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Abstract

Background: With its simple library preparation and robust approach to genome reduction, genotyping-by-
sequencing (GBS) is a flexible and cost-effective strategy for SNP discovery and genotyping, provided an
appropriate reference genome is available. For resource-limited curation, research, and breeding programs of
underutilized plant genetic resources, however, even low-depth references may not be within reach, despite
declining sequencing costs. Such programs would find value in an open-source bioinformatics pipeline that can
maximize GBS data usage and perform high-density SNP genotyping in the absence of a reference.

Results: The GBS SNP-Calling Reference Optional Pipeline (GBS-SNP-CROP) developed and presented here adopts a
clustering strategy to build a population-tailored “Mock Reference” from the same GBS data used for downstream
SNP calling and genotyping. Designed for libraries of paired-end (PE) reads, GBS-SNP-CROP maximizes data usage
by eliminating unnecessary data culling due to imposed read-length uniformity requirements. Using 150 bp PE
reads from a GBS library of 48 accessions of tetraploid kiwiberry (Actinidia arguta), GBS-SNP-CROP yielded on
average three times as many SNPs as TASSEL-GBS analyses (32 and 64 bp tag lengths) and over 18 times as many
as TASSEL-UNEAK, with fewer genotyping errors in all cases, as evidenced by comparing the genotypic
characterizations of biological replicates. Using the published reference genome of a related diploid species
(A. chinensis), the reference-based version of GBS-SNP-CROP behaved similarly to TASSEL-GBS in terms of the
number of SNPs called but had an improved read depth distribution and fewer genotyping errors. Our results also
indicate that the sets of SNPs detected by the different pipelines above are largely orthogonal to one another; thus
GBS-SNP-CROP may be used to augment the results of alternative analyses, whether or not a reference is available.

Conclusions: By achieving high-density SNP genotyping in populations for which no reference genome is
available, GBS-SNP-CROP is worth consideration by curators, researchers, and breeders of under-researched plant
genetic resources. In cases where a reference is available, especially if from a related species or when the target
population is particularly diverse, GBS-SNP-CROP may complement other reference-based pipelines by extracting
more information per sequencing dollar spent. The current version of GBS-SNP-CROP is available at https://github.com/
halelab/GBS-SNP-CROP.git
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Background
The conservation and utilization of plant genetic diver-
sity is regularly cited as a critical strategy in meeting the
growing global food demand [1]. For the handful of truly
global crops that provide the vast majority of the world’s
caloric and protein intake (e.g. wheat, rice, maize, soy-
bean, palm) [2], extensive resources exist to facilitate
such ongoing improvement, including well-characterized
gene/seed banks, international communities of re-
searchers, and vast collections of genetic and genomic
resources. Rightly, the call for ongoing investment in
such resources continues [3]. For more minor agricul-
tural plant species, however, particularly those of unique
or limited relevance to developing countries, relatively
fewer resources exist, leading to the designation of such
species as underutilized, neglected, or orphan crops [4].
In West Africa alone, examples of such species abound
and include cereal grains (e.g. Digitaria exilis), leafy veg-
etables and seed crops (e.g. Telfairia occidentalis), le-
gumes (e.g. Sphenostylis stenocarpa), tuber crops (e.g.
Plectranthus rotundifolius), corm crops (e.g. Colocasia
esculenta), fruit trees (e.g. Annona senegalensis), oil nut
trees (e.g. Vitellaria paradoxa), and herbs (e.g. Hibiscus
sabdariffa). Though historically under-researched, or-
phan crops are now recognized as germane to the issue
of future global food security due to their potential to di-
versify the food supply [5], enhance the micronutrient
content of people’s daily diets [6], perform favorably
under local and often extreme environmental conditions
[7], and improve the overall environmental sustainability
of smallholder agricultural systems [8].
Increasingly rapid and inexpensive genome-wide geno-

typing methods, enabled by ever improving next gener-
ation sequencing (NGS) platforms, have revolutionized
trait development, breeding, and germplasm curation in
the global crops [9]; and the potential for such genome-
enabled improvement of orphan crops is clear. By virtue
of its simple library preparation and robust approach to
genome reduction, genotyping-by-sequencing (GBS) [10]
in particular has emerged as a cost-effective strategy for
genome-wide SNP discovery and population genotyping.
The objective of GBS is not merely to discover SNPs for
use in a fixed downstream assay (e.g. SNP-chip) but ra-
ther to simultaneously discover such polymorphisms
and use them to genotype a population of interest. By
combining the power of multiplexed NGS with enzyme-
based genome complexity reduction, GBS is able to
genotype large populations of individuals for many thou-
sands of SNPs for well under $0.01 per datapoint [11,
12]. Shown to be robust and flexible across a range of
species and populations, GBS has become an important
tool for genomic studies in plants, yielding molecular
markers for genetic mapping [12], genomic selection
[13], genetic diversity studies [14, 15], germplasm

characterization [16–18], cultivar identification [19–21],
and conservation biology and evolutionary ecology
studies [22].
To date, relatively little effort has been devoted to de-

veloping high-performing GBS pipelines in the absence
of a reference genome [23], perhaps in part due to the
assumption that a low-quality reference of any plant spe-
cies is now affordable enough to be within the reach of
interested programs [24, 25]. For severely under-
resourced curation, research, and breeding programs for
orphan crops, however, such an assumption may not
hold. Although great effort is underway to muster the
resources necessary to develop foundational genomics
resources like annotated reference genomes for some or-
phan crop species (e.g. the African Orphan Crops Con-
sortium) [26], such efforts are necessarily targeted and
narrow in scope relative to the estimated 80,000 edible
plant species around the world, of varying relevance to
local diets [27–29]. For many orphan crop species,
therefore, a reference-free GBS pipeline could be of great
value, enabling access to the per-genotype cost-
effectiveness of GBS without the up-front and often pro-
hibitive cost of a reference genome.
Here, we describe an efficient pipeline for SNP discovery

and genotyping using paired-end (PE) GBS data of arbi-
trary read lengths to facilitate genetic characterization,
whether or not a reference genome is available. Executed
via a sequence of Perl scripts, this GBS SNP-Calling Refer-
ence Optional Pipeline (GBS-SNP-CROP) integrates cus-
tom parsing and filtering procedures with well-known,
vetted bioinformatic tools, giving users full access to all
intermediate files.

Results and discussion
In this section, we explain the GBS-SNP-CROP work-
flow in detail and discuss its strategies for maximizing
data usage and distinguishing high-confidence SNPs
from both sequencing and PCR errors. Finally, we
present data on its favorable performance relative to the
reference-based TASSEL-GBS [30] and network-based
(i.e. reference-independent) TASSEL-UNEAK [15] pipe-
lines for a sample dataset consisting of 150 bp PE GBS
reads for a library of 48 diverse accessions of cold-hardy
kiwiberry (Actinidia arguta), an underutilized tetraploid
horticultural species.

The GBS-SNP-CROP workflow
The GBS-SNP-CROP workflow can be divided concep-
tually into four main stages: (1) Process the raw GBS
data; (2) Build the Mock Reference, if a reference gen-
ome is unavailable; (3) Map the processed reads and
generate standardized alignment files; and (4) Call SNPs
and genotypes (Table 1; Fig. 1). In this section, we ex-
plain how these stages are accomplished within GBS-
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SNP-CROP, with particular emphasis on the rationale
throughout. While the relevant Perl scripts are refer-
enced in this discussion, please refer to the GBS-SNP-
CROP User Manual for the details of pipeline execution
(https://github.com/halelab/GBS-SNP-CROP.git).

Stage 1. Process the raw GBS data
As written, the code associated with Step 1 (“Parse the
raw reads”; see Table 1) is compatible with Illumina1.8+
sequencing data, where the input files are assumed to be
CASAVA-processed, paired-end (i.e. R1 and R2), and
compressed FASTQ files (*.fastq.gz). As per the protocol
developed by Poland et al. [11], these FASTQ files are
assumed to contain multiplexed reads from a barcoded
library of genotypes, where the R1 read begins with a 6–
10 bp barcode followed by the restriction site of the less-
frequent cutter (e.g. PstI); and the R2 read begins with
the restriction site of the more-frequent cutter (e.g.
MspI). To execute this stage of the pipeline, an auxiliary

text file is required that associates each barcode with its
corresponding genotype ID (see example “Barcode-ID”
file in Appendix A of the GBS-SNP-CROP User
Manual).
The script for Step 1 processes the raw reads in a rela-

tively standard manner, beginning by searching the R1
read for a high-confidence barcode sequence (i.e. no
more than one mismatch, relative to the provided list of
barcodes) immediately preceding the expected cut site
remnant of the less frequent cutter. If both barcode and
cut site are found, they are trimmed from the read, the
barcode is appended to the headers of both the R1 and
R2 reads, and the pair is retained for further processing.
This first parsing script then searches for the 3′-ends of
each GBS fragment, indicated by the in-line presence of
the Illumina common adapter coupled with the appro-
priate cut site residue. If found, the reads are truncated
appropriately. Finally, all reads consisting of a majority
of uncalled bases (i.e. N’s) are discarded.

Table 1 Outline of the GBS-SNP-CROP workflow, featuring inputs and outputs of all seven steps (scripts)

Input file(s) Output file(s) Timea

(hrs:mins)

Stage 1. Process the raw GBS data

Step 1 Parse the raw reads - CASAVA generated paired-end (R1, R2)
files (.fastq.gz)

- Parsing summary information (.txt) 2:24

- Read length distribution summary (.txt)

- Barcode-ID file (.txt) - Parsed paired-end [PE] reads (.fastq)

- Parsed, unpaired R1 reads (.fastq)

Step 2 Trim based on quality - Parsed PE reads (.fastq) - High quality, parsed PE reads (.fastq) 0:10

- High quality, parsed singletons (.fastq)

Step 3 Demultiplex - One pair (R1, R2) of high quality files
(.fastq) per library

- One pair (R1, R2) of high quality files
(.fastq) per genotype

0:16

- Barcode-ID file (.txt)

Stage 2. Build the Mock Reference

Step 4 Cluster reads and assemble the Mock
Reference [MR]

- Genotype-specific PE files (.fastq) - Mock Reference [centroids] (.fasta) 0:14b

- Barcode-ID file (.txt) - Mock Reference [genome] (.fasta)

Stage 3. Map the processed reads and generate standardized alignment files

Step 5 Align with BWA-mem and process with
SAM tools

- Genotype-specific high quality PE files
(.fastq)

- Filtered reads (.bam) 3:36

- Sorted BAM files (.sorted.bam)

- Reference or MR [genome] (.fasta) - Indexed BAM files (.sorted.bam.bai)

- Barcode-ID file (.txt) - Indexed reference or MR (.fasta.idx)

- One base call alignment summary file
(.mpileup) per genotype

Step 6 Parse mpileup output and produce the
SNP discovery master matrix

- One base call alignment summary file
(.mpileup) per genotype

- One base call alignment summary
count file (.txt) per genotype

4:37

- Barcode-ID file (.txt) - SNP discovery master matrix (.txt)

Stage 4. Call SNPs and Genotypes

Step 7 SNP genotyping across the population - SNP discovery master matrix (.txt) - SNP genotyping matrix for the
population (.txt)

0:04

a The computation times presented here are specific to the particular dataset in this study
b The time to build the Mock Reference using only the single most read-abundant genotype (-MR01). Using the five most read abundant genotypes and using all
48 genotypes, the required computation time for this step increases to 0:55 and 4:30, respectively (see Table 2)

Melo et al. BMC Bioinformatics  (2016) 17:29 Page 3 of 15

https://github.com/halelab/GBS-SNP-CROP.git


Further read trimming based on user-specified min-
imums for both Phred quality score and read length is
done in Step 2, using the bioinformatics tool Trimmo-
matic [31]. Finally, in Step 3, all parsed and quality-
filtered reads are processed according to their barcodes;
and genotype-specific FASTQ files are produced for all
genotypes. The final output of Stage 1 is a pair (R1 and
R2) of FASTQ files for each genotype, containing all
parsed and quality-filtered reads for downstream
analysis.

Stage 2. Build the Mock Reference
If a suitable reference genome is available for the target
population, one may move directly to Stage 3 of the
pipeline. If such a reference is unavailable, however, the
parsed and quality-filtered reads from Stage 1 are used
to build a GBS-specific, reduced-representation refer-
ence (hereafter “Mock Reference”) to enable GBS read
mapping and facilitate SNP discovery. This stage of the
pipeline relies upon a similarity-based clustering strategy
to group the GBS reads, first within- and subsequently
(if desired) across-genotypes, in order to generate repre-
sentative reference sequences for the full set of GBS
fragments.
To begin, the pipeline calls upon the PEAR software

package [32] to merge the processed paired-end reads

into single reads spanning the complete GBS fragment
lengths, wherever sequence overlap for a pair is suffi-
cient (≥10 bp) to justify merging. For each genotype se-
lected to contribute to the Mock Reference (see “GBS-
SNP-CROP Performance”), this step generates three
different FASTQ files: An “assembled” file, containing
successfully merged reads, and two “unassembled” files
(R1 and R2), comprised of sequentially-paired R1 and
R2 reads that could not be merged, due in part to a
lack of sufficient overlap because of long GBS frag-
ment lengths. Next, the pipeline stitches together all
unmerged reads by joining pairs of sufficiently long
“unassembled” R1 and R2 sequences together with an
intermediate run of 20 high-quality A’s, thus producing
a FASTQ file of “stitched” R1 + R2 reads. Represent-
ing the reduced genomic space targeted by the GBS
restriction protocol, these PEAR-assembled and
manually-stitched reads are then concatenated into a
single FASTQ file per genotype for use in building the
Mock Reference.
Next, GBS-SNP-CROP calls upon the USEARCH soft-

ware package [33] to cluster these “assembled” and
“stitched” reads based on a user-specified similarity
threshold, thereby producing a reduced list of non-
redundant consensus sequences (centroids) that span
the GBS fragment space. To accomplish this, the

Fig. 1 Schematic of the four stages of the SNP-GBS-CROP workflow
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USEARCH clustering procedure is executed first within
each selected genotype (i.e. USEARCH clusters “assem-
bled” and “stitched” reads into sets of genotype-specific
centroids) and subsequently, if more than one genotype
is selected to build the Mock Reference, across all se-
lected genotypes (i.e. USEARCH clusters all genotype-
specific centroids into a master set of centroids for the
population). Representing the sampled GBS data space
for the population, it is this resultant set of non-
redundant consensus sequences that comprises the
Mock Reference genome for subsequent mapping. De-
pending on the intended use of the resultant genotypic
data (e.g. diversity characterization, linkage map con-
struction, trait association, etc.), the similarity threshold
specified for USEARCH may be adjusted to collapse
homologous regions or maximize their discrimination,
an issue of particular relevance in polyploid species.
In the end, Stage 2 produces two different Mock Ref-

erence FASTA files. The first (“MockRef_Genome.fasta”)
consists of a single, long FASTA read comprised of all
the centroids identified above, linked together into one
contiguous sequence. The second (“MockRef_Clusters.-
fasta”) contains the same centroids in the same order,
but in this case the centroid boundaries are preserved
because each centroid exists as a separate FASTA entry.
While the former file is used as the Mock Reference for
read alignment (see next section), the latter is useful for
optional downstream SNP filtering and analysis.

Stage 3. Map the processed reads and generate
standardized alignment files
To align the processed reads from Stage 1 to the refer-
ence, whether a true reference genome or a Mock Refer-
ence built in Stage 2, GBS-SNP-CROP again relies upon
familiar bioinformatics tools, in this case BWA [34] for
alignment and SAMtools [35] for manipulating and pro-
cessing the alignment output. Specifically, the BWA-
mem algorithm is used to align the processed reads,
genotype-by-genotype, to the reference. SAMtools is
then called upon to accomplish the following steps: 1)
Filter the mapped reads via SAMtools flags, retaining
only those which map appropriately as pairs without po-
tentially confounding secondary or supplementary align-
ments (see the GBS-SNP-CROP User Manual for more
detail); 2) Convert the filtered SAM files to BAM files;
3) Index and sort the BAM files; 4) Index the FASTA
reference sequence; and 5) Produce a base call alignment
summary (mpileup file) for each genotype. These six
steps (BWA-mem alignment and the five SAMtools pro-
cedures) are carried out individually for each genotype,
with the Step 5 script automating the process.
In Step 6, the genotype-specific mpileup files are dis-

tilled into “count” text files containing four essential tab-
delimited columns: (1) Reference genome/chromosome

identifier; (2) Base position; (3) Reference base at that
position; and (4) A comma-delimited string containing
aggregated alignment information at that position (i.e.
depths of A, C, G, and T reads). Each count file is then
parsed, with only those rows containing reads poly-
morphic to the reference sequence kept, thereby gener-
ating liberal genotype-specific lists of potential SNP
positions, with full read depth information retained. It is
during this mpileup parsing that all putative indels are
rigorously detected and excluded from downstream vari-
ant calling, thus making GBS-SNP-CROP a SNP-
exclusive pipeline.
Once the mpileup parsing is completed for each geno-

type separately, Step 6 proceeds by mining the full set of
resultant genotype-specific count files to generate a sin-
gle, non-redundant master list of all potential SNP posi-
tions throughout the target population. Alignment
information is then extracted from the original count
files for each genotype for all potential SNP positions in
the master list and the data organized into a SNP discov-
ery “master matrix” for the entire population. By capturing
both genotype-specific (columns) and population-level
(rows) alignment data in one table, the master matrix is
a powerful and streamlined summary of the GBS data
that contains the essential information to not only dis-
tinguish high-confidence SNPs from likely sequencing
and PCR errors but also to make subsequent genotype
calls using stringent depth criteria, as explained in the
next section.

Stage 4. Call SNPs and genotypes
Once generated, the master matrix is systematically
pared down via a series of SNP-culling filters to arrive
at a final “SNP genotyping matrix” containing only
high-confidence SNPs and genotypes. To begin, the
master list of potential SNPs is parsed based upon a flat
criteria of independence, namely that a SNP is retained
for further consideration if and only if there exist inde-
pendent instances of the putative secondary allele, at a
specified minimum depth (e.g. 3), across at least three
genotypes. This simple requirement for independent
occurrences of the less-frequent allele is an essential
strategy for minimizing false SNP declarations due to
random sequencing and PCR errors, including strand
bias errors [36].
Next, GBS-SNP-CROP advances only potential bi-

allelic SNPs (i.e. it excludes multi-allelic variants) by
imposing a population-level allele frequency filter via a
user-defined Alternative Allele Strength parameter
(-altStrength, Step 7). For each potential SNP position,
this parameter considers the total read depth, across
the whole population, of all four bases, from primary
(the allele with the highest depth at that position) to
quaternary (the allele with the lowest depth). A
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potential SNP is retained for further downstream ana-
lysis if and only if it is strongly bi-allelic, that is if:

2o Allele Depth
2o Depth þ 3o Depth þ 4o Depth

> altStrength

For a tetraploid species, we suggest a minimum value
of 0.90 for this parameter, though higher values may be
imposed in the interest of stricter error control (see
Additional file 1).
After these initial basic population-level culling proce-

dures, genotypic states (primary homozygote, heterozy-
gote, or secondary homozygote) are assigned for all
remaining SNP-accession combinations. To call a het-
erozygote, a given genotype must have a user-specified
minimum read depth for each allele (e.g. 3); and the read
depth ratio of the lower-coverage to higher-coverage al-
lele must exceed a user-specified, ploidy-appropriate
threshold (e.g. 0.1; see Additional file 1). If the ratio falls
below this minimum threshold, GBS-SNP-CROP re-
frains from making a genotypic assignment (i.e. the
genotype is designated as missing data). The GBS-SNP-
CROP genotyping criterion for homozygotes is more
stringent, requiring a relatively high, user-specified mini-
mum depth (e.g. ≥11 when the secondary allele count is
zero and ≥48 when the secondary allele count is one; see
Additional file 1) in an effort to reduce the rate of erro-
neous calls (i.e. true heterozygotes called as homozygous
due to sampling bias). Finally, in an effort to retain only
broadly informative SNPs, the matrix is further reduced
such that all SNPs (i.e. rows) are discarded for which
more than some user-specified maximum of genotypes
are without genotypic calls, either because read depth =
0 or genotypic states were unassignable due to the cri-
teria discussed above.
To facilitate the downstream characterization of the

high-confidence SNPs that pass all the above filters, the

final SNP genotyping matrix contains both summary sta-
tistics as well as complete genotype-specific alignment
data for each retained SNP. As shown in Fig. 2, the first
ten columns of the matrix feature the following informa-
tion: 1) Genome/chromosome identifier; 2) SNP pos-
ition; 3) Reference base; 4) Average read depth at that
SNP position across the population; 5) Primary allele
(i.e. the most frequent allele at that position, based on
read depth across the population); 6) Secondary allele
(i.e. the less frequent, or alternative, allele at that pos-
ition); 7) Percentage of individuals from the population
genotyped for that SNP; 8) Total number of homozy-
gotes for the primary allele; 9) Total number of hetero-
zygotes; and 10) Total number of homozygotes for the
secondary allele. Columns 11 and higher contain the
complete alignment data for each individual genotype
for all possible SNP positions. The ability of GBS-SNP-
CROP to consider both genotype-specific and population-
level alignment data simultaneously through the master
matrix during the processes of SNP filtering and genotyp-
ing is an essential feature of the pipeline and motivates its
disuse of Minor Allele Frequency (MAF), a problematic
filtering parameter when attempting to characterize
broadly diverse germplasm collections, as opposed to
more closely-related breeding populations.

Other downstream tools
In addition to the scripts associated with the core GBS-
SNP-CROP workflow described above, one additional
script (“GBS-SNP-CROP-8.pl”) is provided to facilitate
downstream management of the final SNP genotyping
matrix by enabling users to convert the matrix into for-
mats compatible with the familiar statistical analysis
software packages R [37], Tassel GUI [30], and PLINK
[38]. Specifically, the script produces a genotype matrix
appropriate for diversity analyses within R (e.g. calculat-
ing distance metrics, generating cladograms, etc.) by

Fig. 2 Structure of the final SNP genotyping matrix. As shown here, the GBS-SNP-CROP final genotyping matrix contains summary statistics as
well as complete genotype-specific alignment data for each SNP called. The cells in red represent instances in which a genotypic state could not
be assigned, either due to insufficient read depth (-|0/4) or a read depth ratio outside of the user-specified acceptable range (-|132/5)
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replacing primary homozygotes with 0, heterozygotes
with 0.5, secondary homozygotes with 1, and unassigned
genotypes with “NA”. It can also transform the final
SNP genotyping matrix into a HapMap file for use as in-
put into Tassel GUI, allowing users to easily access the
functionality of that software package for forward ana-
lysis, or create the transposed . PED file required by the
whole genome association analysis toolset PLINK.

Avoiding false SNP calls
One well-recognized challenge posed by NGS data is the
rate of erroneous base calls produced, rates which vary
across both platforms and base position within reads.
For instance, the error rate of current Illumina sequen-
cing platforms ranges from 1 to 10 bases per kilobase se-
quenced, with errors concentrated in the beginnings and
ends of reads (i.e. tail distance bias) [39, 40]. With typ-
ical sequencing runs producing billions of base calls (e.g.
a single HiSeq 2500 Illumina flow cell can produce as
much as 400 Gb of data [41]), there is real potential for
millions of errors that can confound analysis [42]. Del
Fabbro et al. [43] discuss the importance of quality trim-
ming to increase the reliability of downstream analysis,
with simultaneous gains in terms of both computational
resources and time. While other authors assert that
quality scores may not be perfectly reliable indicators of
true nucleotide quality [44, 45], GBS-SNP-CROP begins
with a stringent recognition of barcodes (Hamming dis-
tance ≤1) and cut sites (no mismatches), followed by
trimming based on Phred score.
In addition to this basic quality filtering of the raw

reads, the pipeline seeks to minimize false SNP calls
through its approach to SNP discovery and filtering.
First, only those reads that map as paired-ends without
secondary or supplementary alignments to the reference
are retained. Additional parameters are called upon
within the SAMtools mpileup algorithm to avoid false
SNPs due to misalignment and excessive mismatches
(see the GBS-SNP-CROP User Manual). SNPs that pass
the above filters must then also satisfy the aforemen-
tioned requirement of independence, assessable by virtue
of the unique format of the GBS-SNP-CROP master
matrix. By leveraging both genotype-specific and
population-level depth information, this requirement ef-
fectively reduces the probability of calling false SNPs
due to both sequencing and PCR errors, including
strand bias errors, since the exact same errors must arise
independently, at depth, across multiple genotypes.
GBS-SNP-CROP also makes use of stringent genotyping
criteria to further reduce the probability of calling false
SNPs and assigning incorrect genotypic states. Such
genotyping criteria are based on relatively high depth re-
quirements, information again accessible for evaluation
via the master matrix.

Through its strict initial parsing and filtering of the
raw reads as well as its rigorous approach to alignment,
SNP filtering, and genotyping, GBS-SNP-CROP takes a
very conservative approach to SNP calling. Nevertheless,
as shown in the next section, the number of identified
SNPs compares favorably to more permissive pipelines,
in part because of GBS-SNP-CROP’s ability to make use
of all available data, regardless of read length.
Finally, in addition to the embedded strategies for

minimizing false SNP calls discussed here, users can eas-
ily impose additional desired filters due to the fact that
the output from all GBS-SNP-CROP steps, like the mas-
ter matrix, are human-readable text files. For example,
for the purpose of mapping studies as opposed to diver-
sity analyses, which are the primary focus here, the elim-
ination of markers in particularly SNP-dense regions
may be an important quality control, as such high SNP
density may be an artifact of promiscuous alignment,
particularly in polyploids. In a reference-based approach,
such culling is straightforward given the set of unique
SNP coordinates across the linkage groups. In a
reference-independent pipeline, a similar filter can be
applied; but users will need to consider SNP densities
within each cluster (centroid) used to build the Mock
reference. To accomplish this, centroid boundaries must
be located within the Mock Reference, which is one rea-
son why the second Mock Reference (clusters) file is
generated by the pipeline, to enable such projection.

GBS-SNP-CROP performance
We assessed the performance of GBS-SNP-CROP in
genotyping a population of 48 diverse accessions of the
perennial dioecious tetraploid Actinidia arguta. Specific-
ally, its performance using both a reference from a related
diploid species (A. chinensis) and a Mock Reference was
compared to that of TASSEL-GBS [30], a widely-used
reference-based pipeline, and TASSEL-UNEAK [15], its
reference-independent version.

Sampling strategy to build a Mock Reference
Three different GBS-SNP-CROP Mock Reference assem-
bly strategies were investigated, differing only in the
numbers of genotypes from the target population used
to construct the Mock Reference. Contrary to our ori-
ginal expectations, we found that the number of geno-
types used to build the Mock Reference is inversely
related to the number of mapped reads retained by the
pipeline and thus the number of SNPs called (Table 2).
For example, using all reads from the full set of 48
unique genotypes, the pipeline called 14,712 SNPs (aver-
age depth = 70.7) that passed all population-level filters.
Because more than 4 h were needed to assemble the
Mock Reference in this case (see Table 1), we investi-
gated the relative performance of the pipeline under

Melo et al. BMC Bioinformatics  (2016) 17:29 Page 7 of 15



scenarios where fewer genotypes were used to construct
the Mock Reference, first using only the top five geno-
types (ranked simply by the number of parsed reads)
and then again using only the top genotype. Using the
five genotypes with the highest numbers of parsed reads,
the pipeline assembled the Mock Reference in less than
an hour and identified 20,226 potential SNPs (average
depth = 71.0). Using only the single most read-abundant
genotype, the pipeline assembled the Mock Reference in
14 min and called 21,318 SNPs (average depth = 69.3).
Based on these results, all subsequent pipeline evalu-
ation was conducted using the results from GBS-SNP-
CROP-MR01 (i.e. Mock Reference constructed from one
genotype). The pipeline itself is flexible, however, able to
integrate centroids from multiple genotypes into a Mock

Reference, a feature of potential use for genotyping par-
ticularly diverse populations (e.g. multiple closely-related
species).

Data usage
One of the most noteworthy differences between the
GBS-SNP-CROP and TASSEL pipelines is the ability of
GBS-SNP-CROP to access and make use of a greater
amount of sequence data (Table 3). In the TASSEL-GBS
pipeline, due to its tag-based alignment strategy, a uni-
form tag length (mxTagL) must be specified that effect-
ively limits the number of reads used for analysis.
According to the TASSEL 5.2.11 manual, “the mxTagL
value must be chosen such that the longest barcode +
mxTagL < read length” [30]; thus all reads that violate

Table 2 Performance of GBS-SNP-CROP under three different sampling strategies for building the Mock Reference: Using all 48
individuals in the population (MR48), using only the 5 individuals with the highest number of parsed reads (MR05), and using only
the single most read-abundant genotype (MR01)

Pipelines Total number of
centroids used
to build the
Mock Referencea

Total number
of paired-end
reads used for
SNP callingb

Number of
SNPs calledc

Avg. depthd Hetero (%)e Homo (%)f Missing
data (%)g

Time
(hrs:mins)h

GBS-SNP-CROP-MR48 1,276,734 92,667,123 14,712 70.74 32.47 59.31 8.20 14:30

GBS-SNP-CROP-MR05 500,795 132,920,383 20,226 71.02 34.50 57.18 8.31 12:06

GBS-SNP-CROP-MR01 229,549 154,506,669 21,318 69.34 34.51 56.85 8.29 11:03
a Total number of non-redundant consensus sequences (centroids) identified via clustering to represent the GBS fragment space. This is also the number of FASTA
entries in the “MockRef_Clusters.fasta” file
b Number of reads retained by the pipeline after mapping procedures and thus used for SNP calling
c Total number of SNPs called, given all SNP calling filters and genotyping criteria described in the text
d Average read depth for all SNPs across the entire population
e Percentage of heterozygous genotype calls
f Percentage of homozygous genotype calls
g Percentage of missing cells (i.e. no genotype call for a given SNP*accession combination) in the final SNP genotype matrix
h The total computation time required for all pipeline analysis when executed on a Unix workstation with 16 GB RAM and a 2.6 GHz Dual Intel processor

Table 3 Comparative data usage and computation times for five different analyses of 150 bp paired-end GBS data from 48 accessions
of Actinidia arguta

Pipeline Min required
read length (bp)a

Max usable
read length (bp)b

Total number of
usable R1 readsc

Total usable
bases (Gb)d

Time
(hrs:mins)e

Reference-based

GBS-SNP-CROP-RG 32 NA 128,577,030 16.82 8:30

TASSEL-GBS-mxTagL32 50 32 120,593,880 3.85 0:35

TASSEL-GBS-mxTagL64 75 64 105,908,174 6.77 1:10

Reference-independent

GBS-SNP-CROP-MR01 32 NA 128,577,030 16.82 11:03

TASSEL-UNEAK 32 64 134,352,640 8.60 0:27
a GBS-SNP-CROP utilizes the entire R1 and R2 paired-end sequences of all parsed and quality trimmed reads longer than a user-specified (i.e. adjustable) minimum
length, in this case 32 bp. The TASSEL-GBS pipelines utilize a uniform user-specified portion (e.g. 32 bp, 64 bp) from the beginning of acceptable R1 (single-end)
reads that exceed a minimum length (e.g. 50 bp, 75 bp) before barcode and cut site trimming. TASSEL-UNEAK utilizes up to 64 bp from the beginning of accept-
able R1 (single-end) reads that exceed a minimum length of 32 bp after barcode and cut site trimming
b The maximum length of sequences utilized by GBS-SNP-CROP is set by the sequencing platform (e.g. 100 bp, 150 bp, etc.). In TASSEL-GBS, the user specifies a
maximum tag length, thereby effectively setting a uniform tag length. The maximum usable sequence length in TASSEL-UNEAK is 64 bp, with all shorter reads
greater than 32 bp padded with poly-A’s to a uniform 64 bp tag length
c The number of R1 (i.e. single-end) reads ultimately used by each pipeline, after filtering based on quality and read length requirements. The R1 (single-end)
counts are shown here to facilitate comparison across pipelines. Because GBS-SNP-CROP utilizes paired-end reads, the total number of actual reads used (R1 and
R2) is twice this number
d The total number of nucleotides of sequence data used in each analysis
e The total computation time required for each analysis when executed on a Unix workstation with 16 GB RAM and a 2.6 GHz Dual Intel processor
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this statement are discarded. Further, all reads that meet
this requirement are subsequently truncated to a uniform
length based on this parameter; thus not only short reads
but also the full lengths of long reads are culled. While this
tag length requirement is adjustable within TASSEL-GBS
(here, we ran the pipeline with tag lengths of both 32 bp as
well as the default 64 bp), it is fixed at 64 bp for TASSEL-
UNEAK. In contrast, aside from a user-specified minimum
read length, GBS-SNP-CROP imposes no requirement for
read length uniformity, even within read pairs.
Following initial parsing and quality trimming (Stage 1),

a total of 16.82 Gb of sequence data was found to be us-
able for analysis (alignment, SNP discovery, etc.) within
GBS-SNP-CROP (Table 3). In contrast, due mainly to
tag length requirements and the usability of only R1
(single-end) reads, a much reduced 3.85 Gb, 6.77 Gb
and 8.60 Gb were used, respectively, by the TASSEL-
GBS (mxTagL = 32), TASSEL-GBS (mxTagL = 64) and
TASSEL-UNEAK pipelines. In terms of data usage,
therefore, GBS-SNP-CROP performs quite favorably,
with approximately 2.0–4.4 times more high-quality se-
quence data available to it for SNP discovery.
In theory, one should be able to make more reads

available to TASSEL-GBS by reducing the mxTagL
threshold. Such a reduction (in this case, from 64 to
32 bp) leads, however, to a significant reduction in over-
all data usage (from 6.77 Gb to 3.85 Gb; Table 3) and a
concomitant reduction in identified SNPs (from 8,907 to

5,593; Table 4B). For TASSEL-GBS, therefore, it may be
advantageous to set a larger mxTagL value, thereby dis-
carding a larger number of reads that fail to meet that
requirement, than to use a higher number of shorter
reads permitted by a lower mxTagL value.
The low average proportion (10.8 %) of shared SNPs

discovered by TASSEL-GBS under both the 32 and
64 bp mxTagL scenarios (Fig. 3; Additional file 2) indi-
cates that essentially different datasets are made avail-
able to the TASSEL-GBS pipeline, depending on the
chosen value of this one parameter. Such a comparison
suggests that the requirement within the TASSEL pipe-
lines for uniform read lengths (i.e. TASSEL’s tag-based
mapping strategy) is fundamentally limiting, in terms of
data usage. By taking a read-based rather than a tag-based
approach to alignment and SNP discovery, GBS-SNP-
CROP leverages all available data in a single analysis,
thereby avoiding undue fractionation of the dataset.

Numbers of SNPs
Analyses by the different pipelines lead to widely varying
numbers of identified SNPs (Table 4). Using only the
single most read-abundant genotype to build the Mock
Reference, GBS-SNP-CROP called 56,598 potential SNPs
(average depth = 44.5; Table 4A), of which 21,318 were
retained after applying all SNP calling and genotyping
filters (Table 4B), a reduction of 62.3 %. In comparison,
the reference-free TASSEL-UNEAK pipeline called

Table 4 Comparative pipeline performances before (4A) and after (4B) depth-based genotyping criteria and population-level SNP
calling filters for 150 bp paired-end GBS data from 48 accessions of Actinidia arguta

Pipeline Number of SNPsa Average depth [D]b Reads with D ≥ 20 (%)c Hetero (%)d Homo (%)e Missing data (%)f

4A. No SNP calling or genotyping filters appliedg

GBS-SNP-CROP-MR01 56,598 44.47 52.85 26.19 57.25 16.55

GBS-SNP-CROP-RG 23,564 47.39 39.00 26.10 51.09 22.80

TASSEL-UNEAK 12,905 6.98 9.61 13.93 52.12 33.94

TASSEL-GBS-mxTagL32 19,095 134.18 49.20 16.86 71.66 11.46

TASSEL-GBS-mxTagL64 25,005 34.65 35.60 19.21 65.80 14.98

4B. Depth-based genotyping criteria and population-level SNP calling filters appliedh

GBS-SNP-CROP-MR01 21,318 69.34 99.92 34.51 56.85 8.64

GBS-SNP-CROP-RG 5,471 77.11 99.85 38.31 53.29 8.40

TASSEL-UNEAK 1,160 44.70 83.62 31.66 66.61 1.73

TASSEL-GBS-mxTagL32 5,593 64.41 92.52 26.33 71.58 2.09

TASSEL-GBS-mxTagL64 8,907 51.42 78.07 27.80 69.36 2.84
a Total number of SNPs called within each pipeline, under the indicated SNP calling filters and genotyping criteria
b Average read depth for all SNPs across the entire population
c Percentage of called SNPs with an average read depth of at least 20
d Percentage of heterozygous genotype calls
e Percentage of homozygous genotype calls
f Percentage of missing cells (i.e. no genotype call for a given SNP*accession combination)
g Liberal pipeline results in the absence of subsequent SNP calling or genotyping filters
h Pipeline results after culling SNPs with less than 75 % scored genotypes, with D ≤ 4 (low depth), or D ≥ 200 (over-represented sequences). Further reduction is
due to imposing stringent depth-based genotyping criteria, including a minimum read depth of 11 for homozygotes when the secondary allele count is zero, a
minimum depth of 48 for homozygotes when the secondary allele count is one, a minimum depth of 3 for each allele for heterozygotes, and a read-depth ratio
of the lower- to higher-depth allele greater than 0.1
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12,905 potential SNPs (average read depth = 7.0), of
which only 1,160 SNPs passed these same filters, a strik-
ing reduction of 91.0 %.
Using the published A. chinensis diploid genome as a

reference and a liberal pipeline (i.e. no imposed SNP cul-
ling or genotyping filters), GBS-SNP-CROP-RG called
23,564 potential SNPs (average depth = 47.4), of which
5,471 were retained after filtering, a reduction of 76.8 %.
In comparison, the 32 and 64 bp reference-based
TASSEL-GBS analyses called 19,095 and 25,005 potential
SNPs (average depths of 134.2 and 34.7, respectively), of
which 5,593 (70.7 % reduction) and 8,907 (64.4 % reduc-
tion) passed the imposed filters (Table 4). Unlike the
reference-independent analyses, therefore, TASSEL-GBS
was found to outperform the reference-based GBS-SNP-
CROP in terms of numbers of identified SNPs.
Using only those SNPs that passed the stringent geno-

typing criteria and population-level filters described earl-
ier, we compared the set of SNPs called by GBS-SNP-
CROP (using the A. chinensis reference) with those
called by the TASSEL-GBS analyses (Table 4B). There is
strikingly little congruence among these analyses, with
many unshared markers (on average 96.3 %) between
them (Fig. 3; Additional file 2). Interestingly, a high pro-
portion of unshared markers (on average 89.2 %) also
exists between the two different TASSEL-GBS analyses
themselves, even though they differ only in their speci-
fied mxTagL thresholds. Because the initial dataset is the
same for both TASSEL analyses, we expected roughly
half of the SNPs called under mxTagL = 64 to also be
called under mxTagL = 32 (i.e. that SNPs located within
the first 32 bases of the mxTagL = 64 SNPs should com-
prise a proportional subset of the mxTagL = 32 SNPs);
but such is not the case (see Fig. 3).

One stated reason for TASSEL’s approach to SNP call-
ing based on tags is decreased computational time spent
for pipeline execution, with the added rationale that se-
quencing errors increase after the first 64 bp of a read
[11, 30]. While this may be the case, TASSEL’s SNP dis-
covery method appears to be highly sensitive to this tag
length parameter, a result that suggests there may be
some benefit in aggregating the results (i.e. lists of SNPs)
of multiple TASSEL-GBS analyses under various
mxTagL values. Similarly, the largely non-overlapping re-
sults of the reference-based GBS-SNP-CROP analysis
may also have value as a complement to the TASSEL-
GBS approach.
To investigate the overlap among the sets of SNPs

called between the reference-based and reference-
independent pipelines, we mapped all SNPs discovered
using both GBS-SNP-CROP (Mock Reference centroids)
and TASSEL-UNEAK (tags) to the A. chinensis refer-
ence. In so doing, we found that 33.7 % of the SNPs
called by the reference-based GBS-SNP-CROP (A. chi-
nensis) were also called by the reference-independent
GBS-SNP-CROP (Mock Reference based on the single
most read-abundant genotype). In contrast, only 0.6 and
0.4 % of the SNPs called by TASSEL-GBS (64 and 32 bp,
respectively) were identified by the reference-independent
TASSEL-UNEAK pipeline (Fig. 3; Additional file 2).

Average depth
One of the most efficient means of distinguishing se-
quencing error from true nucleotide polymorphism is to
increase read depth thresholds because polymorphisms
called on the basis of more reads mapped to the same
locus can be declared with greater reliability that those
based on fewer reads [46]. Nielsen et al. [47] discussed

Fig. 3 Bar plot showing the extent of marker overlap among the five evaluated pipelines. The sets of SNPs called by the five pipelines are largely
orthogonal to one another, as shown by the fact that both the reference-based and reference-independent pipelines call high proportions of
SNPs called by no other pipeline (grey bars). Shared SNPs among pipelines are indicated by color-coordinated bars. Whereas only 0.6 and 0.4 %
of the 8,907 and 5,593 SNPs called by TASSEL-GBS-64 and TASSEL-32, respectively, were identified by TASSEL-UNEAK, 33.7 % of the SNPs called by
GBS-SNP-CROP-RG were called by GBS-SNP-CROP-MR01
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many studies using NGS data with medium-to-low
coverage (<20×) and showed that genotype calls based
on such data exhibit statistical uncertainty. According to
the authors, there are two reasons for this: (1) In hetero-
zygotes, both alleles may not be sampled, thus leading to
incorrect homozygote calls; and (2) In the case of high
sequencing error technologies, a significant number of
homozygotes may be incorrectly declared heterozygotes
if genotype calling is based simply on the allelic pres-
ence/absence. According to Illumina’s technical notes
[35], the probability of making a correct genotyping call
is roughly 95 % for 20× coverage. While 99.9 % of the
21,318 SNPs identified by the GBS-SNP-CROP Mock
Reference pipeline have an average read depth higher
than 20×, this is true of only 83.6 % of the 1,160 SNPs
called by TASSEL-UNEAK (Table 4). In comparison,
92.5 % of the 5,593 SNPs (-mxTagL32) and 78.1 % of the
8,907 SNPs (-mxTagL64) called by the reference-based
TASSEL-GBS pipelines have an average read depth
higher than 20×, compared to 99.9 % of the 5,471 SNPs
called by the reference-based GBS-SNP-CROP. In terms
of average read-depth, therefore, GBS-SNP-CROP per-
forms favorably compared to both TASSEL-GBS and
TASSEL-UNEAK (see Additional file 3).

Recognizing biological replicates
The primary motivation for developing GBS-SNP-CROP
was the need for a tool to accurately characterize the
genetic diversity of understudied germplasm collections,
including identifying redundant accessions as a means of
boosting the resource efficiency of curation efforts.
Given this goal, a relevant performance criterion is the
ability of the pipeline to identify biological replicates in a
population, as indicated by the observed genetic distance
between those replicates. To quantify such distance, we
employed a modified Gower’s Coefficient of Similarity
[48], ranging from 0 to 1, to quantify identity-by-state
based on bi-allelic SNPs:

SGower x; yð Þ ¼
Xm

i¼1
siwiXm

i¼1
wi

where si = 1 if the genotypes are the same, 0.5 if the
genotypes differ by one allele (i.e. heterozygote vs.
homozygote), and 0 if the genotypes differ by both al-
leles (i.e. primary homozygote vs. secondary homozy-
gote); and wi = 1 if both replicates are genotyped for the
SNP in question and 0 if either replicate lacks an
assigned genotypic state.
Using the SNPs called by the GBS-SNP-CROP-MR01

analysis (Table 4B), the Gower genetic similarity calcu-
lated between two biological replicates of A. arguta ac-
cession ‘Opitz Male’ was found to be 0.999, with a
Pearson correlation of 0.998, results similar to those

obtained with the reference-based GBS-SNP-CROP
pipeline (Table 5). In comparison, the reference-based
TASSEL-GBS-32 bp and -64 bp analyses yielded lower
Gower genetic similarities of 0.967, as well as reduced
Pearson correlations (≤ 0.92). These same replicates of
’Opitz Male’ were found to be only 0.948 similar by
TASSEL-UNEAK, indicating a genotyping error rate of
more than 60 times that of GBS-SNP-CROP (Mock Ref-
erence), despite calling 18 times fewer SNPs (1,160 vs.
21,318; Table 4B). This same basic pattern of results was
found when analyzing biological replicates of A. arguta
accession ‘Dumbarton Oaks’ (Table 5), suggesting that
genotyping via GBS-SNP-CROP is relatively robust,
prone to fewer genotyping errors while maintaining high
numbers of SNPs, whether or not a reference is
available.

Computation time
Compared to TASSEL-UNEAK, the GBS-SNP-CROP
Mock Reference workflow processed over twice as much
data, generated over 18 times more SNPs, the SNPs it
called had higher average depth (69.3 vs. 44.7), and as a
set they were better able to detect similarity between
biological replicates; but this improved performance
comes at the price of approximately 25 times longer
computation time. Using a dedicated Unix workstation
with a 2.6 GHz Dual Intel processor and 16 GB RAM,
the computational time required to run the Mock Refer-
ence GBS-SNP-CROP pipeline using only the most
read-abundant genotype to assemble the Mock Refer-
ence was approximately 11 h for this dataset, compared
to only 27 min for the TASSEL-UNEAK analysis
(Table 2). Similarly, due to its consideration of 3–4 times
the amount of sequence data and its strategy of mapping
reads rather than tags, the reference-based GBS-SNP-
CROP analysis (~8.5 h) also requires significantly more
computational time than either of the TASSEL-GBS ana-
lyses (35–70 min). Table 1 presents the computational
times required for each of the steps within the
reference-free GBS-SNP-CROP-MR01 workflow.

Conclusions
GBS-SNP-CROP is a complete bioinformatics pipeline
developed to support curation, research, and breeding
programs wishing to utilize GBS for the cost-effective
genome-wide characterization of plant genetic resources
in the absence of a reference genome. Although the
pipeline was created primarily with orphan crop
characterization in mind, its underlying strategy is suffi-
ciently general to suggest its potential utility in any situ-
ation (plant, animal, or micro-organismal) where
reduced-representation genomic data (e.g. GBS) is ana-
lyzed for SNPs, such as studies in population genetics,
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evolutionary ecology, conservation biology, and genetic
linkage analysis.
As indicated by the example analysis presented here,

the pipeline performs quite favorably compared to
TASSEL-UNEAK, not only in terms of a significantly
higher number of identified SNPs but also in terms of
an increased average read depth and a greatly reduced
genotyping error rate. Remarkably, the reference-
independent version of GBS-SNP-CROP was also shown
to outperform the reference-based TASSEL-GBS pipe-
line in terms of these same metrics. In contrast, the
reference-based version of GBS-SNP-CROP appears out-
performed by TASSEL-GBS in terms of the number of
called SNPs, though again its genotyping error rate is
lower. Given the low proportion of shared SNPs among
these reference-based analyses, however, GBS-SNP-
CROP may be useful even in this case, able to detect
large numbers of additional high-quality SNPs missed by
the tag-based and read length-restricted approach of
TASSEL-GBS. Indeed, with the capacity to make full use
of variable length, paired-end GBS data for high-density
SNP genotyping of plant populations, whether or not a
reference genome is available, GBS-SNP-CROP is a flex-
ible and easily modifiable tool worthy of consideration
by interested programs.

Methods
Plant material, GBS data, and genotypes sampled
A collection of 48 tetraploid kiwiberry (Actinidia arguta)
genotypes, each carrying two sets of 29 chromosomes
(2n = 4× = 116) with an estimated total genome size of
1C = 1.5 Gbp [49], was sampled from the USDA Na-
tional Clonal Germplasm Repository (Davis, CA) for this
study. Genomic DNA was extracted from ~1 g of fresh
young leaves from each accession using a modified
CTAB protocol, and a multiplexed GBS library was pre-
pared according to the two enzyme (PstI-MspI) protocol

described by Poland et al. [11]. Using the first 96 6–
10 bp barcodes from that protocol, the 48 accessions
were multiplexed along with 2 biological replicates
(accessions “Opitz Male” and “Dumbarton Oaks”) and
46 breeding lines, resulting in a 96-plex library which
was sequenced on two lanes (i.e. one complete flowcell)
of an Illumina 2500 HiSeq machine at the Hubbard
Center for Genome Studies, University of New Hampshire
(http://hcgs.unh.edu/). FASTQ files of the sequence data
were generated using CASAVA 1.8.3 [50]; and these raw
sequences have been deposited in the NCBI Sequence
Read Archive (SRA Accession number SRR2296676). A
table of the 48 genotypes used in this analysis, along with
their assigned barcodes, can be found in Additional file 4.

Pipeline evaluation and testing
To evaluate the performance of GBS-SNP-CROP, we an-
alyzed the GBS data from the 48 accessions described
above (plus 2 biological replicates) using seven different
analyses. First, we executed three variations of GBS-
SNP-CROP without a reference genome (Table 1, Stage
2). In the first Mock Reference analysis (GBS-SNP-
CROP-MR48), we assembled the Mock Reference from
centroids identified by clustering first within each geno-
type and then across all 48 genotypes in the population.
In the second Mock Reference analysis (GBS-SNP-
CROP-MR05), clustering was done across only the five
most read-abundant genotypes (accessions “ORUS 2–16”,
“DACT 213”, “40537C”, “ORUS 1–6”, and “Chang Bai
Mountain 3”). In the third analysis (GBS-SNP-CROP-
MR01), the Mock Reference was built using the
within-genotype centroids from only the single most
read-abundant line (accession “ORUS 2–16”). These
three different approaches were followed to examine
the effects of reducing the number of genotypes used
to build the Mock Reference on both computational
time and the number and quality of identified SNPs.

Table 5 Comparative pipeline performances, in terms of consistency in genotyping biological replicates

cv. ‘Opitz Male’ cv. ‘Dumbarton Oaks’

Pipelines Number
of SNPsa

Gower genetic
similarityb

Pearson
correlationc

Shared genotype
calls (%)d

Gower genetic
similarity

Pearson
correlation

Shared genotype
calls (%)

GBS-SNP-CROP-
MR01

21,318 0.999 0.998 99.9 0.998 0.997 99.8

GBS-SNP-CROP-
RG

5,471 0.999 0.998 99.9 0.998 0.997 99.9

TASSEL-UNEAK 1,160 0.935 0.948 93.6 0.950 0.961 94.8

TASSEL-GBS-
32 bp

5,593 0.967 0.909 96.3 0.969 0.922 96.4

TASSEL-GBS-
64 bp

8,907 0.967 0.920 96.7 0.966 0.919 96.6

a The total number of SNPs used in this analysis refers to numbers from Table 4B
b A modified Gower’s general Coefficient of Similarity [48], ranging from 0 to 1, to quantify identity-by-state based on bi-allelic SNPs
c Pearson correlation calculated using R [31]; for all correlations in the table, p-value < 0.01
d The percentage of SNPs with exact genotype matches for the two biological replicates. All loci with missing data for either replicate were discarded
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For all Mock Reference analyses, we used PEAR v.0.96
[32] to merge reads using mainly default parameters,
except for specifying a minimum assembled read
length of 32 bp. For clustering, we used USEARCH
v.8.0.162 [33], specifying the “cluster_fast” algorithm
with a nucleotide similarity threshold of 93 % to allow
up to two mis-matches within the shortest assembled
reads (32 bp).
For comparison with the Mock Reference analyses de-

scribed above, we ran GBS-SNP-CROP using a pub-
lished reference genome from the closely related diploid
(2n = 2× = 58) species A. chinensis [51] with an estimated
genome size 1C = 758 Mbp [48]. The only difference be-
tween this reference-based analysis (GBS-SNP-CROP-
RG) and the Mock Reference analyses above is that in
the former we skipped Stage 2 (“Build the Mock Refer-
ence ”) of the GBS-SNP-CROP workflow (see Table 1).
For both GBS-SNP-CROP analyses, the CASAVA-

processed sequence data were subjected to basic quality
filtering. Specifically, reads were trimmed based on a
sequence of three contiguous bases with an average
Phred score Q ≤30, and trimmed reads shorter than
32 bp were culled. These procedures were performed
using the Trimmomatic software v.0.33 [31] with the
following parameters: LEADING:30 SLIDINGWIN-
DOW:4:30 TRAILING:30 MINLEN:32. Also for both
analyses, alignment was carried out using BWA
v.0.7.12 [34]; and the resultant alignment files were
processed with SAMtools v.1.2 [35].
For the next analysis, we used the Network-Based SNP

Discovery Protocol with no reference genome (TASSEL-
UNEAK v.3.0). The TASSEL-UNEAK pipeline was run
using mainly its default parameters, with two changes:
(1) In the “UMergeTaxaTagCountPlugin” step, the “-c”
flag was increased from 5 to 10; and (2) The error toler-
ance rate (“-e” flag on “UTagCountToTagPairPlugin”)
was decreased from 0.03 to 0.01. These modifications
were made in an effort to match the default parameters
of the TASSEL-GBS analyses, thereby facilitating
comparison.
Finally, we used TASSEL-GBS v.5.2.11 to carry out

two more reference-based analyses, one with “Maximum
Tag Length” (mxTagL) = 32 bp and the other with
mxTagL = 64 bp. For all TASSEL analyses (TASSEL-
GBS-32 bp, TASSEL-GBS-64 bp, and TASSEL-UNEAK),
we set the minimum minor allele frequency to 5 % and
accepted only those markers for which genotypes were
called for at least 75 % of the population.

Comparing called SNPs among pipelines
Identifying shared and non-shared SNPs called by the
reference-based pipelines (GBS-SNP-CROP-RG and the
TASSEL-GBS pipelines) is straightforward due to the
unique coordinate positions of the SNPs within the

common A. chinensis reference genome. Comparing
called SNPs between the reference-independent pipelines
(TASSEL-UNEAK and GBS-SNP-CROP-MR01) and
reference-based pipelines is less simple due to the fact that
no common reference (and thus coordinate system) exists.
To enable such important comparisons, we first located
the positions of all called SNPs (Table 4B) within the indi-
vidual centroids used to construct the Mock Reference
(GBS-SNP-CROP-MR01) and within the unique 64 bp
tags used within the TASSEL-UNEAK pipeline. We then
mapped all the putative SNP-containing centroids/tags to
the A. chinensis reference genome and located the corre-
sponding A. chinensis coordinate position of each called
SNP. Finally, the allele compositions of any supposedly
common SNPs were verified before such SNPs were de-
clared as shared between pipelines.

Availability of supporting data
The data set supporting the results of this article is avail-
able in the NCBI Sequence Read Archive [SRA Accession
number SRR2296676].

Additional files

Additional file 1: Suggested parameter values for GBS-SNP-CROP,
based on ploidy scenarios and confidence considerations.
AdditionalFile1.pdf presents rationale to guide user selection of ploidy-
appropriate values for various parameters in Script 7 of GBS-SNP-CROP
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