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Abstract

Background: The nonparametric trend test (NPT) is well suitable for identifying the genetic variants associated with
quantitative traits when the trait values do not satisfy the normal distribution assumption. If the genetic model,
defined according to the mode of inheritance, is known, the NPT derived under the given genetic model is optimal.
However, in practice, the genetic model is often unknown beforehand. The NPT derived from an uncorrected model
might result in loss of power. When the underlying genetic model is unknown, a robust test is preferred to maintain
satisfactory power.

Results: We propose a two-phase procedure to handle the uncertainty of the genetic model for non-normal
quantitative trait genetic association study. First, a model selection procedure is employed to help choose the genetic
model. Then the optimal test derived under the selected model is constructed to test for possible association. To
control the type I error rate, we derive the joint distribution of the test statistics developed in the two phases and
obtain the proper size.

Conclusions: The proposed method is more robust than existing methods through the simulation results and
application to gene DNAH9 from the Genetic Analysis Workshop 16 for associated with Anti-cyclic citrullinated
peptide antibody further demonstrate its performance.
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Background
The past decades have witnessed many biological and epi-
demiological discoveries through the experimental design
of genetic association studies based on the development of
biological technology. Many variants have been identified
to be associated with the quantitative traits. For example,
in studying genetic loci in association with various phe-
notypes, 180 were reported to be associated with human
height [1], 106 were associated with age at menarche [2],
97 were identified to be associated with body mass index
[3], and the single-nucleotide polymorphism (SNP) rs4702
was associated with both diastolic and systolic blood pres-
sure levels [4]. A standard approach to conduct an asso-
ciation test in a quantitative trait genetic study is to fit
a linear model based on the assumption that the original
or transformed trait values follow a normal distribution.
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However, the normal assumption is often violated for
many traits even though some transformations such as
the Log-transformation are carried out. For example, the
number of tumors per subject in mouse follows a negative
binomial distribution [5] and the survival time of a person
follows a truncated distribution [6]. A good alternative to
address this issue is to use the nonparametric tests.
Although there are various nonparametric tests in the

literature, the most commonly used ones in genetic
studies are the Kruskal-Wallis test (denote it by KW) [7]
and the Jonckheere-Tepstra test (denote it by JT) [8, 9].
Originally, the KW was designed to detect the differences
of the response variable in the medians of three groups
and it was a nonparametric version of one-way analysis
of variance based on ranking. The JT was also a rank-
based test for an ordered alternative hypothesis which was
particularly sensitive to the genetic mode of inheritance.
Recently, Zhang and Li [10] defined the nonparametric
risk and nonparametric odds and proposed a nonpara-
metric trend test (NPT) that has been shown to be more
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powerful than KW and JT under a given genetic model.
These methods, however, would suffer from loss of power
when the underlying genetic model is misspecified.
In the present paper, we propose a two-phase robust

procedure to test the genetic-phenotypic association. We
first construct a test to classify the genetic model in a non-
parametric way. We find that the test statistic tends to be
positive when the geneticmodel is dominant, and negative
when the model is recessive. Then based on the chosen
model, the association test is conducted. We derive the
correlation coefficient of the test used for choosing the
genetic model and that for doing association study and
obtain the proper size for a given nominal significance
level. Extensive simulation studies are conducted to show
the new approach to have empirical size less than the
nominal level, and to compare this new approach with
KW and MAX3, the maximum value of three NPTs. The
results show that the proposed two-phase procedure is
more robust than MAX3 and KW in the sense that its
minimum power in a set of plausible models is the highest
among the tests under consideration. Finally, a real data
analysis is used for further illustration.

Methods
Notations and genetic models
Consider a biallelic marker whose genotype is coded as
0, 1, and 2, corresponding to the count of a certain can-
didate risk allele or a minor allele. Suppose that there are
n subjects that are independently sampled from a source
population in a quantitative trait genetic association study.
Let (yi, gi), i = 1, 2, · · · , n be the observed sample, where
yi is the trait value and gi denotes the genotype value
of the ith subject, i = 1, 2, · · · , n. For brevity, let the
first n0 subjects have genotype 0, the second n1 subjects
have genotype 1, and the last n2 subjects possess geno-
type 2. Denote fij = Pr(Yi < Yj), i, j = 0, 1, 2, where
Y0,Y1 and Y2 are the random variables that take values
in three sets {y1, y2, · · · , yn0}, {yn0+1, yn0+2, · · · , yn0+n1}
and {yn0+n1+1, yn0+n1+2, · · · , yn}, respectively. The null
hypothesis of no association is given by H0 : f01 = f02 =
1/2. The alternative hypothesis isH1 : f02 ≥ f01 ≥ 1/2 and
f02 > 1/2.
A genetic model specifies the mode of inheritance. The

three genetic models are: recessive model (REC) if f01 =
1/2 and f12 = f02 > 1/2, additive model (ADD) if f01 =
f12 > 1/2 and f02 > 1/2, and dominant model (DOM) if
f01 = f02 > 1

2 and f12 = 1/2.

Model selection
Denote �1 = f01 − 1/2, �2 = f12 − 1/2. We find that
�1 − �2 tends to be negative value under the reces-
sive model and take positive under the dominant model.
The signs of (�1,�2) under the three genetic models
are plotted in Fig. 1, where the line corresponding to the

additive model is the straight line with a slope of 1 at
the point C, C = (1/2, 1/2)τ and τ denotes the trans-
pose of a vector or a matrix, and the other two lines are
for the recessive and dominant models, respectively. The
recessive and dominant models form the boundaries of
the space under the alternative hypothesis. The vertex C
corresponds to the null hypothesis. Denote
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Then f̂01 and f̂12 are the consistent estimators of f01 and
f12, respectively, σ̂ 2

01 and σ̂ 2
12 are, respectively, the consis-

tent estimators of the variances of f̂01 and f̂12, and σ̂ 2
01,12

is the consistent estimator of the covariance between
f̂01 and f̂12. Define a test statistic for genetic model
selection as

Z1 = f̂01 − f̂12√
σ̂ 2
01 − 2σ̂ 2

01,12 + σ̂ 2
12

.

Under the null hypothesis, Z1 asymptotically follows
the standard normal distribution. So the genetic models
can be determined as follows: i) if Z1 > ξ (> 0), then
the genetic model is dominant; ii) if Z1 < −ξ , then the
genetic model is recessive; otherwise, the additive model
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Fig. 1 The common three genetic models in the genetic model space. The point C = (1/2, 1/2) corresponds to the null hypothesis

is claimed. Here, ξ is set to be the 90% quantile of the
standard normal distribution.

The nonparametric test under a given genetic model
Denote
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Then the NPT under the recessive model can be given
by ZR = (f̂R − 1/2)/σ̂R.
Let
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Then, the NPT under the additive geneticmodel isZA =
(f̂A − 1/2)/σ̂A.
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and
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Then the NPT under the dominant model is ZD = (f̂D−
1/2)/σ̂D. Under the null hypothesis, ZR, ZA and ZD follow
the standard normal distribution.

Two-phase procedure
We propose a two-phase procedure (TPP) for the quan-
titative trait association study by first determining the
underlying genetic model in the first phase, followed by
testing the association with the corresponding NPT for
the selectedmodel in the second phase. In details, the two-
phase procedure can be described by the following two
steps:

Step 1. Determine the genetic model using Z1. If
Z1 < −ξ , the recessive model is used, else if Z1 > ξ , we
use the dominant model, otherwise, the additive model is
used.
Step 2. We choose the association test statistic based

on the chosen model in Step 1 and do the association
study.

Size adjustment
To adjust the size of the two-phase procedure for a given
overall nominal significance level, we need to derive the
joint distribution of Z1 and Zx, x ∈ {R,A,D}. From
the Additional file 1, under the null hypothesis, (Z1,Zx)τ

asymptotically follows a bivariate normal distribution
with mean (0, 0) and �x, where

�x =
(

1 ρx
ρx 1

)
, x ∈ {R,A,D}.

Denote the cumulative distribution function of Y0, Y1
and Y2 by F0, F1 and F2, respectively. Then ρR, ρA and
ρD are functions of F0, F1, F2 and p (the minor allele
frequency, or MAF, for short), which can be estimated
empirically based on the observed data. The consistent
estimates can be obtained under the situation that the
means of the trait values in the groups with different
genotypes being equal. The technical details of deriva-
tions for ρR, ρA and ρD under the null hypothesis are
presented in the Additional file 1. Suppose that the null
hypothesis is rejected at the level of α∗ in the sec-
ond phase. Then, to control the overall level at a given
α, we have α = PH0 (Z1 < −ξ , |ZR| > z(1 − α∗/2)) +
PH0 (|Z1| < ξ , |ZA| > z(1 − α∗/2)) + PH0 (Z1 > ξ , |ZD| >

z(1 − α∗/2)), where z(α) is the α quantile of the standard
normal distribution. So, this relation can be written as

α=
∫
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where 	R = {u : u < −ξ}, 	A = {u : −ξ ≤ u ≤ ξ},
	D = {u : u > ξ}, and 
(·) is the cumulative dis-
tribution function of the standard normal distribution.
Under the null hypothesis, we can numerically calculate
the adjusted significant level for the association test statis-
tic in the second phase. Table 2 shows the mean and
standard error of α∗ with the nominal level of 0.05 and
0.001 based on 1,000 and 50,000 replicates, respectively.
It indicates that α∗ is more likely to be smaller than α,
and also α∗ is less vulnerable to the MAF. For example,
when MAF = 0.25, the adjusted levels for the nominal
α = 0.05 and α = 0.001 are 0.0360 and 0.00065, and the
corresponding standard error are 0.0003 and 0.000013,
respectively.

Results
The performance of model selection procedure
We conduct simulation studies to explore the perfor-
mance of the model selection procedure. We generate
data considering three genetic models. Consider the linear
model Y = β0 + Gβ1 + ε, where Y denotes the pheno-
type value, G denotes the genotype value at a SNP locus,
and ε follows a truncated generalized extreme value distri-
bution (a heavy-tailed distribution, denoted as tGEV(0, 0,
d, 0)) with the shape parameter 0, the location parameter
0, the scale parameter d, and the truncated point 0. Here
we specify β0 = 0.50, β1 = 0.50, d = 5, and the MAF
p ∈ {0.05, 0.10, · · · , 0.50}. The total sample size is 1,500.
10,000 replicates are conducted to compute the true selec-
tion rate (TSR) under different scenarios. Table 1 shows
the results for ξ = 
−1(0.90) = 1.282. The other results
for ξ = 
−1(0.80) = 0.841, ξ = 
−1(0.85) = 1.036
and 
−1(0.95) = 1.645 are given in the Additional file 1.
From Table 1, we can see that the TSR increases as MAF
increases. For example, if the recessive model is true, the
TSR is 19.48% for MAF of 0.05, while it is 86.21% for
MAF of 0.50. It makes sense since the expected number
of subjects with genotype 2 is increasing with the MAF
increasing. We also find that the TSR for additive model is
satisfactory with the TSR being around 80%. For example,
the TSR are 79.23% and 80.09% corresponding toMAF of
0.05 and 0.50, respectively. Besides this, we also conduct
simulations with covariates considering Y = β0 + Xγ +
Gβ1 + ε, where X is a covariate. The detailed results are
available in the Additional file 1.
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Table 1 The true selecting rate (%) of genetic model using Z1 with ξ = 
−1(0.9) when the error follows tGEV(0,0,5,1)

True model REC ADD DOM

MAF\Selection rate REC ADD DOM REC ADD DOM REC ADD DOM

0.05 19.48 75.59 4.93 8.21 79.23 12.56 2.40 73.34 24.26

0.10 34.80 63.67 1.53 8.85 80.21 10.94 1.37 64.52 34.11

0.15 50.25 49.30 0.45 8.96 81.14 9.90 0.59 52.69 46.72

0.20 61.19 38.60 0.21 9.63 80.22 10.15 0.27 39.68 60.05

0.25 71.12 28.84 0.04 9.44 80.69 9.87 0.08 30.44 69.48

0.30 77.44 22.54 0.02 9.62 80.33 10.05 0.05 22.96 76.99

0.35 81.94 18.04 0.02 10.00 80.37 9.63 0.04 18.00 81.96

0.40 84.64 15.34 0.02 9.56 80.45 9.99 0.02 15.00 84.98

0.45 85.69 14.30 0.01 9.85 80.33 9.82 0.00 13.91 86.09

0.50 86.21 13.75 0.04 10.16 80.09 9.75 0.02 14.14 85.84

The sample size is n = 1, 500 and 10,000 replicates are conducted

The adjusted significant level
Table 2 shows the adjusted α∗ of the TPP under the
null hypothesis. The parameter setting is the same as
above. When the nominal level is 0.05, we calculate the
mean and standard deviation (SD) based on 2,000 repli-
cates. And 50,000 replicates are conducted for the nom-
inal level of 0.001. The results indicate that the adjusted
level is always less than the nominal significant level α.
For example, when MAF = 0.25, the adjusted levels for
the nominal level α = 0.05 and α = 0.001 are 0.0310
and 0.00059, respectively. And the value of α∗ is rela-
tively stable because its standard deviation can be omitted
compared with the means. For example, when MAF =
0.1, the adjusted levels for the nominal level α = 0.05
and α = 0.001 are 0.0335 and 0.00063, and the corre-
sponding standard deviations are 0.00169 and 0.000039,
respectively.

Type I error rate
We evaluate the empirical type I error rates of five tests:
KW, ZR, ZA, MAX3, and TPP. The simulation settings are
similar as above. The sample size is 1,500. Here we use ξ =

−1(0.90), β0 = 0.50, and p ∈ {0.05, 0.10, · · · , 0.50}. 2,000
replicates are conducted for the nominal significant level
of 0.05 and 50,000 replicates are conducted for the nomi-
nal significant level of 0.001. Table 3 shows the empirical
type I errors of the five tests under the significant level of

0.05 and 0.001. The results show that all of the five tests
could control the type I error correctly with the empir-
ical values being close to the nominal significance level.
For example, when MAF = 0.20, the empirical type I
error rates of KW, ZR, ZA, MAX3, and TPP test are 0.046,
0.048, 0.051, 0.045, and 0.041, respectively, under the sig-
nificant level of 0.05. When MAF =0.35 and the nominal
significant level is 0.001, the empirical type I error rates
of KW, ZR, ZA, MAX3, and TPP test are 0.00090, 0.00086,
0.00098, 0.00090, and 0.00080, respectively.

Power
We compare the power among KW, ZR, ZA, MAX3 and
TPP under the similar settings to those described above.
Figures 2 and 3 report the power results for the nominal
level of 0.05 and 0.001, respectively, under the recessive,
additive, and dominant models. In order to make the
power comparable, when the nominal level is 0.001, we
specify d = 3 for β1 = 0.25 and d = 5 for β1 = 0.50,
and when the nominal level is 0.05, we set d = 5 and
β1 = {0.25, 0.50}. The results indicate that, except the
NPT test under the true genetic model, the proposed TPP
is always more powerful than KW and MAX3. this makes
sense because that NPT under a given model (ZR, ZA) is
the most powerful under that model, and the model selec-
tion procedure always gives a large probability of TSR.
TPP is more powerful than KW, ZA, and MAX3 under the

Table 2 The adjusted level α∗ for the nominal significant level α of 0.05 and 0.001

MAF 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

α = 0.05 mean 0.0364 0.0335 0.0327 0.0318 0.0310 0.0303 0.0297 0.0293 0.0290 0.0290

sd 0.00689 0.00169 0.00173 0.00148 0.00120 0.00093 0.00074 0.00062 0.00058 0.00057

α = 0.001 mean 0.00071 0.00063 0.00063 0.00061 0.00059 0.00058 0.00057 0.00056 0.00056 0.00056

sd 0.000151 0.000039 0.000034 0.000032 0.000024 0.000016 0.000010 0.000005 0.000003 0.000002

1,000 replicates are for the nominal level 0.05 and 50,000 replicates are for the level 0.001
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Table 3 The empirical type I errors of KW, ZR , ZA , MAX3, and TPP when the error term follows tGEV(0,0,5,0)

α = 0.05 α = 0.001

MAF KW ZR ZA MAX3 TPP KW ZR ZA MAX3 TPP

0.05 0.049 0.031 0.057 0.032 0.043 0.00064 0.00035 0.00114 0.00078 0.00082

0.10 0.051 0.055 0.047 0.045 0.047 0.00076 0.00040 0.00092 0.00062 0.00060

0.15 0.049 0.055 0.051 0.057 0.050 0.00098 0.00062 0.00092 0.00070 0.00080

0.20 0.046 0.048 0.051 0.045 0.041 0.00098 0.00088 0.00094 0.00102 0.00092

0.25 0.058 0.049 0.052 0.058 0.050 0.00090 0.00074 0.00076 0.00088 0.00068

0.30 0.057 0.054 0.049 0.058 0.044 0.00112 0.00084 0.00088 0.00114 0.00086

0.35 0.056 0.052 0.051 0.055 0.047 0.00090 0.00086 0.00098 0.00090 0.00080

0.40 0.052 0.048 0.045 0.050 0.038 0.00114 0.00100 0.00082 0.00106 0.00070

0.45 0.048 0.049 0.054 0.057 0.043 0.00090 0.00086 0.00090 0.00108 0.00074

0.50 0.052 0.050 0.044 0.044 0.034 0.00078 0.00080 0.00068 0.00090 0.00064

The sample size is 1,500. The left panel is for the significant level α = 0.05 and the right panel is for the significant level α = 0.001

Fig. 2 The powers of KW, ZR , ZA , MAX3, and TPP with tGEV(0,0,5,0) error under three genetic models. The nominal level is 0.05. The first column is for
β1 = 0.25 and the second column is for β1 = 0.50. The total number of the subjects is n = 1, 500
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Fig. 3 The powers of KW, ZR , ZA , MAX3, and TPP with tGEV(0,0,d,0) error under three genetic models. The nominal level is 0.001. The first column is
for β1 = 0.25, d = 3 and the second column is for β1 = 0.50, d = 5. The total number of the subjects is n = 1, 500

recessive model and in most scenarios under the domi-
nant model. In some cases, there are 6% power increase.
For example, when MAF is 0.20, β1 = 0.50, α = 0.05
and the genetic model is recessive, the empirical powers
of KW, ZA, MAX3, and TPP are 0.335, 0.202, 0.418, and
0.473, respectively. The performance of TPP is superior
than the other three test KW, ZR and MAX3 when the
true model is additive or dominant. For example, when
MAF is 0.30 and the genetic model is additive, β1 = 0.50,
α = 0.001, the empirical powers of KW, ZR, MAX3, and
TPP are 0.321, 0.128, 0.407, and 0.431, respectively. Fur-
thermore, using ZR under the additive or dominant model
can result in substantial loss of power. The TPP has higher
robustness against the genetic model than other four tests.
For example, when α = 0.05 and β1 = 0.50, the mini-
mum value of power for TPP over MAF from 0.10 to 0.50
is 0.137 under the recessive, additive and dominantmodel,
which is larger than those of KW (0.099), ZR (0.103), ZA
(0.070), and MAX3 (0.112).

Application to gene DNAH9 associated with anti-CCP
measure
We apply KW, ZA, MAX3 and TPP to identify the deleteri-
ous SNPs in the gene DNAH9 [11] for the association with
the anti-CCP measure using the data from Genetic Work-
shop 16 [12, 13]. The anti-CCP is present in the blood of
the majority of patients with rheumatoid arthritis (RA).
The data includes 867 cases (with anti-CCP) and 1,195
controls (without anti-CCP). Here we impute them with
the minimum value of the anti-CCP values in cases, which
is 20.053 following Zheng et al. (2012)[14]. We remove
the effect of population stratification using four princi-
pal coordinates [15] following Zhang and Li [10] and take
the residuals as the new outcome. There are 92 SNPs in
gene DNAH9 on Chromosome 17. We calculate the p-
values of these SNPs using the KW, ZA, MAX3 and TPP
approaches. There are six SNPs in gene DNAH9 whose
proportions of the missing genotype value are more than
15 %, so we only show the p-value of the remaining 86
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Table 4 The p-values of 17 SNPs in gene DNAH9 for the association with Anti-CCP Measure

snpid KW ZA MAX3 TPP Genetic model α∗

rs9896319 0.0024 0.0542 0.0060 0.0031 REC 3.16 × 10−5

rs736626 0.1008 0.0337 0.0720 0.0337 ADD 2.98 × 10−5

rs4791473 0.0621 0.0214 0.0436 0.0214 ADD 2.99 × 10−5

rs12946617 0.1182 0.0459 0.0962 0.0459 ADD 3.75 × 10−5

rs7223160 0.0894 0.0289 0.0624 0.0289 ADD 2.98 × 10−5

rs7207282 0.1039 0.0345 0.0738 0.0345 ADD 2.98 × 10−5

rs11657375 0.1359 0.0412 0.0880 0.0412 ADD 3.29 × 10−5

rs11651010 0.0002 0.0001 0.0001 0.0001 ADD 3.03 × 10−5

rs3744580 0.0804 0.0390 0.0561 0.0390 ADD 2.99 × 10−5

rs11655963 1.18 × 10−4 8.40 × 10−5 7.44 × 10−5 2.72 × 10−5 REC 3.64 × 10−5

rs12936861 0.0529 0.0594 0.0336 0.0146 DOM 2.87 × 10−5

rs9896309 0.0356 0.1863 0.0446 0.0205 DOM 2.86 × 10−5

rs7215021 0.1275 0.0384 0.0715 0.0384 ADD 3.48 × 10−5

rs9303041 0.0507 0.1855 0.0327 0.0149 DOM 3.16 × 10−5

rs10445247 0.0481 0.0320 0.0491 0.0320 ADD 2.92 × 10−5

rs3764845 0.0719 0.0325 0.0698 0.0325 ADD 2.91 × 10−5

rs1990236 0.0622 0.0217 0.0365 0.0217 ADD 3.27 × 10−5

α∗ is the adjusted p-value threshold for 5 × 10−5. The sixth column (denoted by Genetic model) is the selected genetic model using the TPP in the first phase

SNPs. In the main text, we shows the results of the SNPs
whose p-values are relatively small (almost less than 0.05)
in Table 4 and the p-values of the other SNPs are summa-
rized in Table S10 in the Additional file 1. We find that the
SNP rs11655963 has the minimum p-value of 2.72× 10−5

using the TPP. The corresponding p-values using KW, ZA,
and MAX3 are 1.18× 10−4, 8.40× 10−5 and 7.44× 10−5,
respectively. Burton et al.(2007)[16] proposed to use the
p-value threshold of 5× 10−5 as the moderate association
at the genome-wide level. Because the p-values of KW, ZA
and MAX are all larger than 5 × 10−5, there are no mod-
erate genome-wide associations. However, for the TPP, we
calculate the adjusted p-value threshold for 5 × 10−5 and
it is 3.64×10−5. This indicates that using the TPP can give
the moderate-strong effect.

Discussion and Conclusion
With the developments of biological technology, more
and more data on quantitative traits and genotypes are
generated and deposited in public database such as The
National Center for Biotechnology Information database.
It is urgent to develop new methods to excavate useful
information to help understand the etiology of human
complex diseases. A nonparametric two-phase procedure
is proposed here to test the association between a di-allelic
SNP and a non-normal distributed quantitative trait when
the genetic model is unknown. Simulation results show
that the proposed TPP is more robust than the existing
methods.

If there are covariates needed to be adjusted for, we can
first regress on the covariates and use the residuals as the
new outcome and then employ TPP to conduct the associ-
ation study. The detailed simulation results are presented
in Additional file 1. Besides the truncated generalized
extreme value distributional (a heavy-tailed distribution)
error term with the truncation point 0, we also consider
the error term following the centralized t distribution and
general generalized extreme value distribution, respec-
tively. The results are given in Additional file 1, where the
similar results are observed.

Additional file

Additional file 1: The derivations of ρR, ρA and ρD under the null
hypothesis. Consistent estimators of ρR , ρA and ρD under the null
hypothesis. Additional simulation results for the model selection
procedure. Simulation results for the error term following the generalized
extreme distribution. Simulation results for the error term following the
centralized t distribution. Simulation results for the model with covariates.
Additional p-value results of the SNPs in gene DNAH9 for the associated
with Anti-CCP Measure. (PDF 179 kb)
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