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Abstract

Background: The total number of known three-dimensional protein structures is rapidly increasing. Consequently,
the need for fast structural search against complete databases without a significant loss of accuracy is increasingly
demanding. Recently, TopSearch, an ultra-fast method for finding rigid structural relationships between a query
structure and the complete Protein Data Bank (PDB), at the multi-chain level, has been released. However,
comparable accurate flexible structural aligners to perform efficient whole database searches of multi-domain
proteins are not yet available. The availability of such a tool is critical for a sustainable boosting of biological
discovery.

Results: Here we report on the development of a new method for the fast and flexible comparison of protein
structure chains. The method relies on the calculation of 2D matrices containing a description of the three-
dimensional arrangement of secondary structure elements (angles and distances). The comparison involves the
matching of an ensemble of substructures through a nested-two-steps dynamic programming algorithm. The
unique features of this new approach are the integration and trade-off balancing of the following: 1) speed, 2)
accuracy and 3) global and semiglobal flexible structure alignment by integration of local substructure matching.
The comparison, and matching with competitive accuracy, of one medium sized (250-aa) query structure against
the complete PDB database (216,322 protein chains) takes about 8 min using an average desktop computer. The
method is at least 2-3 orders of magnitude faster than other tested tools with similar accuracy. We validate the
performance of the method for fold and superfamily assignment in a large benchmark set of protein structures.
We finally provide a series of examples to illustrate the usefulness of this method and its application in biological
discovery.

Conclusions: The method is able to detect partial structure matching, rigid body shifts, conformational changes
and tolerates substantial structural variation arising from insertions, deletions and sequence divergence, as well as
structural convergence of unrelated proteins.
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Background

Structural comparison between proteins is a fundamen-
tal and common practice in structural biology with many
applications, such as the identification of new domains,
the classification into structural families and the detec-
tion of evolutionary relationships between protein struc-
tures that cannot be found by sequence comparisons.
For example, the homology between prokaryotic and
eukaryotic cytoskeletal filaments (FtsZ/Tubulin and
MreB/Actin) or the paralogy between proteins such as
hemoglobin and myoglobin where only revealed once
the 3D structures of these proteins were solved and
compared [1, 2]. Since the determination of the first
structures in the 1970s to the present day, the number
of solved protein structures in the Protein Data Bank
(PDB) has continued to grow at an exponential rate,
with more than one hundred thousand structures avail-
able today. To facilitate the organization and analysis of
this large amount of information, different structure
comparison methods and tools have been developed [3].
However, the rise in number of known structures makes
the comparison of query structures against the database
increasingly costly (both for time and computational re-
quirements) using existing tools.

Depending on the representation of proteins, current
structural alignment methods use two main approaches:
methods based at the level of residues or Ca atoms
(DALIL Structal, TopMatch, MAMMOTH, CE, MUS-
TANG, FATCAT, TM-align) [4-11] or based on
secondary structure representations (VAST, SSAP,
GANGSTA+, QP tableau search) [12—-15]. One of the
major advantages of methods based on secondary struc-
ture representations is that they are generally faster, as
there is typically at least one order of magnitude fewer
secondary structure elements than residues within a
protein. However, residue-based methods are generally
more accurate [16].

Structure comparison methods are increasingly suc-
cessful at detecting more divergent relationships [3]. Sig-
nificant improvements have also been achieved in terms
of speed when searching against large databases [17].
Despite this success, current structural comparison tools
have a few major drawbacks that limit their utility for
detecting cases of remote homology where protein struc-
tures might have diverged considerably. First, they treat
proteins as rigid bodies and cannot accommodate the
large structural variations observed over long evolution-
ary divergence, for example, the relationship between
the nucleoporins and vesicle coats [18]. Additional struc-
tural variations that might be due to protein flexibility or
allosteric transitions are difficult to detect with the
current methods. Finally, they are usually restricted to
the comparison of individual domains and do not consider
multi-domain proteins. How many distant structural
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relationships remain undetected because the tools are not
sensitive enough? Our goal was to detect protein structure
similarities that are beyond the reach of current tools
based on rigid body superposition and, at the same time,
to be able to do it efficiently and with competitive
accuracy.

To that end, we have developed an efficient flexible
aligner tool to compare protein structures based on
matrices that contain a simple description of the geo-
metrical arrangement of secondary structure elements.
Arthur Lesk was the first to describe a tabular represen-
tation, which comprises the information about the rela-
tive orientation of the elements of secondary structure
(interaxial angle) using a coarse-grained and discrete
double quadrant codification [19]. The concept is that
the sequential order of secondary structure elements
and the geometry of interacting pairs capture the es-
sence of the protein fold. The secondary structure ele-
ments and their respective angles and distances can be
encoded in a matrix. The secondary structure elements
are recorded in order of appearance along the main di-
agonal of the matrix. Each off-diagonal position contains
the angles and distances between the pairs of secondary
structure elements. The comparison of these matrices al-
lows a faster structural matching than when using a pro-
tein representation at the residue/atomic level. However,
secondary structure geometry matrices comparison is an
NP-hard problem. Various implementations to solve this
problem have been presented, including quadratic and
linear integer programming [15, 20, 21]. Those methods
are very precise at extracting maximally similar sub-
matrices, but this is at the expense of speed when
comparing against a large number of matrices such as
the complete PDB database. In 2008, Konagurthu pro-
posed the TableauSearch method to detect similarities
between matrices using two steps of dynamic program-
ming [20]. TableauSearch is faster than previous
methods, but this comes at the expense of accuracy and
of lacking the ability to find local matches as compared
to global ones [15]. This method is not limited to elem-
ent pairs that are in contact and uses the scheme previ-
ously proposed by Lesk described above [19].

We present and release here a new computer applica-
tion called MOMA (from MOrphing & MAtching). This
tool relies on a new algorithm that incorporates several
innovations, which are: 1) it considers the continuous
value of the angles instead of the discrete and coarse-
grained quadrant codification proposed by Lesk and
implemented in TableauSearch; 2) the incorporation
of a user-defined maximum distance cutoff to con-
sider contacts between secondary structure elements,
3) a modified two-step dynamic programming algo-
rithm that allows for the maximization of the rigid
union of several local and compatible structural
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matches and 4) a new procedure to solve the integra-
tion of several rigid and globally incompatible local
matches into a flexible and global solution. This new
algorithm, as implemented in MOMA computer
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application, results in a fully automated and highly ef-
ficient global flexible structural aligner, which is able
to find structural similarity between distantly related
proteins with high accuracy.
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(See figure on previous page.)

Fig. 1 Flowchart of the method as implemented in MOMA. a Example of structure of MarA (PDB code 1bl0) and the matrix representation of its
folding pattern. The relative orientation of any two secondary structural elements (for example, A4 and A6 helices) is specified by the angle (w)
between the vectors along their axes (left bottom of the matrix). This is recorded only for those SSE pairs found in close proximity (d < D), as
measured by the distance (d) between midpoints of the vectors (upper right of the matrix). b These matrices are built for the query (1BLO chain A)
and the target (1AIH chain A) structures. After that, row-wise matrices containing all possible SSE pairs in each structure are also built. Query and target
proteins render matrices of [M, M-1] and [N, N-1] pairs, where M and N correspond to the total number of SSEs found in the query and
target structures, respectively. ¢ A first step of global or semi-global dynamic programming (DP) algorithm is executed to build DP
matrices for each query row against each target row, thus generating a total of MxN DP matrices. In this step, scoring rules and restraints
based on angular and distance information of all SSE pairs in each structure are used (see Methods for details). From each DP matrix,
only the maximum score value is selected and recorded into a new scoring matrix that is going to be used in a second and final step
of a dynamic programming algorithm. In the case of a global alignment, this value is obtained from the bottom right cell of the DP
matrix. In the case of the semi-global alignment, this value is obtained from the most right column or the most bottom row of the DP
matrix. d A local dynamic programming algorithm and the previously built scoring matrix are now used to align the secondary structure
elements of the query and the target structures. e Unaligned SSE elements from the query and target structures are removed from the
initial 2D matrices, thus rendering two matrices of identical dimensions, which can now be compared directly. A delta sub-matrix is built and from it a
global matching score calculated (see Methods for details). f Finally, a new algorithm (¥) is used to infer the list of all incompatible rigid local matches
(blocks), which are independently superposed with the Kabsch algorithm. In this particular and simple example only one local match or block is found.

Details of the algorithm for finding local matching blocks are provided as Supplemental Material (Additional file 1: Figure S1). The resulting
superposition is represented with aligned elements in red (query) and orange (target). Residues not aligned are displayed in grey color

Results and discussion

Overview of the new method

This article describes a fully automated and highly effi-
cient method for the flexible comparison of two protein
structure chains. The method relies on the matching of
secondary structure elements between the protein
chains, based on a two-step dynamic programming algo-
rithm that combines local and global matching proce-
dures. The results obtained when applying this method
consist on a single and global structural alignment that
integrates all rigid local matches found between the two
input protein structures. A general overview of the
method is provided in Fig. 1. A detailed description of
each step of the method is provided in Methods section.

Calibration of parameter values

The results of our method, as implemented in MOMA,
strongly depend on the value of three parameters, which
are the constant that limits the score calculated from the
angular difference (C) and the gap-opening penalties for
the two steps of dynamic programming (gl and g2). By
optimization of the different combinations of these pa-
rameters, we found that the best results were obtained
with a C constant value of 45 and a gap-opening penalty
of —4 for both steps of dynamic programming (Additional
file 1: Table S1). With these parameter values, only 2 out
of 100 alignments from HOMSTRAD database have a QS
index smaller or equal to 0.5 and the average QS index
was 0.9436 (Additional file 1: Table S2). The failure of
MOMA to correctly align the corresponding SSE pairs in
these two cases is due to an inaccurate assignment of
secondary structure elements by DSSP computer program.
In some cases, DSSP does not assign the exact start and
end points of SSEs. In other cases, long helices and

strands with some bending are split into two or more
non-contiguous SSEs [21].

Another relevant parameter in the matrix comparison
step of our method is the distance cutoff (D) used to de-
fine SSE pairs in contact [15]. We tested different values
of distance thresholds in the HOMSTRAD set to define
the best performing one (Additional file 1: Figure S1 and
Table S1). If the distance cutoff value was smaller or
equal than 12 A, several matrices could not be aligned
because too few SSE pairs were considered (ie. few con-
tacts are found near the main diagonal of the matrix).
Most of the information required to identify a folding
pattern is contained in adjacent positions near the main
diagonal in the matrices [22].

On the other hand, if the distance cutoff was set to
values greater than 20 A, the average QS index de-
creased (Additional file 1: Table S1). Therefore, a value
of 20 A was finally used as the maximum distance cutoff
to define a contact between two SSEs.

After fixing the previous parameter values, and to
evaluate if the raw score reported by MOMA was better
than the relative similarity score, we then carried out
searches using the seven most common folds as a query
against a subset of 19,602 domains from ASTRAL 2.03
(95% sequence-identity cutoff; for details see Methods).
The ROC curve analysis of these two scores showed that
the relative similarity is slightly better than the raw score
(Additional file 1: Figure S2 and Table S3). Thus, we
defined relative similarity as the measure to be used for
fold assignment by default in our method, as imple-
mented in MOMA.

Testing the new method
As a first test of our method with the fixed parameter
values described above, we used as a query the seven
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most common folds and searched against the 19,602 do-
mains in ASTRAL 95 % sequence identity dataset. ROC
analysis of structure similarity matching results shows
that, irrespectively of the query, the method has an ex-
cellent performance in terms of accuracy at the fold,
family and superfamily levels (Additional file 1: Table
S3). Execution time increases exponentially with the
total number of SSE elements assigned in the structures
(Additional file 1: Figure S4).

Benchmarking with other methods

The representative set of 100 protein queries was com-
pared against the ASTRAL 2.03 40 % sequence identity
dataset (which contains a total of 11,121 domains; for
details see Methods) with SHEBA, YAKUSA, QP tableau
search, GANGSTA+, Structal, TopMatch and MOMA
computer programs. The performance of these methods
was assessed by ROC curve analysis based on the nor-
malized scores reported by each of them and adopting
the SCOP classification as the gold standard [23]. We
also measured the execution time required by these
computer programs to perform a search against the full
ASTRAL dataset of 11,121 domains with the 100 query
structures.

In terms of AUC and maximum accuracy values, both
at the fold and superfamily levels, Structal, TopMatch
and MOMA are the best performing methods, followed
by GANGSTA+, QP tableau search, SHEBA and Yakusa
(Table 1; Additional file 1: Figure S3). In terms of accur-
acy, at the fold and superfamily levels, MOMA has the
best performance among methods that use a geometric
secondary structure representation of 3D protein struc-
ture such as QP tableau search and GANGSTA+, or
when compared to currently the fastest methods for 3D
structure matching such as YAKUSA and SHEBA.
MOMA requires a variable amount of time to complete
the search, which depends on the number of SSEs
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present in the matrix (Additional file 1: Figure S4), but
in this large benchmark set MOMA is much faster than
all tested methods (at least by one or two-three orders
of magnitude faster than most of the tested methods)
(Table 1).

A detailed analysis of ROC curves reveals that SHEBA
is a more specific classifier than MOMA, GANGSTA +
and QP tableau search, exhibiting a very low rate of false
positives at the fold and superfamily levels. However,
these methods have a higher sensitivity when compared
to SHEBA. GANGSTA+ has an excellent performance
and is better than QP tableau to search for proteins with
the same fold, but QP tableau search is better than
GANSGTA+ at a rate of false positives >0.6 for the
superfamily level.

At the fold level, Yakusa is always worst than SHEBA,
QP tableau search, GANGSTA+ and MOMA. However,
Yakusa has a slight advantage than SHEBA at a rate of
false positives >0.5 for the superfamily level.

The statistical analysis of the AUC curves reveals that
the difference observed in the performance of MOMA
with other computer programs is statistical significant at
the 95 % confidence level (Additional file 1: Table S4).

As for the running time of each method, MOMA is
the fastest of the methods tested. For example, it takes
only 8 min and 28 s to search the 100 queries against
the whole ASTRAL 40 %, while all other methods take
more than 45 min, hours or even days of execution time
(Table 1). We note that Structal, GANGSTA+, QP
tableau search, and SHEBA are infeasible to run queries
on very large datasets, such as the PDB database, which
was one of the goals that motivated us to develop this
method. Although QP tableau search can calculate the
exact solution of the comparison of two matrices and
GANGSTA+ can generate non-sequential protein struc-
ture alignments based in SSEs, MOMA has a better per-
formance and is much faster than these two methods.

Table 1 Performance benchmark analysis of MOMA with different methods

*

Methods AUC ACC “fo tp time

Fold Superfamily Fold Superfamily Fold Superfamily Fold Superfamily
Structal 0.956 0.969 0.902 0919 0.076 0.060 0.880 0.898 10d 21h (1,842x)
TopMatch 0.955 0.974 0.883 0911 0.121 0.069 0.887 0.891 2d (339%)
MOMA 0.940 0.956 0.872 0.889 0.139 0.113 0.884 0.891 8m 28s (1x)
GANGSTA+ 0916 0911 0.845 0.851 0.101 0.058 0.791 0.761 5d 6h 49m (895x)
QP tableau search 0.877 0918 0.791 0.831 0224 0.188 0.805 0.850 2d 7h 27m (391x)
SHEBA 0.870 0.889 0.841 0.875 0.052 0.042 0.734 0.793 6h 51m (48x)
FATCAT flexible 0.837 0911 0.743 0.825 0.220 0211 0.706 0.862 27d 2h 38m (4,614x)
YAKUSA 0.790 0.858 0.727 0.794 0.155 0.088 0.609 0677 48m (5.7x)

Area under ROC curve (AUC), maximal accuracy (ACC), false positive (fp) and true positive (tp) rates for each method are reported ("these values are calculated at
the same threshold that gives the maximum accuracy reported as ACC). The execution time needed to compare the 100 queries against the 11,121 domains in
the ASTRAL SCOP 40% sequence identity dataset is shown in the last column of the table. Execution times are reported in seconds (s), minutes (m), hours (h) and
days (d) (in parenthesis, the speed gain factor of MOMA when compared to other methods is displayed, where “x” means number of times faster)
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Biological applications

Rigid body shift caused by a rearrangement of domains

A well-known case that illustrates an example of rigid
body movement between two structural domains is
provided by the comparison of structures of calmodulin
with and without Ca** ion (PDB codes and 2bbm and
1cfc, respectively). Both structures have 4 EF-hands,
which consist of a helix-loop-helix motif that interact
with Ca®*and are organized into two distinct globular
domains (N-terminal and C-terminal domains) [24].
These two domains are connected by a linker that is
unstructured. This specific case is difficult to align due
to the flexibility of the 6 loops and of the central linker.
In the calmodulin-Ca**structure, the two calcium-
binding domains are wrapped around a binding peptide
in a “close” conformation while in the Ca®'free struc-
ture, a rotation around the axis of the linker leaves the
two domains in an “open” conformation. Other flexible
aligners such as Flexprot [25] and FATCAT [10],
required the introduction of four or more rigid-body
movements (twists) around pivot points (hinges) to
obtain a good superposition of these two structures. In
a single step, MOMA is able to automatically detect
the conserved N-terminal and C-terminal domains, as
shown in the matrix alignment, despite the different
relative orientation of the two domains (Fig. 2).

Simple but significant structural rearrangement

The case of two functionally unrelated proteins illus-
trates the capacity of MOMA to obtain the global align-
ment of two structurally similar domains whose relative
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orientation is not conserved. The putative oxidoreduc-
tase from Pseudomonas putida (PDB code 316d) and the
human Cytokine-Like Nuclear Factor N-Pac (PDB code
2uyy) share two almost identical structural domains,
which are separated by a connecting linker (Fig. 3). This
linker is composed by two or three helices in bacterial
and human proteins, respectively. The differential num-
ber of helices present in the linkers orients the two do-
mains differently in the bacteria and human proteins.
This simple structural rearrangement is a challenging
problem for structural similarity detection methods,
because the orientation of the two domains is different
in both proteins. Rigid structure comparison tools can
only identify the matching of these domains as two
separate solutions, in the rare cases where more than
one solution is reported (ie. TopMatch).

The power of MOMA resides in the fact that the
structural similarity between both structural domain
pairs is automatically detected and reported in a single
step. In addition, the source of the conformational differ-
ence is also readily detected and highlighted in the
alignment matrix (ie. helix 20 of 2uyyA cannot be
aligned to a missing corresponding helix in 316dA).

Complex structural rearrangement

A more impressive example of structural rearrangement
detection occurs in the case of Sec31 subunit from the
COPII coated vesicle complex and the nucleoporin
Nic96. Despite a lack of detectable sequence similarity
[26], it is now generally accepted that coated vesicles
proteins and nucleoporins have a common origin [18, 26].

1cfc,A

1cfc, A
AIAL 6.0 1.1
1 A2A3 0.1

< 6 A3M 5.4

E” 8 35 A4AG
S ASA7 4.6 2.1
re) 3 ABAS 0.4 6.7
N 39 ATA9 3.9
21 8 55 ABA10)

2bbm,A

Fig. 2 Example of a rigid body shift caused by the rearrangement of two structural domains upon ligand binding. Structure superposition generated
with MOMA of the Calmodulin-target peptide complex (the query; PDB code 2BBM, chain A) and the calcium-free Calmodulin (the target; PDB code
1CFC, chain A). Top Panel: The conserved domains are shown in the alignment of SSEs and the respective sub-matrices surrounded by grey and red
blocks. Bottom Panel: The two structures and the superposition of their aligned domain pairs are shown respectively in rainbow color representation
(Left) and with the SSE pairs structurally aligned in red and orange colours (Right). Non-aligned residues are shown in grey. The alignment of SSE
elements is also represented with aligned blocks highlighted (Bottom Right). The structural superposition of these two domain pairs required different
rotation matrices and translation vectors. In this example MOMA was executed with the following parameters: g1 = -4, g2 =—4 and C=90
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Fig. 3 Example of a simple but significant structural re-arrangement. Structure superposition of the putative oxidoreductase from Pseudomonas
putida (the query; PDB code 3L6D, chain A) and the human Cytokine-like Nuclear Factor N-Pac (the target; PDB code 2UYY, chain A) generated
with MOMA. The conserved domains are shown in the alignment and the sub-matrices remarked by grey and red blocks (Top Panel). The two
structures are rainbow colored (Bottom Left) and the resulting SSE pairs aligned are shown in red and orange colours (Bottom Middle). The alignment
of SSE elements is also represented with aligned blocks highlighted (Bottom Right). Each superposition was carried out with different rotation matrices
and translation vectors. In this example MOMA was executed with the following parameters: g1 =—4, g2 =—4 and C=45

However, considerable divergence has occurred since the
event of gene duplication, up to a point that sequence
similarity cannot be detected any longer, even by the most
recent and powerful methods [27]. This sequence diver-
gence has had important consequences on the structural
conformation, interactions and cages formed in these two
proteins [27]. This is the type of structural divergence that
we aimed to detect efficiently and automatically, and thus
the main motivation behind the development of the new

method reported here. Nic96 (PDB code 2qx5) and Sec31
(PDB code 2pm7) are mainly composed of pairs of
a-helices that are stacked on each other, hence termed
SPAH domain (for Stacked Pairs of Alpha-Helices; also
referred to as a-solenoid domain). Both proteins adopt a
roughly linear shape that can be divided into three sec-
tions of conserved local structure (Fig. 4). However, those
three conserved sections are preceded, followed and sepa-
rated by other sections that exhibit considerable structural
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Fig. 4 Example of a complex structural re-arrangement. Structural superposition with MOMA of proteins Sec31 of the COPII complex of coat
vesicle (the query; PDB code 2QXS5, chain A) and the nucleoporin Nic96 (the target; PDB code 2PM7, chain A). Top Panel: The structure matching
domains are shown in the alignment of SSEs and the respective sub-matrices surrounded by red, blue and green colored boxes. Bottom Panel:
The three independent protein structure sectors that match between the two proteins, identified by MOMA, are highlighted by green, orange
and blue colored boxes (Bottom Left). The alignment of SSE pairs and the independent structural superposition of the three matching block pairs
are shown in red-orange, cyan-blue and light-dark green colours (Bottom Right). In this example MOMA was executed with the following
parameters: g1 =-5,g2=-5and C=45
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deviation. Sections 1 and 2 are separated by a compact
globular U-turn in Nic96, while this linker is unstructured
in Sec31. The linker between sections 2 and 3 is composed
by 9 «-helices in Nic96, but only by 3 a-helices in Sec31.
These substantial structural modifications imply that sec-
tion 1 is interacting only with section 2 in Nic96, while in
Sec31 section 1 interacts almost exclusively with section
3. The relative orientation between the three blocks is also
very different in both proteins. Despite these considerable
global structural differences, the local structural similarity
of the three blocks is clear and represents a legacy of their
common ancestry [26]. To the best of our knowledge,
MOMA is the only existing tool that is able to readily de-
tect this intricate structural conservation in an automated
fashion, which was the initial motivation of this work. The
result obtained for this example case with MOMA clearly
illustrates the power and potential for biological discovery
of the new method reported here.

Strengths and weaknesses of the method

The speed, accuracy and flexible alignment capability of
the method described here are their distinctive strengths.
The method, as implemented in MOMA computer tool,
is able to detect distant structural relationships in pro-
teins in an automated fashion and efficiently, which
makes it suitable to search the complete PDB for bio-
logical discovery. Among the weaknesses is the fact that
MOMA is a single chain and topology-dependent pro-
tein structure alignment tool (ie. it depends on the con-
nectivity order of SSEs). Few other tools, such as
TopMatch and Structal have the capability of aligning
protein structures in a topology-independent manner,
but this comes at the cost of a longer execution time
(these computer programs are 2—3 orders of magnitude
slower than MOMA). TopMatch is the only tool cur-
rently available that is capable of aligning multiple
protein chains, but the alignments are rigid and not
flexible, which is a drawback in order to find domain
movements or significant structural re-arrangements
as exemplified here.

Structal was the most accurate tool in our benchmark
(Table 1; Additional file 1: Table S4). A detailed analysis
of the benchmark differences observed between Structal
and MOMA shows that out of the 4,340 and 3,882
positive cases reported by Structal and MOMA, respect-
ively, a total of 3,618 positive cases are common to both
methods. There are 722 and 264 positive cases reported
only by Structal and MOMA, respectively. Out of the
722 positive cases that Structal reports and MOMA
fails to detect, 36.1 % is because of topological re-
arrangements and 16.7 % is because there are too short
or very few SSEs in the structures. In 11.1% of the cases,
MOMA fails to detect the positive cases because of large
differences in secondary structure definitions between
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the target and the query structures. It is noteworthy to
mention that the use of STRIDE [28] or DSSP to assign
SSEs produced, in a general basis, no significant differ-
ence on the performance of MOMA in our benchmark
test (Additional file 1: Table S5). However, the accuracy
of our method does depend directly on the assignment
of SSEs, as well as on its use to represent protein struc-
tures and on its intrinsic topology-dependency. On the
other hand, this simplified representation translates into
a significant gain of speed without an important loss in
accuracy (MOMA was 1,842 times faster than Structal
in our benchmark test, but only 3 % less accurate).
Finally, it is important to mention that the method
described here produces structural alignments of sec-
ondary structure elements and not structural alignments
at the residue-level. Therefore, if required, MOMA
could be used in a first stage for fast database search on
the task of fold or superfamily assignment and then,
afterwards and only for positive matches, a more so-
phisticated software tool able to incorporate topology
re-arrangements and to provide residue-level structure
alignment, could be executed in a nested and sequen-
tial manner.

It is noteworthy to mention that this new method
is not only restricted to protein structure comparison
and could be implemented for many other applica-
tions that require the maximization of global shape
matching between two three-dimensional objects with
significant conformational variation, provided that
those objects can be represented with vectors of dif-
ferent types which are relevant to describe the shape
of the object, but with the limitation that vector
order is a constraint of the method (ie. the method is
topology-dependent).

Conclusions

We have developed a new structural comparison algo-
rithm based on the spatial arrangement of secondary
structure elements and shown that it allows the effi-
cient retrieval of similar folding patterns in database
searches. MOMA exhibits a high sensitivity to detect
distant structural similarities without compromising
its performance at identifying proteins that share a
common fold.

In this regard, the development of a new combined
global/semi-global and local structural alignment
method that relies on a two-level nested dynamic pro-
gramming algorithm and involves a new scoring scheme
based on the continuous angular difference of SSE pairs
close in 3D space instead of the previously used discrete
quadrant codification, significantly improved the accur-
acy to find global similarities based on local matches in
protein structures.
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Methods
Protein structure and benchmark datasets
We used different protein structure datasets to first
optimize the value of some parameters and then to
evaluate the implementation of our method. First, to
calibrate internal parameter values of the program, we
used a subset of 100 pairwise structural alignments ob-
tained from HOMSTRAD database [29] as previously
described [30]. We kept only those alignments with a
percentage sequence identity equal or less than 25 %
and an average sequence length equal or greater than
150 residues (Additional file 1: Table S6). In this calibra-
tion process, a measure of similarity (the QS index) was
maximized (see below). Second, to define the similarity
score used and reported by our method, we used a small
set of seven protein structures that represent the most
common folds according to TOPS database [15, 20].
These seven proteins were used as a query to search
against the ASTRAL SCOPe 2.03 95 % sequence identity
protein domain database that contains 19,602 entries
[31] (released October 2013). Receiver operating charac-
teristic (ROC) curve analysis was performed and the area
under the curve (AUC) measure was used to define the
best performing score for classifying at the fold, family
and superfamily level the query structures (see below).
Finally, to evaluate the performance of MOMA and
other methods at classifying protein structures at the
fold and superfamily levels, we used a representative set
of 100 proteins extracted from the ASTRAL SCOPe 2.03
95 % sequence identity protein domain database de-
scribed above (19,602 entries). These 100 proteins were
used as a query to search for common structural
matches against a non-redundant subset obtained from
ASTRAL SCOPe 2.03 protein domain database [31]
(released October 2013) with a 40 % sequence iden-
tity cutoff, which contains a total of 11,121 entries,
none of them being any of the 100 query proteins. In
this benchmark, we also carried out ROC curve ana-
lysis to assess and compare the performance of the
methods (see below). All datasets described in this
paper are available as supplementary data at: http://
melolab.org/supdat/moma.

Computer software and methods

We used the DSSP program [32] to assign the secondary
structure of proteins and the Numpy Python library to
calculate the vectors and interaxial angles between the
secondary structure elements. Moreover, we evaluated
and compared MOMA against six methods based on
their performance at classifying protein structures with
similar folds or belonging to the same superfamily. The
tested software implementing different methods were
TopMatch [6], SHEBA [33], Yakusa [34], QP tableau
search [15], Structal [5, 35], FATCAT [10] and
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GANGSTA+ [14]. These computer programs were used
with their default parameter values. All calculations were
carried out using an Intel Core i7 2.64 GHz processor
with 12 GB RAM memory and Ubuntu 13.04 Linux op-
erating system.

Method description

To construct a 2D matrix from the 3D structure of a
protein, the secondary structural elements (SSE) are
assigned with the DSSP program, version 2.0.4 [32].
Only o-helices and B-strands with more than four and
three residues, respectively, are considered in the ana-
lysis. Different types of o-helices (11, 3;p and o) are
treated equivalently and always assigned as a common
a-helix type. Next, each secondary structure element is
represented as a vector from its amino to carboxyl
terminus by linear square fitting of an axis through the
Ca coordinates with the singular value decomposition
method [36].

After that, the interaxial angle between each pair of
SSE vectors and the Euclidean distance between the
midpoints of the axes is computed (Fig. 1a). The interax-
ial angle (w) is the shortest rotation (clockwise or anti-
clockwise) required for the reorientation of the nearest
vector that eclipses the farther vector, its value is re-
stricted between -180° and 180° and was calculated as
previously described [21]. Finally, the angle and distance
between each pair of SSEs are recorded in the two halves
of a 2D matrix: 1) the angle half-matrix and 2) the dis-
tance half-matrix. Two SSEs are only considered to be in
contact if the distance between the midpoints of their
linear axes is below a user-defined cutoff (see below).
The diagonal positions are labeled by the elements of
secondary structure, numbered by order of appearance
in the amino acid sequence, from NH2 to COOH
terminus (where ‘A’ stands for a-helix and ‘B’ for B-
strand). All off-diagonal positions in the matrix are ei-
ther blank, if the SSE pairs are not in contact, or they
contain the observed angle or distance value of the cor-
responding SSE pair (Fig. 1a).

To compare 2D matrices of different size, we imple-
mented a different method than that of TableauSearch
[20] for submatrix matching. Our method aligns the two
matrices with a nested dynamic programming algorithm.
The first step of the method is aimed at discovering pu-
tatively equivalent SSE pairs by comparing each row in
the query matrix with each row in the target matrix,
with a global or semi-global alignment and a constant
gap opening penalty value model (denominated gl1). The
rows are treated as linear sequences of SSE pairs
(Fig. 1b). Therefore, each element in a row represents a
pair of different SSEs in a protein. If the query and target
structures contain M and N elements of secondary
structure, then a total of M and N rows are generated


http://melolab.org/supdat/moma
http://melolab.org/supdat/moma

Gutiérrez et al. BMC Bioinformatics (2016) 17:20

from the query and target structures, respectively.
Consequently, in this step of the method, a total of MxN
global or semi-global alignments are calculated (Fig. 1c).

Semi-global alignment is similar to global alignment,
in the sense that it attempts to align the two sequences
entirely. The difference between both methods lies in
the way the alignments are scored. Semi-global align-
ment assigns no cost to opening end gaps in the align-
ment [37]. This alignment type selection depends on the
difference in the number of SSEs identified in the query
and target structures (ie. the size difference of the matri-
ces). If the maximum ratio of the number of SSEs from
the two structures is greater than two, a semi-global
alignment is calculated; otherwise, a global alignment is
built. We defined a scoring function that takes into ac-
count the value of interaxial angle (in degrees) calculated
for each pair of SSEs, implicitly incorporating the dis-
tance between the two vectors. This function was de-
fined as follows:

f (@3, 0u,,dy, , du, , Ei, . Ej, , Ex, . E1)
0, d,j >Dordy > D
_ —C7 EiEjiEkEl (1)
-C, Aw > 2C
C-Aw, otherwise

Aw = mir1(|(.o,-j—mkl|7 360—}w5j—wk1|) (2)

where E, stands for an element of secondary structure in
relative position x from NH2 to COOH terminus in the
protein chain, which can adopt two possible labels or
values: A for alpha helix and B for beta strand; E;E; and
E(E| are SSE pairs in the query and target structure, re-
spectively; ; and wy are the interaxial angles between
the EEj pair in the query structure and between the EE
pair in the target structure, respectively; d; and dy are
the distances between the E;E; pair in the query structure
and between the E\E; pair in the target structure, re-
spectively; Aw is the minimal angular difference between
o; and oy, and C is an angular constant (in degree
units). D is the maximum distance allowed to define that
two SSEs are in contact (in Angstroms). This function is
subjected to several constraints. The first constraint, d;
< D and dy < D, is introduced in order to avoid false
positives when pairs of SSEs in two proteins have a
similar interaxial angle, but are found at very different
distances in the two structures [15] or found at very
large distances in both the query and target structures. It
is expected than in these cases there is no direct associ-
ation between the SSE pairs in the two structures that
should be used to infer fold similarity. This restriction is
applied if at least one of the pairs is not in contact, as
defined by the maximal distance cutoff D (a user-defined
parameter). The second constraint, EE;=E\E;, ensures
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that two SSE pairs of different types should not be
matched (for example, helix-helix with strand-helix or
with strand-strand) and the third constraint, Aw < 2C,
ensures that the function takes values between C and -C.
Finally, the adopted constant gap opening penalty values
for the two levels of the dynamic programming algo-
rithm were those resulting from an optimization process
using one of the benchmark datasets (see section 2.6
below and Additional file 1).

The optimal score value obtained from each query and
target row alignment (Fig. 1c) is taken to generate the
scoring matrix that is used in the second alignment step
(Fig. 1d), but this time with the local Smith-Waterman
dynamic programming algorithm [38]. Here, a different
constant gap opening penalty value can be adopted
(denominated g2), which is another user-defined param-
eter required by our method. The alignment of SSE ele-
ments between the query and target structures is
generated by the usual backtracking procedure (Fig. 1d).

At this point, it is important to mention that this
alignment contains the union of all local structurally
matching SSEs between the query and target structures,
concordant to optimized, but not yet integrated global
information of structurally matching SSE pairs. There-
fore, the current alignment cannot be directly inter-
preted as a global structure alignment of two rigid
bodies. In the case of highly related proteins this align-
ment will be accurate, but in the case of proteins with
domain movements, rigid body shifts or partial structure
matching, the identification of the structural regions to
be matched as rigid body shifts by unique geometrical
transformations is still needed.

The next step of the method consists on removing all
rows and columns corresponding to non-aligned SSEs
from both 2D initial matrices, the query and the target,
thus rendering two matrices of identical size and shape
that can be now compared directly and efficiently, in a
one-to-one cell-to-cell manner (Fig. 1e). A unique 2D
difference sub-matrix is now produced (called ASM or
delta sub-matrix), which contains in the diagonal the
labels for only those matching SSE pairs between the
query and target structure, along with their differences
in angle (upper middle triangle) and distance (lower
triangle). Only the difference values for SSE pairs below
a maximum parameter value, named AD, are reported in
this difference matrix.

Structural matching score and similarity measures

A score of overall and integrated structural similarity for
the query and target structures is calculated from the 2D
difference sub-matrix (Fig. 1e). This score represents an
estimation of the global integration of local matches. We
calculate a measure of integrated structural similarity
based on a Gaussian function that considers the angular
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difference observed in the matrix. This raw score can be
defined as:

, 17 = Aw? (3)

where r{ is the squared angular difference observed be-
tween two SSE pairs below distance threshold D, N is
the total number of the SSE pairs aligned and o is the
scale parameter that determines the reduction rate of
the score as a function of increasing angular difference.
If the target structure is structurally equivalent with the
query structure (ie. similar matrices), the score is equal
to the total number of SSE pairs aligned. With increas-
ing spatial deviation of the angular difference of SSE
pairs aligned, the score approaches to 0.

In addition to score S, for comparing proteins of dif-
ferent size, we implemented two normalization func-
tions. One of these functions is the relative similarity, S,
[39], which constitutes a global similarity measure be-
tween two proteins, and is defined by:

28

S, =100 x
ng+n

(4)

where ng and n. are the number of SSE pairs that are in
contact in the query and target matrices, respectively,
and S is the raw score described above. Another
normalization function is the relative cover C, [30]
which represents the cover of the structural match in
the smallest protein with respect to the largest protein
[39], and it was implemented in the following function:

100 x S
Cp= > (5)

min(nq, , nt)

The integration of the information from all these score
similarity measures allows the detailed assessment of
structure similarity between two protein chains, from a
local and global perspective, at once.

Inference of compatible local structural matching

To obtain a flexible and global superposition of two
structures, a complete list of rigid local sub-matches
between the two structures must be generated (Fig. 1f).
Each rigid local sub-match follows a specific geometric
transformation (ie. a specific rotation matrix and transla-
tion vector pair). To that end, we have implemented an
algorithm that infers all local and rigid matches from the
2D difference sub-matrix. The only constraint imposed
by this algorithm is that a minimum local match must
contain at least three pairs of SSE elements. Briefly, the
algorithm follows the diagonal below and adjacent to the
main diagonal, checking for the observed Aw values. To
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initiate a new local matching block, a non-null Aw value
equal or smaller than 90° is needed. If the next value is
equal or smaller than 90°, the algorithm extends the
matching block. If the observed Aw value is absent (ie.
null), then the block is trimmed. Matching blocks
smaller than 3 x 3 are not considered. If the Aw value is
larger than 90°, then the adjacent left-row and bottom-
column cell values are checked for non-null values equal
or smaller than 90°. If this is not fulfilled, the matching
block is trimmed. The detailed pseudocode of this algo-
rithm is provided as supplementary material (Additional
file 1: Figure S5).

Integrated visualization of structural matches

Finally, the local matching blocks are superposed in 3D
following independent geometrical transformations. To
achieve this, the coordinates of the SSE vectors belong-
ing to each local matching block are first extracted.
Then, both sets of coordinates are superposed using a
particular implementation of the Kabsch algorithm [40],
which is based on Lagrange multipliers to solve the opti-
mal superposition problem. This algorithm implementa-
tion was proposed by Kearsley and provides an
analytical solution based on quaternions to generate the
three-dimensional superposition with minimal root
mean square deviation [41]. The end result is the flexible
global superposition of two structures (Fig. 1f).

Parameterization of the method

The gap-opening penalties defined in the steps of dy-
namic programming, C constant and maximum distance
cutoff are the most important parameters to compare
the SSE matrices. To calibrate these parameters in our
method, we aligned 100 homologous protein pairs from
HOMSTRAD dataset, carrying out several tests with
different combinations of parameter values.

We used the Sorensen-Dice similarity index (QS) [42]
to compare the precision of the method to detect
equivalent pairs of SSEs in matrix alignments, using as
gold standard the HOMSTRAD superpositions. The QS
index was defined as:

72><M (6)
 A+B

QS

where A and B are the number of SSE pairs aligned that
were reported by MOMA and HOMSTRAD, respect-
ively, and M is the number of SSE pairs aligned in
common. QS index lies between 0 (all SSE pairs aligned
by MOMA are different from those reported by HOM-
STRAD superposition) and 1 (SSE pairs aligned by
MOMA are equal to those reported by HOMSTRAD).
In each test, we calculated the average QS index to
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determine the best combination of parameter values
(Additional file 1: Table S2).

Performance assessment

We performed standard receiver operating characteristic
(ROC) curve analysis and adopted the area under the
ROC curve (AUC) as the accuracy measure for each
method [43]. In these tests, SCOP classification (same
fold, superfamily or family) was used as the gold stand-
ard to define true positive and true negative instances.
Given a protein query and considering the list of hits
above a score threshold returned by a search against the
datasets, we counted a hit as a true positive (TP) if the
structure target had the same SCOP classification level
as the protein query. Otherwise, it was classified as a
false positive (FP). The statistical significance of the
observed differences in classifier performance was calcu-
lated with StAR web server (http://melolab.org/star) as
previously described [44].

Additional file

Additional file 1: Suplementary data, including: Table S1. Average
QS values for best combinations of MOMA parameter values; Table S2.
Comparison of structural alignments generated by MOMA with those
defined in HOMSTRAD; Table S3. Benchmark test to assess the
performance of MOMA; Table S4. Statistical analysis for the benchmark
of MOMA with other methods; Table S5. Statistical analysis for the
benchmark of MOMA with different methods to assign secondary
structure; Table S6. Set of 100 distant homologous protein pairs
obtained from HOMSTRAD database; Figure S1. Calibration of distance
cutoff using the HOMSTRAD set with the best combination of parameter
values; Figure S2. ROC curves for the small set of seven most common
folds according to TOPS database; Figure S3. ROC curves of classification
at the SCOP fold and superfamily level; Figure S4. Execution time of
MOMA; Figure S5. Algorithm used for extracting the rigid local matches.
(PDF 2793 kb)
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