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Abstract

Background: Precision medicine requires the tight integration of clinical and molecular data. To this end, it is
mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput
genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center
(Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to
use existing clinical data for discovery research that can help the definition of precision medicine interventions
when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions
of Next Generation Sequencing data.

Results: We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes
with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows
retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We
report an evaluation of the query performance of our system on more than 11 million variants, showing that the
implemented solution scales linearly in terms of query time and disk space with the number of variants.

Conclusions: In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based
database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically
perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of
genomic variants and can be used to integrate heterogeneous genomic annotations.
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Background
Precision medicine requires to tightly couple phenotypic
and genotypic patient data [1], thus advocating for the
development of IT tools that enable deep joint investiga-
tions of the two data sources. The Informatics for
Integrating Biology and Beside (i2b2) system provides an
excellent framework to analyze clinical data for research
purposes [2, 3] and facilitates the implementation of pre-
cision medicine strategies [4]. Thanks to its modular
architecture based on open-source REST web services
and on the design of a simple but effective data
warehouse scheme, i2b2 is now very popular in aca-
demia and industry, and has been used as the basis

for many research projects, including for example
TRANSMART [5].
Built on a “hive” of multiple server-side software mod-

ules (“cells”) that communicate through their integrated
XML-based web services, the i2b2 platform consists of
several core and optional cells. Each cell either holds
data or a business tier. For example, the i2b2 web client
interface allows performing ad hoc queries in order to
find those patients having particular phenotypes described
by an integrated controlled vocabulary. Once a patient set
has been defined, data can be passed to one of the i2b2
plug-ins that implements specific analysis methods.
An interesting extension of the i2b2 capabilities is

the ability to efficiently handle, together with clinical
information, large-scale molecular data, and in particular
those produced by Next Generation Sequencing (NGS)
technologies. NGS technologies, able to read billions of
DNA fragments at once, cover a broad range of genomic,
transcriptomic and epigenomic applications allowing the
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study of genetic signals underlying phenotypic traits of in-
terests. Over the last few years, targeted re-sequencing has
become one of the most popular NGS genomic ap-
proaches due to its cost affordability [6]. In brief, it con-
sists of selectively sequencing genomic regions of interest
(e.g. genes), mapping the resulting DNA sequences to a
given genomic reference, and reporting the identified dif-
ferences, i.e. variants. The most exhaustive and common
targeted re-sequencing application is whole-exome, that
allows identifying variants over the entire set of known
human genes [7].
The increasing availability of NGS facilities and the

upcoming use of target re-sequencing technologies in
clinical practice will generate large data sets that need to
be properly integrated in software architectures able to
jointly manage phenotypic and genotypic data for preci-
sion medicine purposes. On the one hand, it is import-
ant to report the presence of variants that have an
established clinical meaning in the patients’ clinical re-
cords. On the other hand, it is also crucial to progres-
sively store the variants with unknown meaning for
future use and interpretation. A single whole-exome
analysis may generate tens of thousands of such variants,
which may need to be queried and retrieved, for ex-
ample, within a large-scale study. Storing and retrieving
this kind of data present a number of challenges. First,
variants need to be annotated using genomic knowledge-
bases necessary for their interpretation. Second, since
biomedical knowledge is steadily increasing, the data
model used for variant representation should be flexible
enough to support frequent updates and the introduc-
tion of new sources of biological annotations. Finally,
variant queries need to be fast and the overall data man-
agement process should scale efficiently due to the
growing number of experiments conducted.
Several approaches and frameworks have been devel-

oped with the aim to store, retrieve and analyze genomic
variants [8–13]. Among them we can distinguish those
based on relational databases [9, 11, 12] and Not-Only-
SQL (NoSQL) ones [8, 13].
NoSQL solutions, in particular, represent a group of

very interesting tools to store and retrieve very large
data sets [14] and have emerged in recent years due
to the rising need to handle “big data”, characterized
by properties such high volume, variability and vel-
ocity [15].
Genomic variants can be rightfully included in this

category. Volume and velocity are given by the high rate
at which variants are generated by the increasingly fast
and high throughput sequencing instruments. Variability
refers to the need to pre-process and evaluate variants
accordingly to different variant types (exon, splicing,
intergenic variants etc.), sequencing applications, and
diseases under study. Indeed, one may wish to use

different genomic knowledgebases (e.g. COSMIC data-
base for cancer related variants [16] and OMIM annota-
tions in case of inherited diseases [17]), or to evaluate
specific variant measures (e.g. allele frequencies in a
control sample). Furthermore, because several genomic
annotations fit only with a particular set of variant types,
this would lead to many missing data in a structured
data context (i.e. sparseness).
Even though efforts to standardize the way to report

genomic variant and related NGS measures have been
pursued [18, 19], variant annotation for genomic knowl-
edgebases depends on the specific application and is dif-
ficult to standardize. As a consequence, structured and
centralized relational databases are not the best choice
to deal with increasingly growing, heterogeneously anno-
tated genomic variants.
The flexible and distributed data model behind

NoSQL databases, on the contrary, is suitable to system-
atically store and retrieve genomic variants and their an-
notations coming from different and frequently updated
NGS analysis workflows. However, there is a tradeoff
between data model flexibility and query complexity:
NoSQL databases generally do not have a SQL-like
query language, and queries have to be pre-computed in
order to build the corresponding in-memory index
structures that allow for fast searches.
Notably, NoSQL databases have been used to manage

genomic data [8, 20], showing better performance than
relational databases both in terms of horizontal scalabil-
ity (i.e. adding more database instances) and computa-
tional time in data retrieval.
In their works, O’Connor B. et al. [8] and Wang S. et

al. [20] adopted HBase, a column-family NoSQL data-
base. Briefly, the underlying key-value data model [21]
allows retrieving values (columns) that belong to rows
by querying the related row-keys. Typically, one has to
build a number of column families equal to the number
of the desired queries. This leads to writing a significant
amount of code to manage the population of column
families and to ensure data consistency among them,
both in import and update phase.
CouchDB [22] is a NoSQL database that uses semi-

structured documents (JSON files) to handle data, a
RESTful programming interface and JavaScript to de-
fine queries that exploit the MapReduce paradigm. It
has been successfully adopted to deal with gene anno-
tations, drug-target interactions, and copy number
variants [23].
Here we present BigQ, an extension to the i2b2 frame-

work, implemented to handle genomic variants such as
single nucleotide variants (SNV) and short insertion and
deletions (indel) within their annotations. BigQ allows
the joint query of phenotype and genotype data by inte-
grating different technological layers including for the
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first time a NoSQL component into the i2b2 overall
architecture.
We chose CouchDB among the other NoSQL data-

bases for several reasons. First, the object-oriented na-
ture of JSON documents looks particularly appropriate
to manage different kinds of genomic variants and their
annotations. Second, the flexible schema of CouchDB al-
lows storing information on variants, that is potentially
heterogeneous, as JSON files. Third, queries are de-
signed by writing simple JavaScript functions using
MapReduce operations on JSON attributes, with the
corresponding results indexed for a fast data retrieval.
Notably, CouchDB automatically updates its indexes
when JSON documents are added, deleted or modified.
In particular, some features of CouchDB made it prefera-
ble among the other document-based NoSQL data
stores, such as MongoDB: the embedded MapReduce
engine, its REST-ful architecture and natively version-
aware document management.
The CouchDB REST-ful programming interface has

been used to enable communication between the variant
database and the i2b2 framework. We extended i2b2
with two main components: i) a new i2b2 cell that man-
ages HTTP requests to CouchDB and ii) a plug-in based
on a visual programming paradigm that allows dynamic-
ally performing queries on clinical and genomic data.
The i2b2 extension is also provided with an Extraction,
Transformation and Loading (ETL) middleware that,
starting from raw variant files in a standard format, up-
loads genomic variants, including a pre-defined set of
annotations, in CouchDB. In the following we describe
the technical aspects of this extension, and an evaluation
of its performance on exome data from the 1000 Genomes
Projects (1KGP) [24].

Implementation
BigQ consists of three main components: BigQ-ETL, to
annotate and import variants in CouchDB; BigQ-cell,
that holds the business logic to query CouchDB; and
BigQ-plugin to query genomic data belonging to a pa-
tient cohort retrieved from the i2b2 data warehouse.
Figure 1 shows the system components and their
inter-relationships.

The BigQ-ETL
Accordingly to the i2b2 policy, data entry is not
demanded to the final user; therefore this module has
been developed as a back-end tool.
BigQ-ETL takes genomic variants in the Variant

Calling Format (VCF) [18] as input, and uses ANNOVAR
[25] to annotate them. ANNOVAR allows to easily
annotating a set of variants using several sources of
information on transcripts, genes, gene-based func-
tions (e.g. non-synonymous, nonsense etc.), evolutionary

conservation scores, public variant databases such as
dbSNP [26] and many other -omics resources [27, 28].
In particular, BigQ-ETL implements the table_annovar

script, able to annotate variants both on standard and
customized genomic tracks.
The data import process only requires providing the

VCF files and some basic information, such as the i2b2
identification codes of the patients whose variants are
contained in the VCF files. Once these data are available,
the process is completely automatic: the files are sent to
the server entrusted with the functional annotation
process, where the table_annovar script is executed.
Variants are enriched with transcripts, gene-based func-
tions, 1KGP variant frequencies and the whole dbNSFP
[28] dataset including variant scores given by several
prediction tools such as PolyPhen-2 [29] and SIFT [30].
The output of ANNOVAR is then used to create one

JSON document for each variant belonging to a single
patient. JSON is an open standard format used to trans-
mit data objects consisting of attribute-value pairs. In
our case, the set of possible attributes consist of data
coming from the original VCF file, and of the functional
annotations added by ANNOVAR (see Additional file 1:
Table S1). Finally, each document is associated with a
unique universal identifier (UUID) and sent to CouchDB.
Notably, different types of variants may be represented by
different data structures. For example, a deep intergenic
variant may not have any gene associated with it, or a syn-
onymous coding variant does not hold data about predic-
tion scores such as PolyPhen-2 and SIFT (suitable only for
non-synonymous variants). We have therefore developed
an extensible object-oriented data structure, written in
Java, able to model different kind of variants and annota-
tions. One may want to add a new genomic track, or may
not be interested in using others. Therefore, each variant
type is modeled and treated individually, and holds only
the needed attributes (see Fig. 2).
Alongside with the JSON documents, BigQ-ETL gen-

erates a set of design documents and sends them to
CouchDB. These documents describe the queries (called
views) that can be executed on the database.
Views are defined using JavaScript functions that spe-

cify attribute-value constraints corresponding to the
query requirements, and that implement the map and
reduce functions according to the MapReduce paradigm.
Map functions are called once on each document: the
document can be skipped (if it does not respect the con-
strain) or can be transformed (emit) into one or more
view rows as key/value pairs. View rows are inserted into
a B-tree storage engine and sorted by key (indexing):
lookups by key or key range are therefore extremely effi-
cient, with O(log N) complexity. Since map functions
are applied to each document in isolation, computation
can be highly parallelized within and across nodes where
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the database is distributed. Reduce functions can be op-
tionally used in combination with map functions in
order to report data aggregates grouping by row keys,
such as counting the number of rows within a view or to
calculate averages on related values.
We have chosen to specify a design document, and

consequently an index, for all the possible attributes de-
scribing variants (see Additional file 1: Table S1). This

choice allows us to perform any complex query as the
combination of simple ones. It has to be noted that
CouchDB flexibility allows building a view an all JSON
documents despite their heterogeneity.
The whole data import process, which is potentially

time and resource consuming, has been designed to be
easily run in parallel, by splitting VCF files in batches,
on a cloud-based architecture.

Fig. 2 Example of annotated variants in JSON format. Two variants, represented in VCF format, are identified by standard attributes (reference
genome, chromosome, variant position and nucleotide changes). The annotation step finds out that one variant falls in an exon causing an
amino acid substitution at the protein level (non-synonymous) while the other is located in a transcript splicing site. The two variants generate
two different JSON objects, characterized by different attributes. Differences between JSONs are highlighted in bold

Fig. 1 System components and their interrelationships. BigQ-ETL requires the user to provide one or more VCF files that are functionally
annotated with ANNOVAR and used to create one JSON document for each variant belonging to each patient; these JSONs are stored in
CouchDB to be queried by the BiqQ-Cell. On the client-side, the BigQ-plugin allows the user to create a genetic query with drag-and-drop interactions
within the i2b2 Webclient; the plugin then communicates with the cell to run the query and collect the results that are shown to the user
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Interval queries in BigQ
A genomic interval identifies a variant by its start and
end positions with respect to the reference genome.
Genome browsers [31, 32] and genomic annotation tools
[25, 33, 34] are based on a particular binning scheme
[35, 36] in order to index genomic intervals and allow
for a fast search of overlapping features given a query
interval.
We have implemented a similar approach in CouchDB

that fits with its query logic.
Each chromosome has been divided into a predefined

set of hierarchical bins (called “tree”) depending on the
specific chromosome length. The value 0 or 1 has been
assigned to each bin, depending on being the left or
right child bin within the tree, respectively (with the ex-
ception of the root bin, encoded by 0). A code is then
assigned to each genomic feature (i.e. variants), corre-
sponding to the ordered series of 0s and 1s given by
navigating the binning tree from the root to the smallest
bin that entirely contains the variant (see Fig. 3). The
bin code is then represented as a JSON attribute, whose
value is an array of 0s and 1s.

We implemented a CouchDB view with row keys com-
posed by patient id, chromosome and bin code. Given an
interval query, the search space is calculated a priori. It
consists of the smallest containing bin for the interval
query and its overlapping bins both for the upper and
lower part of the binning tree. The view is therefore
searched for the variants within these bins and two add-
itional views are used to filter out variants that, even if
located in the overlapping bins, do not overlap the inter-
val query (see Fig. 3).

The BigQ-cell
One of the most significant features of i2b2 is its loosely
coupled structure, in which a set of web services (called
cells) concurs to create the i2b2 server side core (called
hive). The schema of exposed data is defined by the i2b2
XML-based messaging standard. This type of architec-
ture lends itself easily to be updated and enhanced with
new features [37, 38]. The BigQ-cell is a novel i2b2 cell
we developed that enables the communication with
CouchDB in order to execute queries on genetic data.
The cell has been implemented in Java and uses the
LightCouch library [39] to manage the communication
with the database.
The cell extracts all the parameters required to exe-

cute a query from the XML file that it takes as its input:

� The basic object exchanged is a set of variants’
UUIDs grouped by patient, called dataIn.

� The logic of the query: “add” or “filter”. If “add” is
chosen, the UUIDs returned by CouchDB are added
to dataIn and sent back in the cell response; if
“filter” is chosen, only the UUIDs belonging to both
sets are sent back.

� The query type that identifies the variant fields
(see Additional file 1: Table S1) on which the query
should be executed. Examples of allowed query
types are: gene for gene names, exonicFunc for
exonic functions and PolyPhenScore for the
PolyPhen-2 score.

� The query details, the set of values required to
perform the specific type of query. For example: the
list of gene names for the gene query, the list of
exonic functions for the exonicFunc query and the
endpoints of the score interval for the PolyPhenScore
query.

Once these parameters are extracted, the cell accesses
the CouchDB view associated with the specific query
type according to the query details; this operation is per-
formed for each patient in the dataIn set. The aggre-
gated results from the database, consisting of a new set
of variants’ UUIDs grouped by patient, is combined with
dataIn according to the query logic to build the output

Fig. 3 The simplified binning scheme and search strategy
implemented in CouchDB. For the genomic feature A, the smallest
containing bin is the one reached by navigating the tree in the
following way: 0,0,1,0,0 (in red). For Feature B and Feature U the
smallest bins are (0,1) and (0,0,1,1,1) respectively. Given the interval
query Q, its smallest containing bin is the one coded by (0,0,1).
When searching for genomic features within the corresponding
overlapping bins, both for the lower and upper part of the tree,
genomic feature U would also be reported: in fact, despite overlapping
with one of the searched bins, it does not overlap with Q. Therefore,
two more queries (views) are performed in order to remove the
non-overlapping elements: the first adds the start position of the
genomic feature to the view keys (patient id, chromosome, bin, start)
while the second one adds the stop position. In this example, genomic
feature U would be removed from the query result set because its start
position is greater than the end one of Q
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object of the cell, called dataOut. Finally, the BigQ-cell
builds the response XML message encoding the dataOut
object and sends it back to the client.

The BigQ-plugin
The BigQ plugin for the i2b2 Webclient has been specif-
ically developed to communicate with the BigQ-cell.
This plugin allows users to run genetic queries within
i2b2, exploiting the patient sets previously extracted with
phenotype queries. i2b2.
The main feature of BigQ-plugin, when compared to

other Webclient plugins, is that its interface is based on
visual programming. The user graphically builds queries
with drag-and-drop interactions; feedback and results
are presented within the same workspace in order to
provide a more consistent experience. The plugin inter-
face exploits the mxGraph Javascript libraries [40].
Each query exposed by the BigQ-cell is represented by

a block that can be dragged into the workspace; the final
query is made up by the sequence different blocks
connected to each other. Besides standard blocks (which

run queries in the cell), BigQ-plugin also provides the
Patient Result Set Drop (PRS Drop) block, an input
block to import a patient set in the workspace, and the
Patient Result Set Table (PRS Table) block, an output
block that shows the patients that have at least one vari-
ant that matches the query.
A typical interaction with the plugin starts with the

user generating a patient set with the i2b2 Query Tool,
using the data stored in the data warehouse; this allows
extracting the patients corresponding to the phenotype
of interest. Afterwards, moving to BigQ (in the plugins
section) the user is presented with a blank workspace,
where he/she can define the query as a sequence of
blocks. Sequences typically start with the PRS Drop
block that imports a patient set (with a drag-and-drop
interaction) and makes it available to the blocks that are
directly connected to it. Double-clicking on the query
blocks brings up a form to specify their query logic and
query details. Query blocks receive their dataIn from
the upstream blocks, call the cell to run the query and
return the dataOut generated by the cell to the

Fig. 4 Screenshot of the BigQ-plugin with user interactions highlighted. (1) The user creates a query by dragging and dropping different blocks
inside the plugin’s workspace, with each block representing a query on a single attribute that will be performed by the BigQ-cell. The query is
defined by connecting the blocks to each other. (2) A patient set, previously created with a standard i2b2 query, is dragged and dropped on the
Patient Result Set Drop (PRS Drop) block to define the patients whose exomes will be queried. (3) By double-clicking the standard query blocks
(in yellow) it is possible to specify their query logic and query parameters. (4) The query process can start and each block executes its
query sequentially, calling the BigQ-cell. (5) When all blocks have performed their query, the user can visualize the results by double-clicking the Patient
Result Set Table (PRS Table) block
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downstream blocks. Finally the PRS Table block is added
to show the result of the query. An example query is
shown in Fig. 4.

Results and discussion
To test our approach for integrating genetic queries within
the i2b2 framework, we have performed a “stress test” on
the system by submitting increasingly large Whole Exome

Sequencing (WES) datasets of genomic variants. WES
data were retrieved from the 1000 Genomes Project
phase1 integrated release. We have tested our system on
variant sets coming from 10, 20, 50, 100, 200 and 500
exomes. The average number of variants per exome, and
thereby of the JSON documents added to the database for
each individual, is about 23,000 for a maximum of
11,641,862 genomic variants in the case of 500 exomes.

Fig. 5 Importing time performances and disk space occupancy on a single machine. a Time performances for annotation, JSON conversion and
importing of genomic variants belonging to 10,20,50,100,200,500 whole-exome samples into CouchDB, installed on a single Amazon AWS
machine. b Disk space occupancy in relation to the whole-exome data growth

Fig. 6 Query time performances. Query times (Q1, Q2 and Q3) plotted against the increasing numbers of individuals (i.e. variants) in the database
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For the importing phase, BigQ-ETL has been tested on
8 Amazon EC2 [41] virtual machines, in particular,
c3.2xlarge instances [42], a medium-high level server with
8 virtual CPUs and 15GB RAM. CouchDB was initially in-
stalled on a single c3.2xlarge instance. Total time to
complete the ANNOVAR run, generating the JSON docu-
ments and uploading them for 500 exomes was approxi-
mately one hour and 20 min. The most computationally
demanding operation in the data import process was
indexing all the views in the database, with an average
time of 1 min and 10 s per exome. Figure 5 reports disk
space occupancy and importing time performances for an-
notation and indexing phase at the different dataset sizes.
For each data set we tested three types of queries that

are commonly used by researchers to identify patients
with possible variants of interest. The first query (Q1)
searches among a limited patient set (5) those having a
genomic variant with a given dbSNP id. The second
query (Q2) is similar to Q1 with the difference that the
search for the dbSNP id is performed on the whole pa-
tient dataset. The third query (Q3) aims at identifying
patients that have variants either introducing a prema-
ture stop codon or non-synonymous variants with a high
damaging score (according to PolyPhen-2) in a given
gene and considering the whole patient dataset.

For each test we measured the average time necessary
to run all three queries. Figure 6 and Table 1 show the
results obtained, indicating that the query time is inde-
pendent of the size of the database in the case of Q1,
while it linearly scales with the size of the database in
Q2 and Q3. It is interesting to note that with the pro-
posed computational infrastructure the query time is
almost instantaneous for the user in the case of Q1
(about 0.06 s), while querying more than 11 million vari-
ants (500 exomes) takes about 34 s. Since query flexibil-
ity is not provided by CouchDB, we have implemented a
strategy to combine together the results from simple
queries. As a consequence, a complex query (e.g. Q3)
involving more than one variant attribute results in a
longer query time due to the number of views to be
searched (one for each attribute) and the add and/or
filter operations to be performed in backend.
We therefore tried to perform query Q3 by building up

two dedicated views, i.e. by creating JavaScript map func-
tions that index variants basing on patient id, gene, exonic
function and PolyPhen-2 score. In particular, the first view
(Q3a) allows to dynamically set the gene name and the
PolyPhen-2 threshold while for the second one (Q3b) the
gene name and the PolyPhen-2 score are set a priori. As
expected, query time decreased to about 24 and 13 s on
500 exomes for Q3a and Q3b respectively (see Fig. 7).
We also tested BigQ by using CouchDB in a

distributed environment on the cloud. In particular,
we have installed an elastic cluster version of CouchDB
(BigCouch) on a 6 c3.2xlarge AWS machine. The distrib-
uted database was set up as follows: 6 shards (Q = 6), no
redundant copies (N = 1), minimum read and write
quorum (R = 1, W = 1); see Additional file 1 for details on
BigCouch tuning parameters.
We therefore performed the same operations de-

scribed above, from data import to the query test. We

Table 1 Disk space usage and database queries response times
for a growing number of exomes

# Exomes Size (GB) Q1 (ms) Q2 (ms) Q3 (ms)

10 1,1 669 825,6 3440,2

20 2,5 678,8 1065,4 3647,2

50 7,9 554,4 1745,2 6462

100 19 680,4 2956,2 9753,2

200 48 691 5129,4 15595,8

500 160 678,4 11897 34836,8

Fig. 7 Query time performances using dedicated views. Time performance of the Q3 query and of those using dedicated views (Q3a and Q3b)
plotted against the increasing numbers of individuals (i.e. variants) in the database
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found out that the computational time during import
phase is reduced thanks to horizontal scaling: the view
creation phase for the 500 exomes decreased from 9 h
and 50 min (using a single node) to 1 h and 22 min (see
Fig. 8).
Interestingly, we noted that horizontal scaling de-

grades performances on data retrieval (see Additional
file 1: Figure S1), in particular for query Q3 if exe-
cuted using the flexible schema that combines differ-
ent queries, while no significant differences were
observed when using the corresponding dedicated
view (see Fig. 9).
This behavior can be explained by the BigCouch

data sharding: each query needs to retrieve pieces of
data of interest that are distributed among instances,
to assemble them together and to return them to

the client, resulting in slower performance especially
when the number of sequential queries increases. As
a consequence, the dedicated views strategy is even
more necessary in a distributed CouchDB scenario.
Therefore, we have planned to integrate BigQ-plugin
with an additional functionality that allows to save a
composed query by blocks, create ad hoc views and
retrieve results in a faster way, improving system usability.
Because each research group tends to standardize the way
it searches for variants of interest, we believe this ap-
proach is valuable.
Furthermore we intend to explore the fine-tuning fea-

tures available for BigCouch. These tunings, together
with an optimal number of nodes in the cluster, could
bring about a considerable improvement in the index-
ing/query performance of the system.

Fig. 8 Importing time performances on a distributed environment. Time performance for annotation, JSON conversion and importing of genomic
variants belonging to 10,20,50,100, 200, 500 whole-exome samples into CouchDB, installed on a distributed environment consisting of six Amazon
AWS machines (c3.2xlarge)

Fig. 9 Query time performances on a distributed environment. Time performance of Q3, Q3a and Q3b using CouchDB in a
distributed environment
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Conclusions
In this paper we have described a system designed to
deal with many genomic variants coming from heteroge-
neous and frequent NGS analysis, performed in a hos-
pital environment where clinical research data are
managed by the i2b2 framework.
The integration of patient clinical phenotype and gen-

omic variant profiles is a two-step process: first patient
cohorts are generated by querying clinical terms using
the i2b2 built-in functionalities and second, the cohort is
uploaded to the BigQ-plugin in order to retrieve the cor-
responding genomic variants of interest.
Variants are annotated with useful biological data by

ANNOVAR software and stored in the document-based
NoSQL CouchDB system. The data are then managed
by a dedicated i2b2 cell and a visual-programming plu-
gin for easily performing queries.
The system has been conceived also to deal with vari-

ants of unknown clinical meaning and generated by dif-
ferent NGS applications, possibly characterized by useful
but heterogeneous biological data. For this reason, the
data model is flexible, and adherent to the contents of
ANNOVAR documents; the database can thus be easily
updated with new versions of the variant annotations.
The query system has very promising performance,

showing to scale well with the database volume, making
it feasible to jointly query clinical and genetic data. We
note that the choice of CouchDB allows naturally relying
on cloud-based implementations on elastic clusters, such
as the BigCouch system. Despite i2b2 instances are usu-
ally installed locally (relying on the hospital hardware in-
frastructure) and not provided as a Software as a Service
module, one could in fact use Amazon AWS products to
build its own i2b2 infrastructure on the cloud.
In the future we will compare our implementations to

other state of the art extensions of i2b2 and TRANS-
MART developed to deal with NGS data, and we will
work on other plugins, in order to better enable the full
exploitation of NGS data within the i2b2 infrastructure.

Availability and requirements

� Project name: BigQ.
� Project home page: http://www.biomeris.com/

index.php/en/tasks/bigq-ngs-en.
� Operating system(s): Linux.
� Programming language: Java, Perl.
� License: GNU General Public License.

Additional file

Additional file 1: This file contains supplementary tables, figures
and BigCouch tuning parameters.(DOCX 43 kb)

Abbreviations
i2b2: informatics for integrating biology and beside; NGS: next generation
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