-
tial matches that are also significant to expand our
knowledge. To take the partial matches into account, we
adopt macro-average F-measure and micro-average F-
measure [33] as multi-label learning performance met-
rics. Assume there are l testing instances, let yi denote
the true label vector of the ith instance and let ўi denote
the predicted label vector, then exact match ratio is de-
fined as follows:

1
l

Xl
i¼1

I ўi ¼ yi
� � ð3Þ

where I denotes indicator function as defined below:

I s½ � ¼ 1s ¼ true0s ¼ falsef
ð4Þ

The above definition of exact match ratio means that
the prediction is viewed as correct if and only if all the
labels of a protein are correctly recognized. It is easily to
see that this definition is too rigorous to take partial
matches into account. Actually partial match predictions
are also valuable to us. Assuming that a protein is la-
beled with the label set {1, 2, 4}, the prediction cannot
be simply deemed incorrect if the protein is predicted to
the label subset {1, 2}, because the partial matches still
provide valuable cues to us. For the reason, a proper
performance metric for model estimation of multi-label
learning should take partial matches into account.
Assume that the total label set is L = {1, 2, 3, …, d}, for

the ith instance, the true label set is denoted as Li, and
the predicted label set is denoted as Ĺi. Then a set of d
binary values are used to formally define the true label
and the predicted label for the ith instance as follows:

yij ¼
1 j∈Li
0 j∉Li

; j ¼ 1; 2;…; dўij ¼ 1 j∈Ĺi
0 j∉Ĺi

; j ¼ 1; 2;…; d

��
ð5Þ

For label j, the performance metric precision (P) and
recall (R) are defined as follows:

P ¼
Xl

i¼1
ўijy

i
j

,
Xl

i¼1
ўij

;

R ¼
Xl

i¼1
ўijy

i
j

,
Xl

i¼1
yij

ð6Þ
Since F-measure is defined as F−measure ¼

2 � P � R=PþR, the F-measure for label j is formally de-
fined as follows:

F−measure ¼ 2
Xl

i¼1
ўijy

i
j

.Xl

i¼1
ўijþ
Xl

i¼1
yij

ð7Þ
Macro-average F-measure is defined as the unweighted

mean of the F-measures of all class labels:

macro−averageF−measure

¼ 1
d

Xd
j¼1

2
Xl

i¼1
ўijy

i
j

.Xl

i¼1
ўijþ
Xl

i¼1
yij

! 
ð8Þ

Micro-average F-measure considers the predictions
from all instances and calculates the F-measure across
all class labels as follows:

micro−averageF−measure

¼ 2
Xd

j¼1

Xl

i¼1
ўijy

i
j

.Xd

j¼1

Xl

i¼1
ўij þ

Xl

i¼1
yij

��
ð9Þ

Both the macro-average F-measure and the micro-
average F-measure take partial matches into account.
In this work, we use the target instances and the
homolog instances separately to estimate the exact
match ratio, the macro-average F-measure and the
micro-average F-measure. The performance metrics
are derived using Gaussian kernel:

k x; yð Þ ¼ exp −γjjx−yð jj2Þ ð10Þ
where ||Δ|| denotes 2-norm of vector Δ and the hyper-
parameter γ controls the flexibility of kernel.

Results
Performance estimation by 10-fold cross validation
The proposed multi-label multi-instance transfer learn-
ing model is estimated by 10-fold cross validation to de-
rive the exact match ratio, macro-average F-measure
and micro-average F-measure. In multi-instance learning
scenario, each data point is represented with multiple in-
stances, so multiple predicted outcomes are yielded for
each test data point in the test or prediction phase. The
outcomes are easy to combine into one single outcome
in unique-label learning scenario [5]. But outcome com-
bination is not easy in multi-label learning scenario. A
proper method is to provide the predicted outcomes of
the target instance and the predicted outcomes of the
homolog instance. In the training phase, both the target
instances and the homolog instances participate in
model training.
The computational results are given in Table 2. From

Table 2, we can see that the proposed method achieves
promising exact match ratio (target instance: 0.7558;
homolog instance: 0.7055), which means that over 70 %
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proteins have their complete label sets correctly recog-
nized. The results are fairly satisfactory though the exact
match ratios are moderate, because fully recognizing the
complete label set is actually a hard task. The exact
match ratio of the homolog instance, though slightly
lower than that of the target instance, suggests that the
homolog knowledge is useful to the study of novel pro-
teins we know little about. The slight decrease of exact
match ratio is partly because the homolog instance car-
ries a certain level of noise that results from evolutionary
divergence. When partial matches are taken into
account, the proposed model achieves fairly excellent
macro-average F-measure (target instance: 0.9555;
homolog instance: 0.9267) and micro-average F-measure
(target instance: 0.9505; homolog instance: 0.9146). The
performance difference between the homolog instance
case and the target instance is more subtle, again dem-
onstrating the feasibility of homolog knowledge transfer
by means of independent homolog instance.
To further estimate the multi-label learning perform-

ance, we calculate the F-measure for each class (see

Fig. 2). As illustrated in Fig. 2, the proposed method
achieves over 0.9 F-measure for most classes. On the
four classes (AR, EGFR, Hedgehog, TSLP), the F-
measure is between 0.8 and 0.9. On the class others, the
F-measure is unsatisfactorily about 0.5, partly because of
the quality of randomly sampled data. Fortunately, the
proposed model achieves sound performances on the 27
human signaling pathways, implying that the misclassifi-
cations on the class others brings little adverse effect to
the 27 signaling pathways. In addition, the performance
difference between the homolog instance and the target
instance is fairly small (see Fig. 2), suggesting that the
predicted outcomes of the homolog instances are equally
valuable to us.

Simultaneous reconstruction of multiple human signaling
pathways and their cross-talks modeling
Predicting novel signaling components
Recognition of novel signaling components from
proteome-wide candidate proteins is the first step of sig-
naling pathway reconstruction. We extract the candidate
proteins from SwissProt database [24] and further re-
move those proteins that have been included in the
training data and those proteins that have neither target
GO annotations nor homolog GO annotations. Thus we
obtain 13,004 candidate proteins in total. The proteome-
wide predictions are given in Additional file 1 and the
number of the predicted signaling components for each
signaling pathway is given in Table 1. The details of the

Table 2 Multi-label learning performance estimation by 10-fold
cross validation for the target instance case and the homolog
instance case

Exact match
ratio

Macro-average
F-measure

Micro-average
F-measure

Target instance 0.7558 0.9555 0.9505

Homolog instance 0.7055 0.9267 0.9146

Fig. 2 Performance estimation for the 28-class multi-label multi-instance transfer learning model. The F-measure values for each class are
illustrated and the curves for the target instance case and the homolog instance case are highly similar
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predicted signaling components for each signaling path-
way are given in Additional file 2 (target instance) and
Additional file 3 (homolog instance). The computational
results show that many proteins are predicted to belong
to more than one signaling pathway. From Table 1, we
can see that the predicted label set of the target instance
is much smaller than the predicted label set of the
homolog instance and the intersection between the two
label sets is not large. The results are largely attributed
to the fact that the target instance is generally less
enriched in GO annotations while the homolog instance
is more enriched in GO annotations but carries a certain
level of noise.

Linking predicted signaling components to pathways
Signaling proteins generally do not work in isolation but
transmit signal via interaction with other proteins or
biological molecules. The predicted signaling compo-
nents needed to be linked to the current human signal-
ing pathways via experimental or predicted protein-
protein interactions. For the sake of reliability, we use
the experimental PPIs from HPRD database [34] to link
the predicted signaling components. Once a predicted
signaling component is linked to a signaling pathway,
the corresponding PPI becomes a novel signaling PPI of
the signaling pathway. Here novel signaling PPI does not
mean the PPI is newly predicted, but mean that the PPI
is newly treated as a part of the signaling pathway. From
HPRD database, we obtain two kinds of signaling PPIs:
(1) the PPIs between the predicted signaling components
and the known signaling components; (2) the PPIs be-
tween the predicted signaling components. The derived
signaling PPIs are given in Additional file 4 (target in-
stance) and Additional file 5 (homolog instance). The
number of novel signaling PPIs for each signaling path-
way is shown in Table 1. Here we link the predicted sig-
naling components to the current signaling pathways via
experimental PPIs. We only illustrate Notch, TGF-β and
TNF-α signaling pathways that are predicted by the tar-
get instances as examples (see Figs. 3, 4 and 5).
As shown in Fig. 3, the predicted signaling compo-

nents (nodes in red) elongate the existing Notch signal-
ing pathway and form several triangle loops or protein
complexes. The signaling pathway is largely elongated at
the nodes {RING1, HDAC1, HDAC2, SIN3A, HES1}. At
the node RING1, the predicted signaling components
form several loops, for instance, a triangle loop {RING1,
E2F6, RYBP}. In [35], experimental results demonstrate
that E2F6 is a component of the mammalian polycomb
complex that interacts with the polycomb group pro-
teins {RYBP, RING1} to play a key role in the regulation
of cellular proliferation and terminal differentiation.
Centring around RING1, the predicted signaling

components {RYBP, E2F6, CBX2, CBX4, CBX8, RNF2,
PCGF2} of polycomb complex play important roles in
modifying chromatin structure to regulate transcrip-
tional activities, and communicate with the central tran-
scriptional regulator of in Notch signaling via FHL1.
The common topological feature between the ex-

tended TGF-β signaling pathway (Fig. 4) and the ex-
tended TNF-α signaling pathway (Fig. 5) is that the
predicted signaling components generally act as terminal
proteins/peripheral proteins, or interact with the periph-
eral proteins of the existing signaling pathways to form
redundant paths or loops. Take the peripheral protein
NEDD4L of TGF-β signaling pathway as example (the
upper peripheral of Fig. 4), the predicted signaling com-
ponents {UBE2E1, CNOT4, CNOT8} elongate the TGF-
β pathway, wherein CNOT4 has been experimentally
demonstrated to activate the JAK/STAT pathway [36]. It
can be inferred that CNOT4 acts as a cross-talk signal-
ing component between TGF-β and JAK/STAT signaling
pathways.
As illustrated in Fig. 5, the reconstructed TNF-α sig-

naling pathway shows obvious modularity. The predicted
signaling components are peripherally distributed to
interact with the peripheral proteins of the existing
TNF-α signaling pathway, and the interactions between
the predicted signaling components elongate the TNF-α
pathway with many redundant paths or loops. Take the
peripheral protein COPB2 of TNF-α signaling pathway
as example (the upper peripheral of Fig. 5), the predicted
signaling components {COPA, COPE, COPG2, COPZ2,
COPZ1, TAPBP, ARCN1, COPB1} interact with each
other and link to the existing signaling component
COPB2 via COPA. Moreover, the small motif {COPA,
COPE, COPG2, COPZ2, COPZ1, TAPBP, ARCN1,
COPB1} also links to the existing signaling component
PRKCE (near the core of Fig. 5) via COPB1. The redun-
dant paths help to enhance the robustness of TNF-α sig-
naling pathway. The extended Notch, TGF-βand TNF-α
signaling pathways predicted by the homolog instances
are given in Additional file 6: Figure S1, Additional
file 7: Figure S2 and Additional file 8: Figure S3. In-
terested readers are referred to Additional files 4 and 5 for
other human signaling pathways.

Modeling signaling cross-talks
Cross-talk modeling is instrumental to study the regula-
tory and cooperative relationship between signaling
pathways, based on which to further reveal the patho-
genesis of diseases [37]. Signaling pathways generally
communicate with each other via common signaling
components and common signaling PPIs. For simplicity,
we investigate here the static map of cross-talks only
and do not discuss the temporal and spatial cross-talk
mechanism. The details of the predicted common
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signaling components are given in Additional file 9 (tar-
get instance) and Additional file 10 (homolog instance).
The experimental signaling components and the pre-
dicted signaling components are merged to derive the
cross-talk ratio of signaling components CTRSC as
illustrated in Fig. 1(c) (target instance) and Additional
file 11: Figure S4 (homolog instance). Comparing
Fig. 1(c) and Fig. 1(a), we can see that the cross-talk ra-
tio CTRSC of the reconstructed signaling pathways is
much lower than that of the experimental signaling
pathways, in that the predicted novel cross-talk signaling
components increase much slower than the predicted
novel signaling components. From Fig. 1(c), TCR still
significantly correlates with BCR (CTRSC = 9.2) and
EGFR (CTRSC = 11.5). The details of the common signal-
ing PPIs derived from HPRD database are given in
Additional file 12 (target instance) and Additional file 13

(homolog instance). Similarly The experimental signaling
PPIs and the predicted signaling PPIs are merged to
derive the cross-talk ratio of signaling PPIs CTRSPPI as
illustrated in Fig. 1(d) (target instance) and Additional
file 14: Figure S5 (homolog instance).
The static map of cross-talks between TGF-β signaling

pathway and TNF-αsignaling pathway (target instance)
is illustrated in Fig. 6, where the color green denotes
TGF-βsignaling components and signaling PPIs, the
color blue denotes TNF-α signaling components and sig-
naling PPIs, and the color red denotes the cross-talk sig-
naling components and the cross-talk signaling PPIs.
There are 52 cross-talk signaling components and 6
cross-talk signaling PPIs between TGF-β signaling path-
way and TNF-α signaling pathway, of which 6 cross-talk
signaling components and the 6 cross-talk signaling PPIs
are predicted. From Fig. 6, we can see that most of the

Fig. 3 Reconstruction of Notch signaling pathway (target instance). The nodes and edges in green denote the signaling components and
signaling PPIs of the experimental Notch signaling pathway. The nodes and edges in red denote the predicted signaling components and the
derived signaling PPIs
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cross-talk signaling components are peripheral proteins
at the cross boundaries of the two signaling pathways
except several hub proteins (e.g. TGF-β: SMAD2,
SMAD3, JUNB; TNF-α: MAP3K, HSPA8, IKBKB, etc.).

Literature and KEGG validation
We further validate the proteome-wide predictions
against recent literature and signaling pathway data-
bases. Since the data we are concerned about are scarce
and sparsely scattered among hundreds of literature, it is
hard to collect sufficient evidences to validate the

predictions. Nevertheless, we still find dozens of sup-
porting evidences as shown in Table 3. For instances,
four evidences are found for Notch signaling pathway.
For the predicted signaling components or targets
{RNF2, RING1B}, [38] has experimentally demonstrated
that the Polycomb protein Ring1B promote the prolifer-
ation and self-renewal of embryonic neural stem/pro-
genitor cells by repressing cell cycle inhibitors and
maintaining Notch signaling pathway. For the predicted
signaling component TBL1XR1, [39] has experimentally
demonstrated that TBL1XR1 acts as a key player in the

Fig. 4 Reconstruction of TGF-βsignaling pathway (target instance). The nodes and edges in green denote the signaling components and
signaling PPIs of the experimental Notch signaling pathway. The nodes and edges in red denote the predicted signaling components and the
derived signaling PPIs
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regulation of multiple signaling pathways (Wnt/β-ca-
tenin, Notch, NF-κB, and nuclear receptor) and gene
transcription. For POGLUT1, [40] has demonstrated
that POGLUT1 is a part of Notch signaling pathway that
encodes protein O-glucosyltransferase 1 and is involved

in posttranslational modification of Notch proteins. For
the predicted signaling component SNX27 of TCR sig-
naling pathway, [41] has experimentally shown that
SNX27 is identified as a PDZ-containing component of
the T cell immunological synapse and SNX27-positive

Fig. 5 Reconstruction of TNF-αsignaling pathway (target instance). The nodes and edges in green denote the signaling components and
signaling PPIs of the experimental Notch signaling pathway. The nodes and edges in red denote the predicted signaling components and the
derived signaling PPIs
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endosomes polarise to the immunological synapse in
response to TCR activation. As for TGF-βsignaling
pathway, the proteins {RBPMS, BMP15} are predicted to
be singnaling components. [42] shows that RBPMS

interacts with TGF-β receptor type I (TbR-I), increases
phosphorylation of C-terminal SSXS regions in Smad2
and Smad3, and promotes the nuclear accumulation of
the Smad proteins. Fenwick 2013 [43] shows that

Fig. 6 Cross-talks between TGF-βsignaling pathway and TNF-αsignaling pathway (target instance). The nodes and edges in green denote the
predicted signaling components and derived signaling PPIs of TGF-βsignaling pathway. The nodes and edges in blue denote the predicted
signaling components and derived signaling PPIs of TNF-αsignaling pathway. The nodes and edges in red denote the common signaling
components and the common signaling PPIs
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BMP15 is a closely related TGF-βligand that is impli-
cated as key regulators of follicle development and fertil-
ity. As for TNF-αsignaling pathway, [44] experimentally
demonstrates that knock-down of the TNFα-induced
protein TNFAIP8 in tumor cells decreases their onco-
genicity, which suggests TNFAIP8 may be involved in
carcinogenesis. As for WNT signaling pathway, [45]
shows that the interaction between Hhex and SOX13
modulates Wnt/TCF pathway activity, and the inter-
action between SOX13 and TCF1 represses Wnt/TCF
signaling. As for BCR signaling pathway, the Ingenuity
Pathways Analysis shows that MAP3K12 is involved in
BCR signaling pathway and PIK3C3 is involved in Pro-
lactin signaling pathway [46]. As for Hedgehog signaling
pathway, [47] has experimentally demonstrated that
MED12 is linked biochemically and genetically to
Hedgehog signaling pathway.
The evidences that support the proteome-wide predic-

tions are very limited, so we resort to KEGG database
[19] for further validation. Although the data in KEGG
database are not newly published or updated, the data
that are collected in KEGG database but not collected in
NetPath database are also suited to be used as validation
data. At present, the overlap rate of signaling compo-
nents between NetPath and KEGG is very low. For in-
stances, the overlap rate of TGF-βsignaling pathways
between the two databases is 22.62 % and the overlap
rate of TNFαsignaling pathways is only 13.77 %. Here
more than sixty predicted signaling components are vali-
dated against KEGG database (see Table 3), suggesting
that the proteome-wide predictions yielded by the pro-
posed method are reliable. From Table 3, we can see that
the homolog instances recognize more novel signaling
components than the target instances, once again

demonstrating that the homolog instances also yield
valuable predictions.

Discussion
Signaling pathways play significant roles in the biological
processes of cell growth, cell differentiation, cell apop-
tosis and organism development. At present, the current
signaling pathways are far from complete. Computa-
tional modeling helps to accelerate the proteome-wide
reconstruction and global cross-talk mapping of human
signaling pathways. The existing computational methods
focus on predicting signaling components and/or deriv-
ing orthologous signaling PPIs from the topology of sig-
nal transduction networks, or describing the molecular
dynamics of signaling pathways. To our knowledge, no
computational methods have been reported to simultan-
eously take more than two signaling pathways into ac-
count and explicitly predict their cross-talks. In this
work, we propose a multi-label multi-instance transfer
learning method to simultaneously reconstruct 27 hu-
man signaling pathways and model their cross-talks. The
known signaling components of 27 human signaling
pathways are directly exploited to train a 28-class pre-
dictive model (the 28th class is the negative class) and
the model is used to predict proteome-wide novel sig-
naling components. Then the predicted signaling com-
ponents are linked to the current signaling pathways via
the experimental PPIs in HPRD database. Based on the
predicted signaling components and the derived signal-
ing PPIs, we can conveniently reconstruct the 27 human
signaling pathways and derive their cross-talks. Compu-
tational results show that both the target instances and
the homolog instances achieve satisfactory multi-label
learning performance and the homolog instances also

Table 3 Validation of the predicted signaling components against recent literature and KEGG database

Pathway KEGG Literature

Target instance Homolog instance

Notch {RFNG} {DTX4,RFNG,KAT2A,DTX2,DTX3L} {RNF2,RING1B} [38]; {TBL1XR1} [39];{POGLUT1} [40]

TCR {CD8B,PAK2} {PAK7,PAK2,IFNG,PAK4,AKT3} {SNX27} [41]

TGFBeta {SMAD5,CDKN2B,PITX2} {GDF5,AMHR2,BMP5,PPP2CB,GDF7,
ACVR1B,PITX2,INHBA,BMPR2,SMAD5,
GDF6,ACVR2A,ACVR2B,INHBB,BMPR1A,
ACVR1,BMP7,BMPR1B}

{RBPMS} [42]; {BMP15} [43]

TNF {BAG4,RPS6KA4} {CREB3L3,LTA} {TNFAIP8} [44]

Wnt {WNT16,WNT8A,WNT2B,DKK4,
CSNK1A1L,WNT8B,GPC4,CXXC4,
SFRP5,CTNNBIP1,NKD2,PORCN,
TCF7L1,NKD1,SOX17,CSNK2A2,
WNT10B,DKK2,APC2,TCF7,WNT10A}

{WNT16,PPARD,WNT8A,
WNT2B,DKK4,WNT8B,
CSNK1A1L,GPC4,CXXC4,PPP3CC,
SFRP5,CTNNBIP1,PORCN,TCF7L1,
CSNK2A2,WNT10B,DKK2,APC2,TCF7,WNT10A}

{WNT9A,SOX13} [45];

BCR {AKT3,LILRB3} {MAP3K12} [46]

Hedgehog {ZIC2} {MED12} [47]

Prolactin {AKT3} {PIK3C3} [46]
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yield valuable predictions. Some of the proteome-wide
predictions have been validated against recent literature
and KEGG database.

Gene ontology enrichment analysis
We conduct gene ontology enrichment analysis of the
predicted signaling components to get knowledge about
the biological processes that the signaling pathways are
involved in. Take TGF-βsignaling pathway and TNF-
αsignaling pathway (predicted by the target instances)for
examples, 27.4 % predicted TGF-βsignaling components
are annotated with the term GO:0006355 (regulation of
transcription, DNA-dependent), 15.75 % predicted TGF-
βsignaling components are annotated with the term
GO:0016567 (protein ubiquitination) and 11.30 % pre-
dicted TGF-βsignaling components are annotated with
the term GO:0007275 (multicellular organismal develop-
ment). As regards with the predicted TNF-αsignaling
components, the GO enrichment for GO:0006915
(apoptotic process), GO:0006457 (protein folding) and
GO:0006954 (inflammatory response) are 13.63, 4.29
and 3.98 %, respectively.
Next we study the molecular functions that the pre-

dicted signaling components fulfil. As for TGF-
βsignaling pathway, the GO enrichment of the terms
GO:0005515 (protein binding), GO:0046872 (metal ion
binding) and GO:0004842 (ubiquitin-protein ligase activ-
ity) are 38.01, 27.74 and 11.99 %, respectively. As for

TNF-αsignaling pathway, the GO enrichment for
GO:0005524 (ATP binding), GO:0005515 (protein bind-
ing) and GO:0046872 (metal ion binding) are 23.58,
19.30 and 11.79 %, respectively. As for the cellular com-
partments that the predicted signaling components
reside in, a majority of the predicted TGF-βand TNF-
αsignaling components are located in cytoplasm
(GO:0005737), nucleus (GO:0005634) and cytosol
(GO:0005829). The GO enrichment analysis of predicted
TGF-βand TNF-αsignaling components is illustrated in
Fig. 7, where only 10 top GO enrichments are given for
each aspects of gene ontology. The full GO enrichment
analysis of the predicted signaling components are given
in Additional file 15 (biological processes), Additional
file 16 (molecular functions) ad Additional file 17 (cellu-
lar compartments).

Validation against Reactome database and Signalink
database
Apart from NetPath and KEGG, the other signaling
pathway databases such as Reactome [20] and Signalink
[21, 23] have also curated several human cancer signal-
ing pathways. Among the databases, Reactome is most
frequently updated and is larger than or equivalent to
NetPath in terms of the size of human cancer signaling
pathways. For instances, in Reactome the number of sig-
naling components of {Notch, TGFBeta, Wnt} signaling
pathways is {111, 72, 294}, respectively. In Netpath, the

Fig. 7 GO enrichment analysis of the predicted signaling components for TGF-β(left pane) and TNF-α(right pane) signaling pathways. For each
pane, three groups of GO enrichment analysis are shown (left: biological processes; middle: molecular functions; right: cellular components). For
each group of GO terms, only 10 top GO enrichments are given
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Table 4 Validation of the predicted signaling components against Reactome database and Signalink database

Pathway Reactome Signalink

Target instance Homolog instance Target instance Homolog instance

Notch {HDAC9,POGLUT1,HEYL,TLE2,TBL1XR1,TLE4,TLE1,HEY1,
TLE3,B4GALT1,DLK1,CCNC,HDAC3,RFNG,HDAC10}

{TBL1XR1,HDAC4,DTX4,RFNG,
POGLUT1,HEYL,HDAC9,KAT2A,HDAC8,DTX2,
HEY1,DLK1,MIB2,HDAC10,HDAC3}

TCR {MRC1,KLC1,TUBA1C,PAK2,TUBB3,KLRK1,KLRG1,
CD8B,TUBA4A,TUBB4A,TUBB4B,TUBB2B,PDGFRA,
DCTN2,TUBA1B,CD226,LILRB2,ITGAL,TUBB2A,TUBB6,
KIF15,TUBB1,KIF5A,LILRB3}

{RNF138,PAK2,TUBB3,ERAP1,CD274,OSBPL1A,
KIR2DL1,AGO3,TUBA1B,AKT3,TUBB6,TUBB2A,
TUBA3C,ANAPC11,RNF41,TUBA1C,KIR3DL1,
DNM3,TUBA4A,SPTBN2,PHLPP1,TUBB4B,
TUBB4A,TUBB2B,TRIM21,CXADR,RNF123,
TRIM9,PVRL2,TRIM11,TUBB1,PHLPP2}

-

TGFBeta {MEN1,UBB,TGIF2,CDKN2B} {UBE2M,TGIF2,RPS27A,MTMR4} {MTMR4,WWOX,GDF6,ACVR2B,ACVR1B,ACVR1,BMP7,
INHBA,BMPR2,BMPR1B}

Wnt {TNKS2,WNT16,WNT8A,PYGO2,WNT2B,DKK4,WNT8B,
CXXC4,RSPO4,AMER1,CTNNBIP1,PORCN,RNF43,
TCF7L1,KREMEN2,SOX17,DACT1,CSNK2A2,WLS,
WNT10B,DKK2,CCDC88C,TCF7,PYGO1,WNT10A}

{WNT16,PPP2CB,WNT8A,WNT2B,WNT8B,
AMER1,CTNNBIP1,DACT1,CSNK2A2,SOX13,
PYGO2,DKK4,CXXC4,PORCN,TCF7L1,
KREMEN2,SOX6,BCL9L,WLS,WNT10B,DKK2,
TCF7,WNT10A}

{WNT8A,APC2}

BCR {ITPR3} {AKT3,ITPR3} -

EGFR {AGO4,AP2A2,MLST8,FGF3,AGO3,AKT3,RPS27A} {AP2A2,PDGFRA,AKT3,ADAM12,PDGFB,PHLPP2} -

The sign “-” denotes that Signalink does not curate the signaling pathway
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number of signaling components of {Notch, TGFBeta,
Wnt} signaling pathways is {126, 220, 120}, respectively
(the sizes of the training data of {Notch, TGFBeta, Wnt}
are 83, 216 and 108 after removing those hypothetical/
unreviewed and unannotated proteins). In Signalink, the
number of signaling components of {Notch, TGFBeta,
Wnt} signaling pathways is {21, 73, 95}, respectively. In
this work, we adopt NetPath because it curates the lar-
gest number of human cancer signaling pathways and
the sizes of the signaling pathways are moderate. To fur-
ther validate the reliability of the proposed method, we
also validate the proteome-wide predictions against
Reactome and Signalink (see Table 4). The validation
data from Reactome and Signalink are not contained in
the training data. From Tables 4 and 3, we can see that
Reactome validates much more predictions than KEGG
and Signalink partly because it is timely updated. Take
TCR signaling pathway for instance, Reactome validates
24 predictions (target instance) and 32 predictions
(homolog instance), much larger than KEGG (2 target-
instance predictions and 5 homolog-instance predic-
tions). With more experimental discoveries are made,
more proteome-wide predictions are supposed to be
validated.
The quality of signaling PPIs largely depends on the

quality of human PPI database. Here we adopt HPRD
database [34] (http://www.hprd.org/) for primary re-
search since HPRD focuses on collecting reliable
protein-protein interactions of Homo sapiens. However,
HPRD is not so frequently updated as Reactome. In the
future work, we will combine the updated PPI databases
(HPRD, Reactome, Signalink, etc.) with computational
PPI predictions to update the reconstructed signaling
pathways. Fortunately, the predicted signaling compo-
nents are very conveniently linked to signaling pathways
via newly derived PPIs.

Comparison with the existing methods
The existing computational methods for reconstruction
of signaling pathways are largely classified into two cat-
egories: graph search methods [9–11] and machine
learning methods [14–16]. Graph search methods rely
on PPI network topology to search for signaling path-
ways. These methods are simple with least data con-
straints, but feedback loops make the shortest path
algorithm inaccurate. The existing machine learning
methods focus on the discovery of novel signaling com-
ponents. These methods exploit the experimental data
of signaling components and mainly predict orthologues
signaling pathways, but the methods seldom simultan-
eously exploit more than two signaling pathways and
model their cross-talks. The proposed multi-label multi-
instance method simultaneously exploits 27 human can-
cer signaling pathways to model the phenomenon that a

signaling protein belongs to more than two signaling
pathways. As compared with the existing methods, our
method has the merit of explicit knowledge sharing and
knowledge transfer between signaling pathways. After
linking the predicted signaling components to signaling
pathways, we can easily derive the cross-talk signaling
components and cross-talk signaling PPIs.

Applicability
The method can be extended to solve other biological
problems. The computational results provided in the
supplementary files can be used as benchmark for novel
method development or be used for further biomedical
research.

Conclusion
In this work, we propose a multi-label multi-instance
method to simultaneously reconstruct 27 human cancer
signaling pathways and model their cross-talks. The pro-
posed method demonstrates satisfactory multi-label
learning performance and some of the proteome-wide
predictions are validated against the signaling pathway
databases (KEGG, Reactome and Signalink) and recent
literature. The method and the results can be used for
further model development and further biomedical
research.
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