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Abstract

Background: Understanding the mechanisms by which transcription factors (TF) are recruited to their physiological
target sites is crucial for understanding gene regulation. DNA sequence intrinsic features such as predicted binding
affinity are often not very effective in predicting in vivo site occupancy and in any case could not explain cell-type
specific binding events. Recent reports show that chromatin accessibility, nucleosome occupancy and specific histone
post-translational modifications greatly influence TF site occupancy in vivo. In this work, we use machine-learning
methods to build predictive models and assess the relative importance of different sequence-intrinsic and chromatin
features in the TF-to-target-site recruitment process.

Methods: Our study primarily relies on recent data published by the ENCODE consortium. Five dissimilar TFs assayed
in multiple cell-types were selected as examples: CTCF, JunD, REST, GABP and USF2. We used two types of candidate
target sites: (a) predicted sites obtained by scanning the whole genome with a position weight matrix, and (b) cell-type
specific peak lists provided by ENCODE. Quantitative in vivo occupancy levels in different cell-types were based
on ChIP-seq data for the corresponding TFs. In parallel, we computed a number of associated sequence-intrinsic
and experimental features (histone modification, DNase I hypersensitivity, etc.) for each site. Machine learning
algorithms were then used in a binary classification and regression framework to predict site occupancy and
binding strength, for the purpose of assessing the relative importance of different contextual features.

Results: We observed striking differences in the feature importance rankings between the five factors tested.
PWM-scores were amongst the most important features only for CTCF and REST but of little value for JunD and
USF2. Chromatin accessibility and active histone marks are potent predictors for all factors except REST. Structural
DNA parameters, repressive and gene body associated histone marks are generally of little or no predictive value.

Conclusions: We define a general and extensible computational framework for analyzing the importance of various
DNA-intrinsic and chromatin-associated features in determining cell-type specific TF binding to target sites. The
application of our methodology to ENCODE data has led to new insights on transcription regulatory processes
and may serve as example for future studies encompassing even larger datasets.
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Background
Genes are regulated by transcription factors (TF) bind-
ing to physiological target sites in the genome. TFs may
bind directly to target sites through sequence-specific
protein-DNA interactions, or indirectly through protein-
protein interactions with other TFs [1]. Understanding
the mechanisms by which TFs are recruited to their target
sites is essential for the understanding of gene regulation.
For a long time, research in this area has been hampered
by the lack of powerful assays to study TF binding events
in vivo. This has drastically changed with the advent of the
ChIP-seq technology which allows for comprehensive,
genome-wide mapping of all in vivo bound sites of a given
TF in a particular cell type at near base-pair resolution [2].
What has become clear from ChIP-seq experiments is that
the intrinsic binding specificity of a TF can only partly ex-
plain the in vivo site occupancy patterns, which in addition
were found to be tissue-specific [3]. The recruitment of
TFs to target sites thus depends on both DNA-intrinsic
properties and cell type specific covariates.
The intrinsic DNA binding specificity of a TF is com-

monly represented by a so-called position weight matrix
(PWM) [4]. A PWM is a N× 4 matrix whose elements de-
fine the TF’s binding preferences for the four bases of the
DNA alphabet along a binding site of length N. Base prefer-
ences may either be expressed as occurrence probabilities
or as (additive) binding energies. PWMs are basic binding
site models with known limitations. For instance, they can-
not model nearest neighbor dependencies nor can they ac-
count for variable spacing between reverse-complementary
half-sites of homodimeric TFs [5]. Nevertheless, it is gener-
ally agreed that at least some PWMs are good predictors of
in vitro binding affinity of the corresponding TFs. More-
over, large collections of PWMs are available from public
databases such as JASPAR [6]. More advanced modeling
techniques have been proposed for describing more accur-
ately the binding specificity of a TF [7] but corresponding
factor-specific models are not yet available for more than a
handful of TFs.
Other DNA sequence-intrinsic contextual features have

been used to reduce false positive rates in PWM-based in
vivo TF binding site (TFBS) prediction, for instance DNA
structural properties [8, 9]. Double-stranded DNA pos-
sesses anisotropic flexibility, which determines its stability
and rigidity, properties that potentially interfere with DNA-
protein binding. These structural properties, which are
broadly classified into (i) DNA conformation (A-DNA phi-
licity and Z-DNA stability energy), (ii) flexibility (B-DNA
twist, protein DNA twist, propeller twist and bending stiff-
ness) and (iii) stability (duplex disruption and stability free
energy, stacking energy and denaturation) are sequence
dependent, and at least partly predictable from structural
characteristics of dinucleotides as revealed by crystal struc-
tures of double-stranded oligonucleotides. Cross-species

conservation is another sequence-derived feature that has
been successfully exploited for distinguishing biologically
functional TFBS (evolving under purifying selection) from
non-functional ones [10].
Several recent studies have reported that TF binding

is influenced (and thus potentially predictable) by chro-
matin contextual features such as DNA accessibility,
nucleosome occupancy, or the presence of specific his-
tone post-translational modifications [11]. This is ex-
pected as these modifications were known to be
associated with gene regulation processes long before.
However, with the availability of high resolution ChIP-seq
data for many histone marks in many cell types (e.g. EN-
CODE collection) it has become feasible to use these fea-
tures in a systematic manner to build predictive models of
in vivo TF binding. Proof of concept comes from a num-
ber of recent studies where chromatin features have suc-
cessfully been exploited to predict TF site occupancy with
high confidence [12–14].
In the current work, we have combined multiple se-

quence-intrinsic parameters with experimental chromatin
feature types and used machine-learning methods to assess
their relative importance in the TF-to-target-site recruit-
ment process, in the hope to gain new insights into tran-
scription regulatory mechanisms. We used five diverse TFs
as examples: (i) the insulator protein CTCF featuring 11
zinc finger domains, which has also been attributed diverse
functions including transcriptional repression, genomic im-
printing and tumor suppressor [15], (ii) JunD, a leucine
zipper protein and member of the activator protein 1
(AP1) family, (iii) the transcriptional activator GABPA, the
only obligatory multimeric TF within the Ets family [16],
(iv) the transcriptional repressor REST, also known as
neuron-restrictive silencer factor (NRSF), and (v) USF2 a
member of the evolutionary conserved basic helix-loop-
helix leucine zipper TF family. These factors were chosen
on the one hand because they represent diverse classes of
transcription factors, and on the other hand because they
were extensively assayed by ChIP-Seq and other chromatin
profiling techniques (e.g. DNase I hypersensitivity assays)
in multiple cell types by the ENCODE consortium.

Methods
Dataset definition and download
Binding sites were represented by a single genomic pos-
ition corresponding to the center of the binding regions.
Two different types of TFBS collections were used in
this study.

� Genome-wide predicted sites: PWMs for CTCF
(MA0139.1), JunD (MA0492.1), GABPA
(MA0062.2), REST (MA0138.2) and USF2
(MA0526.1) were downloaded from the JASPAR
database [6]. The human genome assembly hg19
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was scanned with these PWMs using in-house tool
PWMScan (http://ccg.vital-it.ch/pwmtools) with a
P-value threshold of 0.0001. Predicted sites with no
or only marginal ChIP-seq tag counts (<3) in any of
the cell lines analyzed were removed. Final numbers
of sites for each factors were: CTCF (77878), JunD
(65526), GABP (51926), REST (48171) and USF2
(37138). The midpoint of the motif was used as the
reference position in the peak lists. (For PWMs of
even-numbered length, the position immediately
upstream of the midpoint was used).

� ENCODE peak lists were downloaded from GEO
(see Additional file 1 for sample ids). The “narrow
peak” format version was used wherever available
else the “broad peak” format was used. In either
case, we used the midpoint of the peak region as
reference point.

TFBS lists were annotated with cell-type specific and
sequence-derived quantitative (numerical) features. These
annotations were stored in a table with rows correspond-
ing to binding sites and columns to annotation features.
Cell-type specific experimental features were calculated as
follows:

� ChIP-seq and DNase-seq tag coverage: Files containing
mapped sequence tags from a single experiment were
taken from the Mass Genome Annotation (MGA)
repository of the Eukaryotic Promoter Database EPD
[17]. Most of these datasets were originally downloaded
in BAM format from the UCSC genome browser
database (http://genome.ucsc.edu/ENCODE/
downloads.html). Others were generated locally by
mapping the sequence reads downloaded from the
short read archive (SRA) [18] to the human genome
assembly hg19 with the aid of Bowtie [19]. For
determining the tag counts, we used only the 5’
end positions of the mapped sequence reads. For
non-histone ChIP-seq targets (TFs, cofactors, and
PolII) these positions were shifted downstream or
upstream towards the estimated fragment center by
an appropriate distance (determined using cross
correlation between + strand tags and – strand tags).
The GEO sample accession numbers and specific
shifting distances are given in Additional file 1.
Multiple tags mapping exactly the same genome
positions were counted only once per experiment.
For transcription factors and corresponding cofactors
(Rad21 for CTCF and FOSL for JunD) as well as for
PolII, tags were counted in a window of ±100 bases
relative to the TFBS center. A window of ±250
bases was used for DNase I hypersensitivity data.
Histone modification tags were counted in windows
of ±500 bases.

� Shape-based evaluation of DNase-seq (DNase I
hypersensitivity data, also referred to as “digital
genomic foot-printing” (DGF)) profiles. We essentially
followed the probabilistic partitioning protocol used
by Nair et al. [20] for ranking and refocusing
CTCF sites. This method attempts to classify the
input data into typical and atypical examples.
Limited shifting of individual genomic regions is
allowed to optimally match the aggregate profile
of typical examples. Here, DNase-seq tags were
extracted from a ±500 bp region around TFBS
center positions and binned in 10 bp windows.
Shifting was limited to ±50 bp (11 shift states).
The method returns a probability p that a given
genomic region constitutes a typical example plus
an optimal shifting distance s. The output variable
p was used as quantitative shape-based DGF
feature in our analyses.

Sequence-derived cell type-independent features:

� Position weight matrix (PWM) score: For predicted
TFBSs, the score was obtained as a by-product of
scanning the whole-genome with the PWM. For
ENCODE peaks, the PWM score of the best match to
the JASPAR matrix within ±100 bp form the peak
center was used. For computing the PWM scores, the
base probability matrices from JASPAR were converted
into log-odds matrices using the following base
composition of the human genome as background
frequencies: A - 29 %, C - 21 %, G - 21 %, T - 29 %.

� Base (oligonucleotide) compositions: mono-, di-, tri,
tetra- and penta-nucleotide frequencies were
calculated for ±100 base sequences around TFBS
sites. The sequences were split into upstream and
downstream parts relative to the TFBS center.
Oligonucleotide frequencies were then determined
separately for the two parts and for the complete
sequence region, and the frequencies obtained in this
way were used as three separate annotation features.

� Nucleosome occupancy prediction: average
nucleosome occupancy per base was calculated for
sequences around TFBS using the model built by
Kaplan et al. (Version 3.0) [21]. Sequences ±1000
bases long were used in order to avoid border
effects. The final feature consists of the average
score of ±10 bases around the TFBS center.

� Structural features: These were calculated with the
R script “dinucl.R“ from the DnaFVP package
(http://dnafvp.sourceforge.net/) . In essence, this
script assigns a score taken from a table to each
dinucleotide within a DNA sequence. The average
value over the ±10 bp regions (20 dinculeotide
positions) relative to the TFBS center was used as
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quantitative structural feature. The following 10
features were used: A-DNA philicity, Z-DNA stability
energy, duplex disruption free energy, duplex stability
free energy, stacking energy, DNA denaturation,
B-DNA twist, protein DNA twist, DNA propeller
twist, and bending stiffness.

� Conservation and polymorphism: A compressed
version of the phastCons46way track of about
10 bp resolution was used as input [22, 23]. The
corresponding track file (available at ftp://ccg.
vital-it.ch/mga/hg19/phastcons/) presents
conservation profiles in a “counts per position”
format similar to the ChIP-seq data files. The
average PHASTCONS score within ±50 bases was
used as conservation feature. SNP frequencies are
based on dbSNP132 (~30 million SNPs) [24]. All
variants of type SNP (excluding indels) were
intersected with the genomic coordinates of
extended TFBS regions (±100 bp) using Annovar
[25]. The average SNP count within ±10 bases
was used as final SNP feature.

Feature selection and model building
Data matrices consisting of features in columns and TF sites/
peaks in rows were first normalized by centering columns on
the mean and then scaled by dividing the centered values by
the standard deviations of the corresponding columns.
Classifiers to discriminate strong from weak TF bind-

ing sites (top and bottom 20 %) were built and evaluated
with the R functions train and trainControl from the
Caret package. First, a given data table was randomly split
into 90 % sites for model building and 10 % for testing.

Support Vector Machines (SVM) and Random Forest (RF)
were used to build a model under leave-one-group-out
cross-validation (10 groups). Polynomial and radial basis
function kernels were used with SVM. Area under the re-
ceiver operating curve (auROC) was computed with the R
function roc from the pROC library and used as measure of
accuracy. The rfe function from the caret library was used
to carry out Recursive Feature Elimination (RFE) with
SVM. In addition to RFE, which reduces the dimensionality
of the parameter space in a way that takes into account
correlations between features, an automatic selection of best
performing SVM parameters (sigma was pre-estimated
using sigest function form kernlab package and fixed for a
range of cost C parameter which varied form 0.25 to 32)
was used along with leave-one-group-out cross-validation to
optimize models and reduce over-fitting.
Regression-based quantitative binding strength predictors

were also built and cross validated with the R functions
train and trainControl. The TF tag count coverage served
as target variable. Cross-data set predictions were made
with the R function predict and the relative importance of
different features was extracted with varImp (all functions
are part of the caret package). All sites from a given table
were used in this case. SVM regression with radial basis
function kernel was used as training method and a Pear-
son’s correlation coefficient (PCC) between measured and
predicted TF tags was used as performance indicator.

Results and discussions
The overall approach for prediction of TF site occupancy
is outlined in Fig. 1. Two types of TFBS lists were used
in this study: (i) genome wide-predicted sites resulting

Fig. 1 Overall workflow. Overall approach for prediction of TF site occupancy
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from a whole-genome PWM scan and (ii) cell-type spe-
cific ENCODE peak lists derived from ChIP-seq data. In
both types of lists, we defined the genomic location of a
TFBS by a single base position corresponding to the
center of the PWM match or the peak region.
In the next step, these peak lists were annotated with

the ChIP-seq tag counts from the corresponding experi-
ments. Tags were counted in a ±100 base region relative
to the TFBS center (see Methods for details). These tag
counts represent binding strength estimates of an indi-
vidual TF in different tissues. Note that both predicted
binding sites and ENCODE peaks were retrospectively
annotated with tag counts. For predicted sites, the same
list was annotated with different ChIP-seq data repre-
senting different cell-types. In the case of ENCODE peak
list, different lists were annotated with different ChIP-
seq data pertaining to the corresponding cell types.
In two-class prediction experiments, the goal was to dis-

criminate between strong and weak binding sites. To this
end, only the top and bottom 20 % of TF binding sites (in
terms of tag coverage) were used. For regression-based
quantitative binding strength prediction, all TFBS of a
given list were considered.
Each peak list was annotated with a large number of

features that could be used as input variables for build-
ing predictors. Some of these features were directly de-
rived from genome sequences or general annotation
resources and thus invariable between different cell types.
These features include a PWM-based TFBS score, base
and oligo-nucleotide compositions of the binding regions
(comprehensively referred to as “sequence” features, see
Methods for more details), DNA structural parameters (10

in total), the distance to the nearest TSS, predicted nucleo-
some occupancy based on the model by Kaplan et al. [21],
SNP density, and a cross-genome conservation score. Cell-
type specific features included ChIP-seq derived relative
abundances of 8 histone marks, PolII and co-factors
known to be associated with the TFs under investigation
(Rad21 for CTCF and FOSL1 for JunD). In addition, two
measures of chromatin accessibility were computed from
DGF. One of these measures is count-based whereas the
other is shape-based (see Methods for details). The anno-
tated peak lists were then used as data input for various
machine-learning algorithms. For class prediction experi-
ments, we used the area under the ROC curve as perform-
ance measure, for quantitative binding strength prediction,
we used a Pearson correlation coefficient (PCC).
To gain preliminary insights into the relative import-

ance and usefulness of the various features, we focused
first on CTCF, a kind of model system for ChIP-seq data
analysis. Specifically, we built binary classifiers to distin-
guish strong from weak binding sites using different fea-
tures and feature classes. Classifiers were built for both
predicted TFBS and ENCODE peaks. Data for the K562
cell line were used in this computational experiment.
The performance of the trained classifiers was evaluated

in a 10-fold cross-validation setting. We tested three dif-
ferent machine-learning methods, RF and SVM with poly-
nomial and radial basis function kernel (see Additional file
2 for a performance comparison of the three algorithms
on a subset of data). The results obtained with the best
performing method (SVM with radial kernel) are shown
in Fig. 2a. Overall, a high auROC was achieved in binary
classification for both datasets. The CTCF-interacting

Fig. 2 Classification results in genome wide predicted sites and ENCODE peak lists. The performance in classifying strong versus weak binding
sites is reported as area under ROC curve. a Performance of individual feature or feature classes on CTCF sites (predicted sites and ENCODE peak
lists) in K562 cell-line. b Feature importance assessed by recursive feature elimination (RFE-SVM)
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protein Rad21 was the pest performing feature, followed
by chromatin accessibility (DGF) and the PWM-based
binding score (TFBS). Histone marks together also per-
formed quite well but may be partly redundant (corre-
lated) with DGF. The good performance of Rad21
confirms previous reports that the majority of in vivo oc-
cupied CTCF sites in the genome are actually bound by
the complete cohesin complex [26, 27].
Interestingly, experimental features such as DGF and his-

tone mark perform better for predicted sites whereas the
TFBS score is more useful for discriminating strong from
weak binding sites in the ENCODE peak lists. The weaker
performance of TFBS on predicted site could be explained
by assuming that some of the high-scoring PWM matches
reside in closed chromatin regions and thus are simply in-
accessible to CTCF. Such “false positives” would be diffi-
cult to identify without experimental data, as chromatin
accessibility varies substantially between cell types. More-
over, the diversity in TFBS is reduced compared to experi-
mentally determined in vivo binding sites, as the predicted
sites are selected for PWM matches with a high score. For
analogous reasons, the weaker performance of DGF and
histone marks on ENCODE peak lists is not surprising. In
simplified terms, in vivo binding sites are sampled from ac-
cessible and active chromatin regions, resulting in reduced
variability of these features as compared to predicted sites.
The predictive power of the numerous sequence fea-

tures combined (over 4000 in total, see Methods) was
equal or lower than the TFBS score alone. Furthermore,
using that many sequence features was computationally
expensive and time taking. Therefore we replaced these
features in subsequent analyses by a simple G + C con-
tent feature, which we knew from parallel studies, was
positively correlated with CTCF binding. Since count
and shape-based DGF measures showed very similar
performance, we kept only the simpler count-based
measure. All other features were kept even though some
showed very modest performance. The particularly weak
performance of SNPs may be explained by the generally
low SNP counts (often 0) in TFBS regions.
We carried out RFE, to identify the most informative in-

dividual features and to analyze the degree of redundancy
between features. RFE works by backward elimination,
starting with all the features and eliminating one at a time.
At each step, the feature judged to be least useful for pre-
diction is eliminated and the overall performance of the
predictor is re-evaluated by cross-validation. The results of
recursive feature elimination are shown in Fig. 2b. We note
that for both predicted TFBS and ENCODE peaks max-
imal performance (0.99 accuracy) is reached with as few as
three features. The cofactor Rad21 and DGF (shape-based)
are part of the top features in both cases, complemented
by the PWM score for ENCODE peaks and histone modi-
fication H3K4me1 for predicted sites.

In the next experiment, we used a quantitative (regres-
sion-based) prediction approach to address the following
questions: (i) predict the binding strength of TFs (ii) do
the previous observations concerning CTCF generalize to
other TFs? (iii) Can a predictor trained on one cell type be
applied to another cell type? We thus extended our study
to another transcription factor, JunD, and to another cell
type, H1hESC, an embryonic stem cell derived cell line.
We divided the complete feature collections into two
major groups: (i) chromatin-related (cell-type specific)
features and (ii) sequence-derived (cell-type independ-
ent) features. Predictors were trained on each subset
individually and on all the features together. As we
found again that SVM with radial kernel performed
better than the other two methods tested, we used this
method here and in all subsequent analyses described
in this paper.
Figure 3 shows the regression results for predictions

within a cell line (10 fold cross-validation) and across a
different cell line. Prediction accuracy of TF occupancy
levels was higher for CTCF (R = 0.85 to 0.91) than for
JunD (R = 0.72 to 0.82). The lower predictability of JunD
binding strength is primarily due to the poor performance
of the sequence and annotation-derived features (R ~ 0.2).
We further noticed a higher cell type specificity of the
trained predictors for JunD as compared to CTCF. The
model built on the K562 CTCF peak list was a relatively
good predictor of H1-hESC CTCF occupancy and vice
versa. However, for JunD the models performed signifi-
cantly better when tested on the same cell (drop of R from
about 0.7 to 0.5). We also explored the role of structural
features in regression analysis; even though we observed a
slight improvement in cross-cell line prediction, the re-
sults obtained with structural features were not a signifi-
cant improvement over those obtained with sequence plus
annotation features alone.
The machine learning method used (from the R package

caret, see Methods) automatically computes “importance
values” for each feature. In simplified terms, these values
correspond to the reduction in prediction accuracy result-
ing from removal of the features. Feature importance of
the binding strength predictors for predicted sites and EN-
CODE peaks for K562 and H1hESC cells are shown in
Fig. 4. For CTCF, the importance of Rad21, DGF and
TFBS together remains very high for all TFBS lists, with
the relative contribution of TFBS and DGF score changing
between predicted sites and ENCODE peaks as observed
in the binary classification assays (Fig. 2). Other features
were assigned relatively low importance and vary consid-
erably across the four data sets. Again the trends observed
with binary classification are reproduced by regression
analysis. Histone marks, especially H3K4me2/3, are of
comparatively higher value for predicted TFBS than for
ENCODE peaks.
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Fig. 4 Feature importance in regression. The size of the colored areas reflect the relative importance of different features in regression models
built for CTCF and JunD in different data sets. “p” and “e” in the x-axis denotes predicted sites and ENCODE peaks respectively

Fig. 3 Regression results with cross cell line prediction. The bar plots reflect the prediction ability (Pearson’s correlation coefficient) of regression
models trained on one cell line and tested on the same (cross-validation) or another cell line using four different feature sets on ENCODE peak
lists. “Seq” consisted of sequence and annotation features; “Chromatin” features included DGF, various histone marks, PolII and co-factors (Rad21
for CTCF and FOSL1 for JunD); “All” included both of them, “All + Str” included structural features in addition to other features. Models for CTCF
(a, c) and JunD (b, d) were alternatively trained on data from K562 (a, b) or H1hESC (c, d) cells
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A markedly different picture emerges for JunD. We first
note the almost total insignificance of the PWM-based
binding score, which largely explains the previously ob-
served global ineffectiveness of sequence-derived features
in JunD binding strength prediction. Interestingly, this
holds for predicted as well as for ChIP-seq defined binding
sites. The intrinsically low binding specificity of JunD
reflected by the low information content of the corre-
sponding JASPAR PWM may partly explain this observa-
tion. We also tested a secondary PWM for JunD from the
Jaspar database (MA0491.2) and observed a marginally
better (but still poor) performance. In biological terms, this
probably means that sequence-specific protein-DNA inter-
actions play only a minor role among the molecular pro-
cesses that recruit JunD to its physiological target sites.
Another interesting observation is that the cofactor FOSL1
is assigned lower feature importance in predictors built
from H1hESC cells as compared to K562 cells. A hypothet-
ical explanation for this unexpected difference could be
that JunD preferentially associates with members of the
AP1 family other than FOSL1 in H1hESC cell. Generally,
active histone marks are of much greater importance
for predicting JunD binding strength than CTCF bind-
ing strength. Repressive histone marks (H3K27me3)
and gene-body marks (H3k36me3 and H4K20me1) are
of little or no use for binding strength predictions, in-
dependently of cell type.
The results presented so far suggest that the intrinsic

DNA binding specificity plays a much more important
role for in vivo target site selection by CTCF as com-
pared to JunD. At the same time, the selection process

appears to be much more cell type-specific in the case
of JunD. These two observations would imply a smaller
overlap among the TFBS lists for JunD than for CTCF.
To verify that this is indeed the case, we generated Venn
diagrams for the three TFBS lists (predicted sites, EN-
CODE peaks for K562 and H1hESC) for the two factors
(Fig. 5). Indeed, there is a much smaller overlap between
the TFBS lists for JunD. There are only 1,680 JunD sites
(0.9 %) common to all three lists from a combined total
of 189,459 sites. In contrast, there are 30,073 common
CTCF sites (18.6 %) out of 161,438 sites in total.
We then extended this type of regression-based ma-

chine modeling framework for predicting tag counts to
three additional factors (REST, GABP and USF2) and
three additional cell types (GM12878, HeLa and HepG2).
The computational methods used were same as before,
where we build models using 90 % of the data from each
cell line/factor and prediction was carried out on the
remaining 10 % test dataset. The purpose of this analysis
was to obtain a more representative picture of the di-
versity of the TF-to-target-site recruitment processes
operating in different cell types. We thus generated
regression-based binding strength predictors with com-
binations of high performing features including histone
marks, DGF, TFBS and PhastCons score using the pre-
dicted TFBS lists for each TF in all the cell lines. The
cofactors Rad21 and FOSL1 were not used in this analysis
to ensure fair conditions for all five TFs. The results are
presented in a concise fashion in Fig. 6. Each subfigure
compares two feature sets by means of a scatter plot. We
first note that all factors (identified by different colors)

Fig. 5 Overlap between predicted sites and ENCODE peaks. The Venn diagrams show the overlap between predicted TFBS lists and ENCODE peak
lists for two cell types (K562 and H1hESC) for (a) CTCF and (b) JunD

Kumar and Bucher BMC Bioinformatics 2016, 17(Suppl 1):4 Page 48 of 116



form compact clouds in each plot, sometimes clearly sepa-
rated from each other. The same is definitely not true for
cell types (identified by different symbols). We conclude
from this that the principles guiding the same transcrip-
tion factors to its target sites are overall similar across cell
types despite some undisputable cell-type specific effects
for JunD, revealed by our results shown in Figs. 3 and 4.
On the other hand, the recruitment processes seem to be

highly factor-specific. The most striking outlier among the
five factors analyzed is REST whose binding strength is
well predicted by its PWM score. However, all other fea-
tures appear to be virtually useless for this factor. The fact
that all dots lie on the main diagonal in Fig. 6a means that
the prediction accuracy obtained with the PWM score can-
not be increased by feeding more features to the learning
algorithm even though histone modifications alone show a
modest predictive value (Fig. 6b, R ~ 0.25). A dynamic
interplay between REST binding and histone modifications
was reported in a paper by Zheng et al. [28]. However,
most of the histone marks selected in this study (except
H3K27me3 and H3K36me3) did not show significant alter-
ations with REST binding there. Perhaps a different selec-
tion of histone modifications would have shown better

predictive ability of REST binding. This suggests that the
histone modifications sometimes seen in the vicinity of a
REST site are the consequence rather than the cause of
REST binding to DNA. The results for REST are in sharp
contrast to CTCF, where chromatin accessibility (DGF)
and histone marks substantially increase prediction accur-
acy in all cell types. The other three factors can more or
less be placed on a continuous line connecting CTCF to
GABP, USF2 and JunD, in this order. The main discrimin-
atory feature between these factors is the PWM score that
varies in terms of its predictive value from high for CTFC
to very low for JunD.

Conclusions
We presented a quantitative framework to investigate and
compare the role of sequence-intrinsic (tissue-invariant)
and cell-type specific chromatin features in the biological
processes that recruit TFs to their physiological target sites.
Surprisingly distinct feature importance landscapes were
observed for different TFs. The PWM score reflecting the
intrinsic affinity of a TF to DNA was a good predictor of in
vivo binding strength only for the two factors possessing an
information-rich recognition motif (CTCF and REST).

Fig. 6 Regression of multiple factors in different cell lines. Each scatter plot compares the prediction accuracy of regression models (SVM) trained with
two different feature sets. (a) TFBS vs all features, (b) histone marks vs all features, (c) TFBS vs histone marks and (d) TFBS vs DGF feature. “Histones”
includes the following seven marks: H3K4me2, H3K4me3, H4K20me1, H3K9ac, H3K27ac, H3K27me3, H3K36me3
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DGF came out high in terms of feature importance for all
TFs studied except REST. Optimal performance was
achieved with as few as three features suggesting high re-
dundancy among the different features tested. DNA struc-
tural features, repressive and gene body associated histone
marks were generally of little use in predicting in vivo bind-
ing site occupancy and strength. Our study highlights the
immense value of large functional genomics data sets such
as the ENCODE compendium for studying transcription
regulation and illustrates the feasibility and effectiveness of
pure in silico approaches in this field.
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