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Abstract

Background: Microarray analysis represents a powerful way to test scientific hypotheses on the functionality of cells.
The measurements consider the whole genome, and the large number of generated data requires sophisticated
analysis. To date, no gold-standard for the analysis of microarray images has been established. Due to the lack of a
standard approach there is a strong need to identify new processing algorithms.

Methods: We propose a novel approach based on hyperbolic partial differential equations (PDEs) for unsupervised
spot segmentation. Prior to segmentation, morphological operations were applied for the identification of
co-localized groups of spots. A grid alignment was performed to determine the borderlines between rows and
columns of spots. PDEs were applied to detect the inflection points within each column and row; vertical and
horizontal luminance profiles were evolved respectively. The inflection points of the profiles determined borderlines
that confined a spot within adapted rectangular areas. A subsequent k-means clustering determined the pixels of
each individual spot and its local background.

Results: We evaluated the approach for a data set of microarray images taken from the Stanford Microarray Database
(SMD). The data set is based on two studies on global gene expression profiles of Arabidopsis Thaliana. We computed
values for spot intensity, regression ratio, and coefficient of determination. For spots with irregular contours and inner
holes, we found intensity values that were significantly different from those determined by the GenePix Pro
microarray analysis software. We determined the set of differentially expressed genes from our intensities and
identified more activated genes than were predicted by the GenePix software.

Conclusions: Our method represents a worthwhile alternative and complement to standard approaches used in
industry and academy. We highlight the importance of our spot segmentation approach, which identified
supplementary important genes, to better explains the molecular mechanisms that are activated in a defense
responses to virus and pathogen infection.
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Background
Microarray technology is one of the most powerful tools
used to generate molecular hypotheses. It allows the inter-
rogation of the genome functionality by assessing the
expression of thousands of cellular transcripts (mRNAs),
even for the entire transcriptome, in a single experi-
ment. This technology has a broad field of applications
such as in cellular functionality, investigation of patholog-
ical phenotypes, characterization of molecular subtypes,
and identification of markers for diagnosis, prognosis,
and treatment prediction [1]. Generally, all microarray
providers developed standardized protocols specific to
their technology, but there is no standardized method to
process the voluminous microarray data [2, 3].
Depending on microarray technology, targets are either

single-stranded DNAs or RNAs labeled with fluorescent
markers, as cyanine (Cy). One or two labels (e.g. Cy3,
and/or Cy5) can be utilized in the same hybridization
measurement, depending on microarray study design,
with one (Cy3) or two colors (Cy3 and Cy5). After syn-
thesis, the microarray targets are hybridized on a glass
microarray slide with large numbers of microscopic spots.
Each spot contains a short DNA sequence of 20–60
nucleotides called probes or oligonucleotides which are
specific for a gene in the genome. Specific regions of inter-
est, e.g., SNPs, CNVs or duplicates in the genome could
be included in spots. After hybridization and washing,
microarray slides are scanned in specific scanners with
appropriate wavelengths for fluorescent markers. A TIFF
image, including the intensities for every spot, will be ana-
lyzed to compute the levels of gene expression, namely
howmany microarray targets are hybridized to their com-
plementary probes [4]. An accurate determination of the
gene expression level is a crucial step and involves three
major tasks: (1) grid alignment, called addressing to deter-
mine the spatial coordinates of each spot; (2) segmenta-
tion, to classify pixels either as foreground, representing
the DNA spots, or as background; (3) extraction of inten-
sity, of each spot and its individual background. Results of
the image analysis are the layout of the spot array, the spot
sizes and shapes, the spot intensities (i.e., gene expression
levels), and the background intensity values.
The estimation of gene expression levels has to deal with

noise and artifacts introduced, e.g., during the microarray
printing and the hybridization processes. The automated
procedures of grid alignment and spot segmentation have
to yield reliable results even for spots with various shape
and size. Consequently, the automated microarray image
processing is subject of on-going research, and approaches
apply computationally expensive techniques for unsuper-
vised spot segmentation. Complex Gaussian scale mixture
(CGSM) model in complex wavelet domain has lead to
efficient noise reduction in microarray images [5]. Sup-
port vector machine (SVM) has been applied for grid

alignment [6, 7] and a fully automatic griding methods
have been demonstrated [8]. To eliminate the distortions
introduced by scanning and hybridization assay, spatial
and distributional segmentation techniques have been
evaluated in [9] and [10]. Moreover, adaptive pixel clus-
tering for variable contours has been studied [10–14].
Spatial methods, such as the Snake Fisher model [15, 16]
or 3D spot modeling [17] have been introduced and
Markov random field models have combined intensity
and spatial information [18, 19] for the spot segmenta-
tion. An efficient classification of pixels in background
and foreground has been achieved by means of geomet-
ric measures [20] and by an algorithm based on grow-
ing con-centric hexagons [21]. Based on an automated
seed selection procedure, a grow-cut procedure was suc-
cessfully applied for independent segmentation of each
spot [22].
Here, we present a method for unsupervised spot

segmentation based on partial differential equations
(PDEs). Our procedure combines spatial and distribu-
tional approaches to classify pixels as pixels of the spot
(foreground) or the local background surrounding the
spot. Previously, preferable features of the PDE approach
for the initial step of automatic grid alignment have been
demonstrated [23]. The grid alignment defines rectan-
gular areas and each of the rectangles confines a spot.
In our approach, the PDE formalism was combined with
a refinement based on the autocorrelation function of
the spatial intensity distribution of the fluorescent light.
Ellipses adapted to the rectangle areas provided an ini-
tial classification of pixels of foreground, background, and
exclusion zone. A k-means clustering refined the initial
classification.We evaluated the accuracy of themethod by
comparing our results with reference values published in
the SMD public data repository.

Methods
Fluorescent light emitted from dye immobilized on the
chip surface produces a microarray image. Convention-
ally, the microarray image is stored in the Tagged Image
File Format (TIFF) as a two-dimensional array of inten-
sities, I = (pu,v). The intensities, pu,v, are 16 bits integer
with a dynamic range of 0 ≤ pu,v ≤ 216 − 1. A lower
index may denote the dye, e.g. ICy3, denotes a microarray
image recorded of the cyanine dye Cy3. Figure 1a shows an
example of a microarray image. Let us consider a microar-
ray image of 5550 × 1910 pixels size which includes a
number of 15,552 bright spots, indicating the sequence-
specific hybridization of labeled DNA. The image is taken
form Stanford Microarray Database (SMD) and has the
identification number ID 20,385. The bright spots have
a diameter of, in round numbers, 15 pixels. The spots
accumulate spatially to 48 groups of 324 neighbored spots
each. The division of the whole image into 48 sub-images
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Fig. 1 a The microarray image was taken from SMD database (ID 20385). The image shows the intensity of fluorescent light emitted from dye
cyanine Cy3. The spots of high intensity indicate sequence-specific hybridisation of labelled DNA extracted from Arabidopsis thaliana. The
experiment has been designed to study global transcriptional factors of hormone treatment. The detection of groups of co-localized spots is shown
by the grid of the global addressing. The groups of spots are separated by the horizontal and vertical lines of the grid. b A sub-image of the
microarray image shown in a). The sub-image depicts a group of 324 co-localized spots. The size of a sub-image is in round numbers 460 × 480
pixels. Spots of high intensity are separated by lines of a grid. Inflection points of intensity profiles were computed to align the grid, see Section
Grid alignment. The horizontal and vertical lines of the griding separate rows and columns of spots. The two horizontal broken lines and the two
vertical broken lines cut out a slice of the 14th row and of the 6th column of spots, respectively. c The procedure of grid alignment yields a stable
separation even for spots with non-spherical profiles, low intensities or high background signal

each of which containing an individual group of spots
is called global addressing. Within each group the spots
are located along horizontal and vertical lines (rows and
columns). Our task was to identify the spots in the images
and to extract the feature characteristics, such as mean
intensity, background intensity, or variation of intensity,
for each of the spots. The high number of pixels (in round
numbers 107 pixels) makes an automated image process-
ing necessary. Our workflow included the following 4
steps: (1) preprocessing for enhancement, rotation, and
global addressing, (2) grid alignment for determination of
borderlines between adjacent rows or adjacent columns
of spots, (3) segmentation for the classification of pix-
els to foreground and background, and (4) extraction of
intensity features.

Preprocessing
This step included: a logarithmic transformation,
pu,v→ru,v = log2(pu,v + 1), which mapped the 16 bit
integer intensities, pu,v, to the real-valued grey scale,
0≤ ru,v ≤ 16. Further, a global shift and uniform scaling of
intensities ru,v yielded an image IL = (p′

u,v) with proper-
ties, min

(
p′
u,v

) = 0, max
(
p′
u,v

) = 216 − 1, and enhanced
contrast. To adjust spots to horizontal and vertical lines,
we rotated the entire image using Radon transform [6, 8].
We split the image into sub-images, each of which con-
taining one of the spatially organized group of spots.
For the splitting, we followed the strategy proposed by

Angulo and Serra [24], and applied a morphological
dilation operation to fuse neighbored spots. Such prepro-
cessed sub-images I ′ = (

p′
u,v

)
which contain a group of

spots were the starting point for the succeeding steps, see
Fig. 1b for an example of a sub-image.

Grid alignment
We applied a convolution with a Gaussian kernel of size
k = 3 pixel and standard deviation of σ = 5 pixel to the
image I ′. An average process along the x and y direction
yielded the profiles

H(x) = 1
dimy

∑

y
p′
x,y , and (1)

V (x) = 1
dimx

∑

x
p′
x,y. (2)

dimx and dimy were the dimensions of the sub-image
(given in number of pixels). A shock filter processed the
profiles H and V based on the partial differential scheme
[25]

Pt+1 = Pt − sign
(
�Pt

) ∣∣∇Pt
∣∣ (3)

with iterations t = 0, 1, . . . , tf and initial conditions of
either P0 = H or P0 = V . The number of iterations was
tf = 50. The spatial discrete formulation of the itera-
tion applies �P(i) .= P(i + 1) − 2P(i) + P(i − 1) and
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∇P(i) .= min (�lP(i),�rP(i)) if both, the left deriva-
tive, ∇lP(i) ≡ P(i + 1) − P(i), and the right derivative,
∇rP(i) ≡ P(i) − P(i − 1), have equal signs. For oppo-
site signs, the shock filter executes the identity operation,
Pt+1(i) ≡ Pt(i). The shock filter has been designed
to create ruptures at inflection points of the profile. A
detailed discussion of the shock filter approach can be
found in [23]. During shock filter iteration, the profiles
converged to piece-wise constant functions. The iter-
ation produced discontinuities, i.e., steps, at positions
h1, h2, . . . , hm and v1, v2, . . . , vm′ of the inflection points
of the horizontal intensity profile, H, and the vertical
intensity profile, V, respectively. The ordered sequence
h1, h2, . . . , hm contained left and right positions, h2i, h2i+1,
for each gap between two adjacent columns of spots. The
center, xi = (h2i + h2i+1) /2, is located centrally between
adjacent maxima of the profile H. Similarly, we computed
positions, yi = (v2i + v2i+1) /2, to separate rows of spots.
Horizontal and vertical lines at the computed positions,
y1, y2, . . . , ym′/2 and x1, x2, . . . , xm/2, respectively, define
a grid on the sub-image image I ′. The grid separates a
spot from its neighbors and cuts the image into small
rectangles, each of which contains a single spot; for an
illustration, see Fig. 1b.

Spot segmentation using autocorrelation driven PDE and
k-means clustering
The segmentation consisted of three steps: (1) cutting
the image, (2) initial classification into foreground, back-
ground, and exclusion zone based on an approximation of
spots by ellipses, and (3) refinement of the classification
by local clustering. In the first step, we cut the image I ′
into sub-images, I ′row,i and I ′column,j. The sub-image I ′row,i =(
p′
u,v

)
with yi ≤ v ≤ yi+1 was the horizontal slice of I ′

that contained the i.th row of spots, see Fig. 2a. The sub-
image I ′row,i contained the spots in the i.th row. In the same
way, the sub-image, I ′row,j = (

p′
u,v

)
with xj ≤ u ≤ xj+1,

contained the spots in the j.th column, see Fig. 2b. In the
second step, we computed a profile P for each slice of the
image, applied the shock filter iteration, and determined
the positions of the inflections points. Here, we followed
the approach outlined in theMethods section, description
of the grid alignment approach. We assigned the positions
of the inflection points to borders of an individual spot,
see Figs. 2a and b. The tight borders, hl < hr , fulfilled the
3 conditions:

|∇P(hl)| > thr and |∇P(hr)| > thr
xl < hl < xr and ∇P(hl) > 0
xl < hr < xr and ∇P(hr) < 0.

(4)

xl and xr were the positions of left and right horizon-
tal grid lines, respectively, and the threshold thr was
30 % of the average intensity of the profile, P. For some

spots of very low intensity, the method failed to deter-
mine inflection points, and the sequence of computed
inflection points had gaps. To fill these gaps, we took
advantage of the periodicity of the intensity profile and
computed the autocorrelation curve. The first maximum
of the autocorrelation curve determined the typical dis-
tance between spots, and hence, we filled the gap by
periodic continuation of the position of inflection points.
The inflection points determine the size and coordinates
of rectangles, Rsmall and Rbig , see Fig. 3a. Whereas Rsmall
embeds only the spot, the bigger rectangle Rbig includes
additionally the local background area between the spot
and its neighboring spots.
For an initial classification of pixels, we used three

ellipses, EF , EB, and EE , adapted to the rectangles, Rbig ,
and Rsmall, respectively. For an illustration we refer to
Fig. 3b. EF is the ellipse with the maximum area located
inside the small rectangle Rsmall. EE has the same cen-
tre, but its major and minor radii are 3 pixels larger.
EB is the ellipse with maximum area located inside the
big rectangle Rbig . Pixels inside ellipse, EF , are assigned
to the foreground, and pixels inside ellipse, EB, but out-
side ellipse, EE , are assigned to background. Pixels inside
ellipse, EE , but outside ellipse, EF , represent an exclusion
zone between foreground and background, see Fig. 3b.
The initial classification assumed a well-shaped ellip-

soid spot and did not account for irregular contours or
inner holes. In a third step, we refined the initial clas-
sification and applied k-means clustering. The k-means
clustering assigned the intensity of a pixel to one of the
two groups: foreground (high value), or background (low
value). It was applied locally for each spot, considering
pixels inside ellipse EE , from both ICy3 and ICy5 images.
Consequently, the clustering procedure yields two sets of
pixels for the same microarray spot, denoted by SCy3 and
SCy5, corresponding to the ICy3 and ICy5 image, respec-
tively. Each set is defined as the pairs of pixel indices S =
{(i,j)} relative to the microarray image I, with pixel inten-
sity value p(i,j) assigned by the clustering procedure to the
foreground pixels group (high pixel intensity values). The
union of the two sets SCy3 ∪ SCy5 contains pixels that are
called foreground of the spot (i,j) in both ICy3 and ICy5
images.

Extraction of intensity features
For each spot, we computed the median intensity, Fu, of
the foreground and the median of intensity, B, of its local
background. The background corrected intensity is given
by the difference, F = Fu − B. For a comparison study,
the background corrected intensity, R, of a spot in the
image, ICy3, has to be compared with the background cor-
rected intensity, G, of the spot at identical location in the
reference image, ICy5. We computed the R and G values
for each of the spots in our test data set. To correct for
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Fig. 2 a The image of the 14th row of spots from Fig. 1b is depicted at the bottom. The intensity profile before (broken line) and after (solid line)
shock filter iteration is represented on top of the image. Vertical lines are drawn in red at positions of inflection points. The solid lines indicate border
lines for the spot in row 14 and column 6. The broken lines confine its local background area. b The image of the 6th column of spots from Fig. 1b is
shown at the bottom (rotated counter clockwise by 90◦). The intensity profile before (broken line) and after (solid line) shock filter iteration is
depicted on top of the image. Vertical lines are drawn in red at positions of inflection points. The solid lines indicate border lines for the spot in row
14 and column 6. The broken lines confine its local background area

intensity-dependent patterns in the (R,G) data, we applied
the standard scatter plot smoother “lowess” of Cleveland
and Devlin [26], with linear fit and window size of 20 %.
Conventionally, the ratio r = R/G measures the change

of gene expression compared to a reference. Alternatively,

the change of gene expression can be measured for a
spot by a regression ratio rR [27]. The regression ratio rR
is the slope of the linear fit through a scatter plot. The
scatter plot has a point (r,g) for each pixel inside the sur-
rounding ellipse, EB (i.e., foreground, exclusion zone, and

Fig. 3 a The schematic diagram shows rectangles, Rsmall (1) and Rbig (2). Rsmall embeds only the spot in the middle of the field, whereas Rbig encloses
additionally the local background area. b A blow up of the two rectangles, Rsmall and Rbig , lead to the definition of the three inscribed ellipses EF , EB ,
and EE . The defined ellipses show the areas of foreground (1), background (2), and exclusion zone (3) pixels
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background). The values, r and g, are the raw intensities
of the red and green channel, i.e., the intensities in the
images, ICy3, and, ICy5, respectively. Most preferably, the
value of regression ratio, rR, is identical to the value of
the ratio, r. Since the regularity of the spot and spatial
homogeneity of the intensity distribution inside the spot
influence the fit, we computed the coefficient of deter-
mination, R2, of the linear fit function with the points in
the scatter plot to indicate the quality of a spot [28]. A
value R2 = 1 is the best value whereas R2 = 0 is the worst
result.

Results and discussion
Data set of images
We selected two reference data sets, each set composed
of 8 images from the SMD data repository (http://smd.
princeton.edu/) For the first data set, the SMD experi-
ment IDs are 20385, 20391, 20392, and 20395 whereas for
the second data set the SMD experiment IDs are 26409,
26415, 26425, and 26426. Moreover, in case of the first
set, each image has the size of 5550 × 1910 pixels and
contains 48 spot groups with 324 spots per group. The
second data set contains images of 4000× 1944 pixels size
with 32 spot groups and 372 spots per group. Each of the
two sets is organized in four pairs, (ICy3, ICy5), of images.
Intensity features of the spots in the images have been
determined, using the Molecular Devices GenePix soft-
ware (https://www.moleculardevices.com), and have been
made available in the SMD data repository for the entire
dataset. In case of the first data set, the image pairs are the
results of four experiments in a study of the global tran-
scriptional factors for a hormone treatment ofArabidopsis
thaliana (http://www.arabidopsis.org, Microarray Experi-
ment Category: Hormone treatement, Experiment name:
Transcriptional profiling of WT, axr3-1 and arx3-1R4).
In each pair of images, the image of cyanine dye, Cy3, is
the reference image, whereas image of cyanine dye, Cy5,
intents to capture the incremental change induced by the
treatment of Arabidopsis thaliana with the auxin indole
acetic acid (IAA). The same data set has been analyzed
previously by [23]. Considering the second data set, the
image pairs are the results of four experiments describing
the changes in the global gene expression profiles of sus-
ceptible Arabidopsis leaves for supporting the biotrophic
fungi [29]. The image of cyanine dye, Cy3, is the ref-
erence image, whereas the image of cyanine dye, Cy5,
intents to capture the changes induced by the biotrophic
fungi. Regarding the quality categories of the images, the
main characteristic of the entire data set is the pres-
ence of spots with irregular contour and inner whole,
for which the segmentation method is addressed. Weakly
expressed spots, missing rows of spots and artifacts are
also present as quality categories in case of the selected
images.

Experimental results
We applied our processing pipeline to the reference data
sets. Figure 1a illustrates the detection of groups of co-
localized spots in an image (ID 20391, Cy3). The groups
of spots are separated by the horizontal and vertical lines
of the grid. The blow ups in Fig. 1b and c show the sep-
aration of spots within two groups of spots. Inflection
points of intensity profiles were computed to align the
horizontal and vertical lines of the grid, see grid alignment
approach from section Methods. The procedure of grid
alignment yielded a stable separation of adjacent spots
even for images with spots of non-spherical profiles, spots
of low intensity, and spots of high background signal.
The gridding shown in Fig. 1b and c was prerequisite to

cut an image into slices of rows and columns, to compute
the inflection points of intensity profiles, and to approx-
imate each individual spot by three adapted ellipses, see
the section Methods, description of the spot segmenta-
tion approach. Figures 4a and b exemplify foreground
ellipses EF (broken line), and background ellipses EB (solid
line) for spots in two sub-images. The images in Fig. 4a
and b depict a number of spots with inner holes, spots
with irregular contours, weakly expressed spots, as well as
staining artifacts. For each spot in the regular pattern, the
adapted ellipses of various form and size give a reasonable
initial identification of the foreground and background
area.
The approximation by ellipses illustrated in Fig. 4a and

b ignores irregular contours and inner holes of low inten-
sity which are present in the vast majority of microarray
images. The blow ups in Fig. 5a and c exemplify spots
for which a spatial characterization by ellipses is problem-
atic, e.g., spots with low intensity, irregular contours, and
inner holes. The classification of pixels inside ellipse EE
(foreground and exclusion zone) was refined individually
for each spot by local k-clustering, see section Methods.
Below the spots in Fig. 5a and c, their corresponding fore-
ground areas are shown in black, see Fig. 5b and d. The
computed foreground areas resemble the spatial intensity
distributions of the images above. Irregular contours and
holes of low intensity inside the spots have been identified
correctly. Local clustering yielded a stable and preferable
identification of the foreground area even in problem-
atic cases of spatial non-homogeneous and non-spherical
spots.
We determined the R/G ratios r, the regression ratio

rR, and the coefficients of determination R2 for each of
the spots in our test set of microarray images. Our results
were similar to the results of GenePix. The group of
spots with n highest R/G values between our approach
and GenePix data share a fraction of 60 − 80 % spots
for n > 10. For a minor fraction of, in round numbers,
6 % of the spots, the rank order was significantly differ-
ent between two approaches (,i.e., deviation more than

http://smd.princeton.edu/
http://smd.princeton.edu/
https://www.moleculardevices.com
http://www.arabidopsis.org
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Fig. 4 The geometrical features of each spot are approximated by a foreground ellipse EF (broken line) and a background ellipse EB (solid line). The
approximation is shown for two groups of spots, i.e., two sub-images of image AT20391 (dye Cy3) depicted in figure panels a and b respectively.
Spots of low intensity and non-spherical profiles, as well as artifacts of high background signal, make the identification and description of
foreground and background area non-trivial. The ellipses show a rather high diversity in size and form but give a reasonable initial approximation of
the foreground and background area of each spot

Fig. 5 a The blow ups exemplify spots with low intensity. b The black areas are the computed foregrounds of the spots above. c The blow ups
exemplify spots with irregular contours and inner holes. d The black areas are the computed foregrounds of the spots above
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30 % in the rank order). The values of 0.935 and 0.919
for the Pearson coefficients indicate a nearly perfect cor-
relation between the median intensities R and G of our
method and the reference values of GenePix, see Table 1.
Moreover, close correlation between the coefficients of
determination (Pearson coefficient 0.94) shows that the
quality of spots determined using the proposed segmen-
tation approach is very similar with the one determined
using GenePix.
For themajority of spots in the tested set of microarrays,

we yielded, within insignificant fluctuations, very simi-
lar results like that in the standard approach (GenePix).
The extraction of intensity features by standard methods
is unproblematic for spots of spherical contour with high
contrast and our data are in accordance with the reliable
reference values for these spots. Figure 6 displays the red
and green channel of two exemplary spots. The first spot
in Fig. 6a has a preferable spherical and homogeneous
intensity distribution (perfect spot). The second spot in
Fig. 6b has an irregular contour, but nonetheless a prefer-
able high contrast between foreground and background
intensity (irregular spot). Table 1 compares our results for
these spot with the reference values of GenePix.
For the perfect spot in Table 1, the median intensity, R,

inside the ellipse, EF , gave an initial intensity value of, in
round numbers, 45 k Counts. The ellipse, EF , surrounds
a foreground area of 210 pixels, see Fig. 6a. A k-means
clustering was applied independently to the red and to the
green channel to refine the rough, ellipse based separation
of bright foreground pixels from darker background. The
union of 183 foreground pixels of the red channel with
the 174 foreground pixels of the green channel yielded a
foreground area of 185 pixels; see Fig. 6a for an illustra-
tion. A fraction of 6 % foreground pixels (i.e., 12 pixels)
were classified as bright pixels only in the red channel.

Table 1 The table exemplifies background corrected intensities,
R, and G, in units of 1000 counts, the R/G ratio, the regression
ration rR, and the coefficients of determination, R2, for two spots,
i.e., for spots no. 100 and 3260 on microarray ID 20385 shown in
Fig. 1

Spot R/1000 G/1000 R/G rR R2

Perfect GenePix 46.56 37.84 1.23 0.71 0.87

Our results 51.59 40.45 1.27 0.70 0.87

(45.73) (37.74) (1.21)

Irregular GenePix 28.63 17.68 1.61 1.41 0.76

Our Results 65.53 37.532 1.74 1.18 0.76

(19.29) (11.59) (1.66)

Pearson correlation 0.935 0.919 0.94

Values of GenePix are compared with our results. The last line gives the Pearson
correlation between GenPix and our results for all spots of an experiment (ID 20385).
In parentheses are the R and G values inside the ellipses

The refinement of the foreground area led to a correc-
tion of the median intensity R to a slightly higher value
of, in round numbers, 51 k Counts. The standard inten-
sity value of GenPix of 46 k Counts is approximately 10 %
smaller than our final R value. The low intensity value of
GenePix indicates a non-perfect gridding and an approx-
imation of the foreground area by an ellipse that contains
beside the bright foreground pixels also background pixel
of low intensity. For the green channel, G, the intensity
value of, in round numbers, 37 k Counts is within 1 %
indistinguishable from the GenPix value. For the perfect
spot, the differences in the intensities led to an insignifi-
cant deviation of the R/G ratio of GenePix from our R/G
ratio. The deviation of both R2 and rR from the GenePix
values are also minor.
For the irregular spot in Table 1, the characteristics of

our approach become more pronounced. For this spot the
ellipse EF contained 208 pixels. The median intensities of
these pixels, i.e., R ≈ 19 k Counts and G ≈ 11 k Counts,
respectively, are relatively low because of the contribution
of a significantly large fraction of rather dark pixels, see
Fig. 6b. The clustering reduced the foreground area by 74
dark pixels and, hence, the median intensities of the red
and green channels triple to R ≈ 65 k Counts (factor
3.4) and to G ≈ 27 k Counts (factor 2.4). The reference
intensities of GenePix are between the median intensity
inside the ellipse, EF , and the results of the clustering. We
obtained a R/G ratio of r = 1.74 slightly different from
the reference value r = 1.61 of GenePix. Note that our
results for the median intensities inside the ellipse (values
in parentheses in Table 1) yield a value of r = 1.66 which
is closer to the reference value of GenePix. Since inten-
sity inside the ellipse is biased by a significant fraction of
dark background pixels, the higher intensity ratio of the
clustering (r = 1.74) is more trustworthy.
Considering the entire data set, the median intensity

values R and G determined by the proposed segmenta-
tion approach and the ones drawn from the SMD database
(i.e. median intensity values computed using GenePix)
were normalized using the standard lowess smoother,
presented in the section Methods. The normalisation
procedure is used to compensate for the effects of non-
homogeneous staining of the microarray. Further on, we
identified the set of up-regulated spots (r > 2) using
both our proposed segmentation approach and GenePix.
The up-regulated spots correspond to the activated genes
in the two studies on global gene expression profiles of
Arabidopsis Thaliana, considered in our data sets. A dis-
cussion on the supplementary set of genes determined
using our segmentation approach and their significance is
presented next.
The numbers of spots that are classified as up-regulated

are given in Table 2. The quantities, |A|, |B|, |A ∩ B|, |A/B|,
and |B/A|, denote the numbers of spots that are found
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Fig. 6 The red channel (first column) and green channel (second column) of two spots exemplify two categories of spots: a A perfect spot with
preferable spherical and homogeneous intensity distribution. b An irregular spot with high contrast between foreground and background intensity.
The spots with spot no. a) 100, and b) 3260 are from microarray ID 20385

to be up-regulated by GenePix, by our approach, simul-
taneously by both approaches, exclusively by GenePix,
and exclusively by our approach, respectively. Our results,
analyzing the R/G ratios, identified a higher number of
up-regulated spots than using GenePix. Our set of up-
regulated spots is, however, not a superset of the up-
regulated spots of GenePix. For individual microarrays in

Table 2 The number of the up-regulated spots, #(r > 2), is listed
for four microarrays

ID #(r > 2) |A ∩ B| |A/B| |B/A|
20385 GenePix |A| 274 181 93 60

Our results |B| 241

20391 GenePix |A| 33 8 25 35

Our results |B| 43

20392 GenePix |A| 328 257 71 54

Our results |B| 311

20395 GenePix |A| 9 7 2 31

Our results |B| 38

26409 GenePix |A| 379 298 81 98

Our results |B| 396

26415 GenePix |A| 171 114 27 34

Our results |B| 148

26425 GenePix |A| 94 47 47 80

Our results |B| 127

26426 GenePix |A| 229 116 113 142

Our results |B| 258

The number of up-regulated spots of GenePix is compared with the number of
up-regulated spots of our approach. The number of spots that are classified as
up-regulated by both approaches are given by |A ∩ B|. The number of spots that are
classified by only one method are given by |A/B| and |B/A|, respectively

our test set, fractions of 15 % up to 75 % of the spots
that had been found up-regulated by GenPix were not
confirmed by our method. Moreover, fractions of 24 –
81 % of our set of up-regulated spots have not been iden-
tified by GenePix. A question which arises is how the
two segmentation methods, GenePix and the proposed
one, reflect on the obtain results. GenePix software sup-
ports irregular spot detection, and you can choose to find
the holes as well [30]. The proposed k-means clustering
refinement within the segmentation procedure considers
the local background of each spot (i.e. ellipse EE) and
uses a distributional approach for segmentation which
accounts for non-homogeneous intensity distribution, not
only for holes. The advantage of our proposed method is
highlighted by a selection of up-regulated spots that had
been identified exclusively by our approach (see Fig. 7).
The spots are characterized by irregular contours and
non-homogeneous intensity distributions.
Because a microarray experiment represents an

exploratory tool to investigate genes and molecular path-
ways, it is very important to identify very precisely all sets
of genes modulated in cells of interests. Depending on
their position in a molecular mechanism, each gene can
be directly or indirectly activated in a cascade belonging
to a particular mechanism. For example, transcription
factors such as NF-kB, Jun, Fos, are involved in the
activation of many genes specific for different pathways.
Any lack of data in a microarray experiment could nega-
tively influence the understanding of cellular alterations.
Thereby, by lacking of the identification of some impor-
tant genes, named nodal genes, the scientists could not
characterize entirely the alterations that occur in the
cell. In case of the first data set, using our approach, we
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Fig. 7 Selection of up-regulated spots that have not been identified by the standard approach of GenePix: spot no. a 2321, b 13,150, c 6294, d 4648
on microarray ID 20385, spot no. e 1317 and f 6728 on microarray ID 20391 and spot no. g 4422 on microarray ID 20392. Our approach allows for the
irregular contours and the non-homogeneous intensity distributions of these spots. Standard approximations of the bright foreground areas based
on the simple geometric forms of ellipses are problematic

identified more activated genes as were obtained using
the GenePix software, considering the microarray exper-
iment with ID 20385. These genes have different roles:
the At1g69295 gene (index 13150) is known as mediator
of biological processes [31], the At2g35980 gene (index
6294) is involved in plant response to cellular stress [32]
whereas the At4g26910 gene (index 4648) is involved in
metabolic processes [33].
Considering the second dataset, we also obtained a

supplementary set of genes as compared with GenePix.
We verified the role of these genes, in the context
of microarray study design, related to susceptible Ara-
bidopsis leaves for supporting the biotrophic fungi. We
identified certain genes of interest, including At1g74520
nodal gene with index number 2110. To evaluate the
importance of these genes, we further evaluate their key
position based on pathway analysis assessment. It was
reported that At1g74520 has a key role as a media-
tor of defense responses to virus and pathogen infec-
tion, through At3g50370 and At1g10390 genes [34]. As
all in all, we highlight the importance of our analysis,
which identified supplementary important genes, to bet-
ter explains the molecular mechanisms that are activated
in a defense responses to virus and pathogen infection.
We performed the calculations on a computer worksta-

tion with an Intel i5, 3.3 MHz processor and 4 GB RAM.
The processing of a single microarray image took several
minutes, e.g., in round numbers, 21 mins for microarray
image ID 20385.

Conclusion
We presented a novel approach for the extraction of
intensity features of spots. Standard steps of image pre-
processing were combined with a shock filter iteration
to compute the precise position of inflection points in

the vertical and horizontal intensity profiles of each indi-
vidual spot. Based on the positions of inflection points,
we approximated for each individual spot the foreground
area, background area, and an exclusion zone between
them by the intersection of adapted ellipses. We per-
formed segmentation of the image by simple geometric
objects of ellipses and this strategy turned out to be stable
and reliable only for spots with spherical and homo-
geneous intensity distribution. For spots with irregular
contour and non-homogeneous intensity distribution, this
initial classification of pixels into foreground and back-
ground pixels yielded only a rough approximation that was
insufficient to extract reliable values for intensity features.
To overcome this drawback, we introduced a refinement
step to adapt the segmentation to irregular contours as
well as to dark background pixels inside a spot of bright
foreground pixels. For the re-classification of the pixels
inside the foreground ellipse and the background ellipse,
we applied the k-means clustering method. For spots
with spatial non-homogeneous intensity distribution the
clustering yielded a significant rearrangement of pixels to
foreground and background that, by visual inspection, fit
much better to the true shape of the spots.
We tested our pipeline for a set of microarray images.
For the majority of spots, we yielded, within insignif-

icant fluctuations, very similar results as the standard
approach (GenePix). The Pearson coefficients exceeded
values of 0.94 and hence, indicated a high correlation
of our data (intensities) with the reference values. We
extracted the set of up-regulated spots, i.e., spots with
R/G ratios larger than 2, for each microarray. When
comparing our results with the reference values, our
approach confirmed for some microarrays up to 75 % of
the reported cases of up-regulated spots in the reference
data. For other microarrays the accordance dropped to
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24 %, i.e., for microarray ID 20391 only 8 spots out of 33
were confirmed by our approach. Moreover, our approach
identified a rather high number of up-regulated spots
(22 – 81 %) that has not been reported in the reference
data. Our approach computed a very precise gridding for
the spots and accounted for irregular contours and inner
holes in the spatial intensity distribution of the spots.
As a result the obtained classification of the foreground
area fits much better to the true shape of a spot; the
extracted intensity features can be considered most suit-
able to reflect the staining of the spot. The shape and the
size of the foreground area are valuable information to
assess the quality of the spot and reliability of numerical
results. Our method represents a worthwhile alternative
and complement to standard approaches used in indus-
try and academy. We highlight the importance of our
spot segmentation approach, which identified supplemen-
tary important genes, to better explains the molecular
mechanisms that are activated in a defense responses to
virus and pathogen infection. The approach has to be
validated in future studies, to establish its power to pre-
dict the biological significance compared to conventional
methods.
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